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1. INTRODUCTION

This paper is devoted to a special case of the general problem of finding the chromatic number of
space with a forbidden monochromatic configuration. Before stating results, we recall the definitions of
basic objects dealt with in this paper and make a few historical comments on this and related problems.

The chromatic number χ(Rn) of space R
n is defined as the least number of colors required to color

the points of space so that no points of the same color are a unit distance apart.
The problem of finding the chromatic number of the plane was posed by Nelson in 1950 (see [1]);

however, at present, it is only known that

4 ≤ χ(R2) ≤ 7

(these bounds can be found, e.g., in [1]). About the behavior of χ(Rn) for large n we know that

(1.239 . . . + o(1))n ≤ χ(Rn) ≤ (3 + o(1))n (1)

(see [2] and [3]).
During the past decades, many various generalizations of Nelson’s original problem have appeared.

The branch of mathematics which studies such generalizations is Euclidean Ramsey theory. In this
theory, a set S ⊂ R

d is said to be Ramsey if, given any positive integer m, there exists an n ∈ N such
that, for any m-coloring of Rn, there exists a monochromatic set congruent to S.

Let us reformulate the definition given above in somewhat different terms. Let χS(R
n) be the least

number of colors required to color Rn so that none of the sets congruent to S is monochromatic. In this
terminology, a set S ⊂ R

d is said to be Ramsey if

lim
n→∞

χS(R
n) = ∞.

As is known, any Ramsey set lies on a sphere (see [4]). It follows from inequalities (1) that any pair
of points is a Ramsey set (and even a so-called exponentially Ramsey set). Many other sets have been
proved to be exponentially Ramsey, too. Such sets include the vertex set of any simplex and the Cartesian
products of exponentially Ramsey sets (see [4]–[7]). However, the proof is implicit in almost all cases,
so that it is impossible to write out an estimate of the form χS(R

n) ≥ (c+ o(1))n with a specific c > 1
in the framework of the method applied. The only exception is the paper [8], in which it was proved that,
for the vertex set Δ of a regular triangle, we have

χΔ(R
n) ≥ (1.052 . . . + o(1))n. (2)

*E-mail: xp1@protonmail.com

541



542 SAGDEEV

We are interested in obtaining similar inequalities not only for a regular triangle but also for any
regular simplex of any dimension. Let Sk denote the vertex set of a regular k-simplex. Note that, as
well as in the case of the chromatic number of space, the quantity χSk

(Rn) does not depend on the edge
length of a regular simplex with vertices Sk. For brevity, we denote this quantity by χk(R

n).
This paper is organized as follows: in Sec. 2, we give exponentially growing lower bounds for χk(R

n)
for each k, and in Sec. 3, we prove these bounds.

In conclusion, we mention that similar problems were considered in [9]–[24]; surveys of related
problems of combinatorial geometry can be found in [25]–[31].

2. STATEMENT OF RESULTS

The central result of this paper is the following constructive lower bound for χk(R
n) which exponen-

tially grows with respect to n.

Theorem 1. Let k be a positive integer. Then

χk(R
n) ≥

(
1 +

1

35
k + o(1)

)n

.

It is seen from the statement of the theorem that the exponential bases in the bounds are very close
to 1. However, for k > 2, even such bounds were not known previously. Only the existence of a ck > 1
for which

χk(R
n) ≥ (ck + o(1))n

had been proved. No explicit expressions for ck can be derived from the preceding works.
It should also be mentioned that our bound is far from optimal. For example, as mentioned above, the

best known estimates for k equal to 1 and 2, which were obtained in [2] and [8], are

χ1(R
n) ≥ (1.239 . . . + o(1))n, (3)

χ2(R
n) ≥ (1.052 . . . + o(1))n. (4)

The bounds provided by Theorem 1 for the same k are much worse. However, for k ≥ 3, Theorem 1
gives the only known constructive lower bounds for χk(R

n).

3. PROOF OF THEOREM 1

The proof of Theorem 1 is based on the same idea as the proof of bound (2) in [8]. Before describing
this idea, we give a definition needed in what follows.

A graph G = (V,E) is said to be distance if V is a subset in R
n and

E ⊆ {{x, y}|x, y ∈ V, |x− y| = a}
for some fixed a. An important special example of a distance graph is the following construction. Let
s ≤ r ≤ n be positive integers. We define the distance graph G(n, r, s) as follows: the vertices of this
graph are all points in R

n which have r coordinates equal to 1 and n− r zero coordinates; two vertices
are joined by an edge if and only if the inner product of their radius vectors equals s.

We set v(n) = [n/2]. Let v′(n) be the greatest positive integer smaller than n/4− 1 for which
v(n)− v′(n) is a prime. It is known from number theory that

lim
n→∞

v′(n)

n
=

1

4

(see [32] and [33]). Consider the distance graph Gn = G(n, v(n), v′(n)).
Stirling’s formula implies

C
n(b+o(1))
n(a+o(1)) = (cba + o(1))n, where cba =

aa

bb · (a− b)(a−b)
.
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Now it is easy to see that the graph Gn has

Cv(n)
n = (c

1/2
1 + o(1))n = (2 + o(1))n

vertices, and the number of its edges equals

1

2
Cv(n)
n · Cv′(n)

v(n) · Cv(n)−v′(n)
n−v(n) = (c

1/2
1 · c1/41/2 · c

1/4
1/2 + o(1))n = (4 + o(1))n.

Using a theorem proved by Frankl and Wilson in [34], we can estimate the independence number of
many graphs G(n, r, s) from above. In particular, this theorem applies to our graphs Gn; we state the
result of its application as a separate lemma.

Lemma 1. If a subset W of the vertex set of Gn contains no vertices joined by edges, then

|W | ≤
v(n)−v′(n)−1∑

i=0

Ci
n < nCv(n)−v′(n)

n = (c
1/4
1 + o(1))n < (1.755 + o(1))n.

Let us show that, in fact, a stronger assertion holds: any sufficiently large subset of the vertex set
of Gn contains a vertex of sufficiently large degree. To this end, we employ a theorem essentially proved
in [10].

Theorem 2. If

z ≤ 0.0288, τ > 2− z4

2450
,

then any set W of vertices of Gn which consists of at least (τ + o(1))n vertices contains at least

(2τ · (cz/4
1/4

)−4 + o(1))n

edges.

Introducing the new parameter w = z4/2450 and using Dirichlet’s principle, we obtain the following
lemma.

Lemma 2. If w ≤ 2.8 · 10−10, then any set W of vertices of Gn which consists of at least
(2− w + o(1))n vertices contains a vertex of degree at least

(2 · (c
4√2450w/4
1/4 )−4 + o(1))n.

Note that, for w = 2.8 · 10−10, Lemma 2 guarantees that one of the vertices has (1.755 . . . + o(1))n

neighbors; therefore, by Lemma 1, at least two neighbors of this vertex are joined by an edge. Thus, we
have proved the following statement.

Lemma 3. Any set W of vertices of Gn which consists of at least (2− 2.8 · 10−10 + o(1))n vertices
contains three pairwise adjacent vertices.

It is easy to derive from this lemma that

χ2(R
n) ≥

(
2

2− 2.8 · 10−10
+ o(1)

)n

. (5)

Indeed, suppose that, on the contrary, given arbitrarily large n, Rn can be colored with less than(
2

2− 2.8 · 10−10
+ o(1)

)n

colors so that the side length of any monochromatic regular triangle is different from the distance
between any two vertices of the graph Gn. Then the vertices of Gn can be colored in a similar
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way. Since the graph contains (2 + o(1))n vertices, it follows by Dirichlet’s principle that at least
(2− 2.8 · 10−10 + o(1))n vertices of Gn are of the same color. Applying Lemma 3, we see that Gn

has three pairwise adjacent vertices of the same color. This contradiction completes the proof of
inequality (5).

Now, we obtain a lower bound for χ3(R
n) in a similar way. It can be shown that, for w = 5 · 10−53,

Lemma 2 ensures that one of the vertices has more than (2− 2.8 · 10−10 + o(1))n neighbors. By
Lemma 3, among the neighbors of this vertex there are three pairwise adjacent vertices. Thus, we have
proved the following statement.

Lemma 4. Any set W of vertices of Gn which consists of at least (2− 5 · 10−53 + o(1))n vertices
contains four pairwise adjacent vertices.

Precisely the same argument as that used to prove (5) also proves the inequality

χ3(R
n) ≥

(
2

2− 5 · 10−53
+ o(1)

)n

. (6)

Now, fix a positive integer k ≥ 4. Let us obtain a lower bound for χk(R
n). Computer calculations

show that, for 0 < w ≤ 5 · 10−53, the number of neighbors for one of the vertices ensured by Lemma 2 is
larger than (2− 5

√
w + o(1))n.

It follows that, considering any set W of vertices of Gn which consists of at least

(2− (5 · 10−53)5
k−3

+ o(1))n

vertices and applying Lemma 2 to this set k − 3 times, we find k − 3 pairwise adjacent vertices with at
least (2− 5 · 10−53 + o(1))n common neighbors in W . Applying Lemma 4 to these common neighbors,
we obtain the following lemma.

Lemma 5. Let k ≥ 4. Then any set W of vertices of Gn which consists of at least

(2− (5 · 10−53)5
k−3

+ o(1))n

vertices contains k + 1 pairwise adjacent vertices.

The same argument as that used to prove (5) proves the following theorem.

Theorem 3. Let k ≥ 4. Then

χk(R
n) ≥

(
2

2− (5 · 10−53)5
k−3 + o(1)

)n

.

Proof of Theorem 1. To reduce the above bound to the form announced in Theorem 1, we use the
following chain of inequalities, which hold for k ≥ 4:

2

2− (5 · 10−53)5k−3
=

2

2− x
= 1 +

x

2
+

(
x

2

)2

+ · · · > 1 +
x

2
= 1 +

(5 · 10−53)5
k−3

2

> 1 + 10−53·5k−3
= 1 + (10−53/125)5

k
> 1 +

(
1

3

)5k

= 1 +
1

35k
.

Thus, we have proved Theorem 1 for k ≥ 4. To prove it in the case k = 3, it suffices to note that
inequality (6) proved above is stronger than that appearing in Theorem 1. As already mentioned, the
known estimates (3) and (4) for k equal to 1 and 2 are substantially better than those required in
Theorem 1.

This completes the proof of Theorem 1.
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