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Abstract—In a Morrey space, the product of the convolution operator with summable kernel and
the operator of multiplication by an essentially bounded function is considered. Sufficient conditions
for such a product to be compact are obtained. In addition, it is shown that the commutator of the
convolution operator and the operator of multiplication by a function of weakly oscillating type is
compact in a Morrey space.
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1. INTRODUCTION

At present there are many papers dealing with Morrey spaces and their generalizations (see, for
example, the surveys of Burenkov [1], [2] and the bibliography given there). The studies of these spaces
go back to Morrey’s paper [3] and have been pursued intensively during the last 20–30 years. The
development of the theory of Morrey-type spaces stimulates, in a natural way, the study of operators
in these spaces. In particular, for classical operators in the analysis, such as the Hardy operator,
the maximal operator, the fractional maximal operator, the Riesz potential, and the singular integral
operator, boundedness conditions in Morrey-type spaces were obtained (see [4]–[7] as well as the
survey [2]). Convolution operators in generalized global Morrey-type spaces were studied in [8] and
there analogs of Young’s inequality for convolutions in these spaces were established. The compactness
of commutators of classical operators in Morrey spaces was investigated in the papers [9]–[11].

In the present paper, we study the compactness of certain operators in a Morrey space, namely, the
product operator of the convolution operator with summable kernel and the operator of multiplication
by a function from L∞(Rn). We show that if this function tends to zero at infinity, then the product is a
compact operator. In the concluding part of the paper, we consider the commutator of the convolution
operator and the operator of multiplication by a function. It is proved that if the function defining the
multiplication operator satisfies a condition of weakly oscillating type at infinity, then the commutator is
compact in a Morrey space.

In what follows, we shall use the following notation: Rn is n-dimensional Euclidean space,

x = (x1, . . . , xn) ∈ R
n, |x| =

√
x21 + · · · + x2n ;

and B(x, r) is the open ball in R
n of radius r centered at the point x.

*E-mail: avsyanki@math.rsu.ru

437



438 AVSYANKIN

2. PRELIMINARIES

Let 1 ≤ p ≤ ∞, and let X ⊆ R
n be a measurable set. Then Lp(X) is the space (of classes) of

measurable complex-valued functions with norm

‖f‖Lp(X) =

(ˆ
X
|f(x)|p dx

)1/p

, 1 ≤ p < ∞, ‖f‖L∞(X) = ess sup
x∈X

|f(x)|.

In the case X = R
n, we shall use the notation ‖ · ‖p instead of ‖ · ‖Lp(X). Further, we shall say that f

belongs to Lloc
p (Rn) if f ∈ Lp(K) for any compact set K ⊂ R

n.

Definition 1. Let 1 ≤ p ≤ ∞, and let λ ∈ R. A function f is said to belong to Lp,λ(R
n) if f ∈ Lloc

p (Rn)

and

‖f‖Lp,λ(Rn) ≡ ‖f‖p,λ = sup
x∈Rn, r>0

‖f‖Lp(B(x,r))

rλ
< ∞. (2.1)

With respect to the usual linear operations and the norm (2.1), the set Lp,λ(R
n) constitutes a Banach

space, which is called a Morrey space.

The spaces Lp,λ(R
n) are nontrivial, i.e., they consist not only of functions equivalent to zero on R

n if
and only if 0 ≤ λ ≤ n/p. For λ = 0 and λ = n/p, Morrey spaces coincide with Lp-spaces; namely,

Lp,0(R
n) = Lp(R

n), Lp,n/p(R
n) = L∞(Rn). (2.2)

Let us present precompactness conditions for a set in a Morrey space.

Proposition 1 (see [11]). Suppose that 1 ≤ p < ∞, 0 < λ < n/p, and Ψ = {ψ} is a set of functions
from Lp,λ(R

n). Let the following conditions hold:

i) the set Ψ is bounded, i.e., there exists a C > 0 such that ‖ψ‖p,λ ≤ C for any ψ ∈ Ψ;

ii) limδ→0 ‖ψ( · + δ) − ψ( · )‖p,λ = 0 uniformly with respect to ψ ∈ Ψ;

iii) limρ→∞ ‖ψχρ‖p,λ = 0 uniformly with respect to ψ ∈ Ψ, where χρ is the characteristic func-
tion of the set Rn \ B(0, ρ).

Then the set Ψ is precompact in the space Lp,λ(R
n).

Let us point out that the precompactness conditions given in Proposition 1 are only sufficient.

In the space Lp,λ(R
n), we consider the convolution operator

(Hϕ)(x) =

ˆ
Rn

h(x− y)ϕ(y) dy, x ∈ R
n, (2.3)

where h ∈ L1(R
n). It was shown in [8] that the operator H is bounded in Lp,λ(R

n), where 1 ≤ p ≤ ∞,
and, for any function ϕ ∈ Lp,λ(R

n), the following inequality holds:

‖Hϕ‖p,λ ≤ ‖h‖1‖ϕ‖p,λ. (2.4)
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3. THE PRODUCT OF THE CONVOLUTION OPERATOR
AND THE OPERATOR OF MULTIPLICATION

Since the convolution operator H commutes with shift operators, it is not compact (see, for
example, [12]). The following question naturally arises: Is the product of the convolution operator and the
operator of multiplication by a bounded function compact? Since the convolution operators inLp-spaces
are well studied, taking into account equalities (2.2), we will not consider the cases λ = 0 and λ = n/p.

Denote by Ma the operator of multiplication by a function a ∈ L∞(Rn). It is easy to see that this
operator is bounded in the space Lp,λ(R

n) and, for any function ϕ ∈ Lp,λ(R
n), the following inequality

holds:

‖Maϕ‖p,λ ≤ ‖a‖∞‖ϕ‖p,λ.

The main object of study in this section will be the operator

Ha = MaH. (3.1)

Denote by C0(R
n) the set of all continuous functions a(x) on R

n such that limx→∞ a(x) = 0.

Lemma 1. Suppose that 1 ≤ p < ∞, 0 < λ < n/p, a ∈ C0(R
n), and h ∈ L1(R

n). Then the opera-
tor Ha of the form (3.1) is compact in the space Lp,λ(R

n).

Proof. Let Φ = {ϕ} be an arbitrary bounded set in Lp,λ(R
n), i.e., ‖ϕ‖p,λ ≤ C for any ϕ ∈ Φ. Using

Proposition 1, we shall show that the set {Haϕ}, where ϕ ∈ Φ, is precompact in the space Lp,λ(R
n). We

shall verify all three conditions.
The validity of condition i) follows from the boundedness of the operator Ha. Let us verify condition ii).

For any function ϕ ∈ Φ, we have

‖(Haϕ)( · + δ) − (Haϕ)( · )‖p,λ
≤ ‖(a( · + δ) − a( · ))(Hϕ)( · + δ)‖p,λ + ‖a( · )((Hϕ)( · + δ)− (Hϕ)( · ))‖p,λ
≤ ‖a( · + δ)− a( · )‖∞‖Hϕ‖p,λ + ‖a‖∞‖(Hϕ)( · + δ)− (Hϕ)( · )‖p,λ.

Applying inequality (2.4) to each summand and taking into account the boundedness of the set Φ, we
obtain

‖(Haϕ)( · + δ)− (Haϕ)( · )‖p,λ ≤ ‖a( ·+ δ) − a( · )‖∞‖h‖1‖ϕ‖p,λ + ‖a‖∞‖h( · + δ) − h( · )‖1‖ϕ‖p,λ
≤ C(‖a( ·+ δ) − a( · )‖∞‖h‖1 + ‖a‖∞‖h( · + δ) − h( · )‖1).

On the right-hand side of this inequality, the first summand tends to zero as δ → 0, because a ∈ C0(R
n),

and so does the second, because of the continuity of the function h ∈ L1(R
n) in the L1-norm. Therefore,

‖(Haϕ)( · + δ) − (Haϕ)( · )‖p,λ → 0

uniformly with respect to ϕ ∈ Φ.
Let us verify condition iii). Again using inequality (2.4), we obtain

‖χρHaϕ‖p,λ ≤ ‖χρa‖∞‖Hϕ‖p,λ ≤ C‖h‖1 sup
|x|≥ρ

|a(x)|.

Since limx→∞ a(x) = 0, we have ‖χρHaϕ‖p,λ → 0 as ρ → ∞ uniformly with respect to ϕ ∈ Φ. The
lemma is proved.

Let us pass to a more general case. Following [13, p. 37], we say that a function a ∈ L∞(Rn) belongs
to the class Bsup

0 (Rn) if

lim
N→∞

ess sup
|x|>N

|a(x)| = 0.

Note that the class Bsup
0 (Rn) is the closure in the L∞-norm of the set of all compactly supported

functions in L∞(Rn).
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Theorem 1. Suppose that 1 ≤ p < ∞, 0 < λ < n/p, a ∈ Bsup
0 (Rn), and h ∈ L1(R

n). Then the
operator Ha of the form (3.1) is compact in the space Lp,λ(R

n).

Proof. Set

aN (x) =

{
a(x) if |x| ≤ N,

0 if |x| > N,

and let us show that the operator HaN is compact. Indeed, let the function b ∈ C0(R
n) satisfy b(x) ≡ 1

for |x| ≤ N . Then HaN = MaNHb. By Lemma 1, the operator Hb is compact, and hence HaN is also a
compact operator. Since

‖Ha −HaN ‖Lp,λ→Lp,λ
≤ ess sup

|x|>N
|a(x)|‖H‖Lp,λ→Lp,λ

,

and a ∈ Bsup
0 (Rn), it follows that ‖Ha −HaN ‖Lp,λ→Lp,λ

→ 0 as N → ∞. Therefore, the operator Ha is
compact in the space Lp,λ(R

n).

This theorem immediately implies the following statement.

Corollary 1. Let X be a bounded measurable set in R
n, and let PX be the operator of multi-

plication by the characteristic function of the set X. Then the operator PXH is compact in the
space Lp,λ(R

n).

4. THE COMMUTATOR OF THE CONVOLUTION OPERATOR
AND THE OPERATOR OF MULTIPLICATION

We recall that the commutator [Ma,H] of the operators Ma and H is defined by the formula
[Ma,H] = MaH −HMa. In view of (2.3), this commutator is of the form

([Ma,H]ϕ)(x) =

ˆ
Rn

(a(x)− a(y))h(x − y)ϕ(y) dy

=

ˆ
Rn

(a(x)− a(x− t))h(t)ϕ(x − t) dt, x ∈ R
n.

Denote by Ω∞(Rn) the set of all functions a ∈ L∞(Rn) such that, for any compact set K ⊂ R
n, the

function

A(x) := ess sup
t∈K

|a(x)− a(x− t)|

belongs to the class Bsup
0 (Rn).

The class Ω∞(Rn) is a generalization of the class Ω(Rn) = Ω∞(Rn) ∩C(Rn), which was introduced
in [14]. Functions from Ω(Rn) are said to be weakly oscillating at infinity. Therefore, functions
from Ω∞(Rn) will be called functions of weakly oscillating type at infinity.

Lemma 2. If a ∈ Ω∞(Rn) and h ∈ L1(R
n), then the function

J(x) =

ˆ
Rn

|a(x)− a(x− t)||h(t)| dt

belongs to the class Bsup
0 (Rn).

Proof. We take an arbitrary ε > 0 and choose a ρ > 0 such thatˆ
|t|>ρ

|h(t)| dt < ε

4‖a‖∞
.
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Then, for almost all x ∈ R
n, we have

J(x) ≤ ess sup
|t|≤ρ

|a(x)− a(x− t)|
ˆ
|t|≤ρ

|h(t)| dt + 2‖a‖∞
ˆ
|t|>ρ

|h(t)| dt

< ess sup
|t|≤ρ

|a(x)− a(x− t)|‖h‖1 +
ε

2
= Aρ(x)‖h‖1 +

ε

2
,

where Aρ(x) = ess sup|t|≤ρ |a(x)− a(x− t)|.
Let us fix the number ρ. Since Aρ ∈ Bsup

0 (Rn), there exists an N0 > 0 such that, for all N > N0, the
following inequality holds:

ess sup
|x|>N

Aρ(x) <
ε

2‖h‖1
.

Therefore, ess sup|x|>N J(x) < ε for all N > N0, i.e., J ∈ Bsup
0 (Rn). The lemma is proved.

The main result of this section is the following statement.

Theorem 2. Suppose that 1 < p < ∞, 0 < λ < n/p, a ∈ Ω∞(Rn), and h ∈ L1(R
n). Then the

commutator [Ma,H] is compact in the space Lp,λ(R
n).

Proof. Let us show that the operator [Ma,H] can be approximated in the operator norm by compact
operators with any degree of accuracy. We take an arbitrary ε > 0. By Lemma 2, there exists an N > 0
such that

ess sup
|x|≥N

ˆ
Rn

|a(x) − a(x− t)||h(t)| dt < εp
′

(2‖a‖∞‖h‖1)p′/p
.

Let us fix N , and let PN and QN denote the operators of multiplication by the characteristic functions of
the sets B(0, N) and R

n \ B(0, N), respectively. Let us estimate the norm of the operator QN [Ma,H].
Applying Hölder’s inequality, for almost all x ∈ R

n \ B(0, N), we obtain

|(QN [Ma,H]ϕ)(x)| ≤
ˆ
Rn

|a(x)− a(x− t)||h(t)||ϕ(x − t)| dt

≤
(ˆ

Rn

|a(x)− a(x− t)||h(t)| dt
)1/p′(ˆ

Rn

|a(x)− a(x− t)||h(t)||ϕ(x − t)|p dt
)1/p

≤
(
ess sup
|x|≥N

ˆ
Rn

|a(x)− a(x− t)||h(t)| dt
)1/p′(

2‖a‖∞
ˆ
Rn

|h(t)||ϕ(x − t)|p dt
)1/p

< ε‖h‖−1/p
1

(ˆ
Rn

|h(t)||ϕ(x − t)|p dt
)1/p

.

Then, for arbitrary x ∈ R
n and r > 0, we can write

‖QN [Ma,H]ϕ‖Lp(B(x,r)) < ε‖h‖−1/p
1

(ˆ
B(x,r)

dy

ˆ
Rn

|h(t)||ϕ(y − t)|p dt
)1/p

= ε‖h‖−1/p
1

(ˆ
Rn

|h(t)| dt
ˆ
B(x,r)

|ϕ(y − t)|p dy
)1/p

.

Replacing y − t = z in the inner integral, we obtain the inequality

‖QN [Ma,H]ϕ‖Lp(B(x,r)) < ε‖h‖−1/p
1

(ˆ
Rn

|h(t)|‖ϕ‖pLp(B(x−t,r)) dt

)1/p

.

Using this inequality, we estimate the norm of the function QN [Ma,H]ϕ in a Morrey space, obtaining

‖QN [Ma,H]ϕ‖p,λ = sup
x∈Rn, r>0

r−λ‖QN [Ma,H]ϕ‖Lp(B(x,r))
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< ε‖h‖−1/p
1 sup

x∈Rn, r>0
r−λ

(ˆ
Rn

|h(t)|‖ϕ‖pLp(B(x−t,r)) dt

)1/p

≤ ε‖h‖−1/p
1 ‖ϕ‖p,λ

(ˆ
Rn

|h(t)| dt
)1/p

= ε‖ϕ‖p,λ.

This implies that

‖QN [Ma,H]‖Lp,λ→Lp,λ
< ε.

Taking into account the fact that PN +QN = I, where I is the identity operator, we rewrite this
inequality as

‖[Ma,H]− PN [Ma,H]‖Lp,λ→Lp,λ
< ε.

By Corollary 1, the operator PN [Ma,H] is compact. Then, since the number ε is arbitrary, it follows that
the operator [Ma,H] is also compact. The theorem is proved.

Combined with results from the previous section, this theorem enables us to easily solve the question
of whether operators of the form HMa are compact.

Lemma 3. Suppose that 1 < p < ∞, 0 < λ < n/p, a ∈ C0(R
n), and h ∈ L1(R

n). Then the opera-
tor HMa is compact in the space Lp,λ(R

n).

Proof. Since a ∈ C0(R
n), we have a ∈ Ω∞(Rn). Then the equality HMa = Ha − [Ma,H], Lemma 1,

and Theorem 2 immediately imply the compactness of the operator HMa.

Theorem 3. Suppose that 1 < p < ∞, 0 < λ < n/p, a ∈ Bsup
0 (Rn), and h ∈ L1(R

n). Then the
operator HMa is compact in the space Lp,λ(R

n).

Proof. The proof is quite similar to that of of Theorem 1.
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