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Abstract—The Sturm–Liouville problem on a finite closed interval with potential and weight of first
order of singularity is studied. Estimates for the s-numbers and eigenvalues of the corresponding
integral operator are obtained. The spectral trace of first negative order is evaluated in terms of the
integral kernel. The obtained theoretical results are illustrated by examples.
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1. INTRODUCTION

Let us consider the differential equation

−y′′(x) + q(x)y(x) = λρ(x)y(x), x ∈ [0, π], (1.1)

and the operator pencil associated with it

A(λ) = L− λV,

where the operator L is generated by the differential expression −y′′ + q(x)y and separated boundary
conditions, and V : y �→ ρy is the operator of multiplication by the function ρ ∈ W−1

2 [0, π].
Equation (1.1), in particular, is a classical mathematical model for describing small transverse oscil-

lations of a loaded string (this phenomenon occurs after the separation of variables in the corresponding
wave equation). In such a setting, the values of the function y(x) describe the deviations of the string
from its equilibrium position, q(x) is the function describing the density of external forces acting on the
string at the point x, ρ(x) is the mass density function of the string, and λ is the spectral parameter.
Note that the problem of oscillations of a loaded string has long been studied. So the Stieltjes studies
of infinite continued fractions can be regarded as the description of the oscillations of a weightless string
loaded with point masses:

q(x) ≡ 0, ρ(x) =
∑

mjδ(x− xj).

For the case in which q(x) ≡ 0, and ρ(x) is a nonnegative Borel measure, the spectral theory for the
pencil A(λ) was developed in the Krein and Kats papers [1], [2]. Approximately, at the same time,
Eq. (1.1) was used to describe one-dimensional Markov processes (see [3] and [4]). For more details on
the relationship between Eq. (1.1) with problems in the theory of Gaussian random processes, see [5].
The solution of the inverse problem for Eq. (1.1) on the recovery of the measure ρ from the spectral
measure (or, equivalently, from the Weyl–Titchmarsh function) was given by Krein and Kats in [2].
In particular, it was proved that the set of Weyl–Titchmarsh functions of problem (1.1), where ρ is a
positive measure, is dense for the class of so-called Stieltjes functions (for more details, see also the
surveys [5], [6], and [7]).

The spectral theory of problem (1.1) with an arbitrary (real and alternating) charge ρ has also
been intensively developed. We will not mention here numerous papers on this topic, but only two
monographs [8] and [9], where the reader can find a detailed survey of the corresponding results and
also an extensive bibliography. In addition, note that the studies of the inverse spectral problem for

*E-mail: andrew-ivanov95@yandex.ru
**E-mail: artem_savchuk@mail.ru

164



TRACE OF ORDER (−1) FOR A STRING WITH SINGULAR WEIGHT 165

this class of functions ρ involve considerable difficulties. For a survey of the state-of-the-art, see, for
example, [10]. The study of the direct and inverse problems for Eq. (1.1) with weight of arbitrary sign
was significantly motivated by the fact (see, for example, [11]) that such problems are closely connected
with the Camassa–Holm equation

ut − uxxt = 2uxuxx − 3uux + uuxxx, (1.2)

describing the unidirectional propagation of liquid waves under the shallow water conditions. For a
sufficiently complete exposition of the direct and inverse scattering theory for Eq. (1.1) on R, see [12]
and [13].

A new stage in the study of Eq. (1.1) was connected with the development of the theory of
Sturm–Liouville operators with potentials-distributions (see [14], [15]) and started with the paper [16]
in which the function class of coefficients of Eq. (1.1) was significantly enlarged. Namely, the case in
which the function ρ is a distribution of first order of singularity, i.e., ρ ∈ W−1

2 [0, π], was studied (the
function q being identically zero). It is well known (see [2]) that, for positive measures ρ(x) = dv(x),

lim
n→∞

n√
λn

=

ˆ π

0

√
v′(x) dx, (1.3)

where the λn are the eigenvalues of the problem. In the literature, this case is often referred to as the
“Krein string.” In the series of papers [16]–[20], asymptotic formulas for λn were obtained in the case
where the weight ρ is the generalized derivative (distribution) of a self-similar function v ∈ L2[0, π] (for
the definition of self-similarity, see Sec. 5). Note that the case of self-similar nonnegative measure ρ was
also studied in [21]. These studies were initiated by problems dealing with small deviations from zero of
Gaussian random processes of certain form (see, for example, [22]); such problems lead, in a natural way,
to the study of the asymptotic behavior of the eigenvalues of problem (1.1). In particular, the question
whether a particular random process can be expanded in a Karhunen–Loeve series has turned out to
be important; a sufficient condition for this is the requirement that the operator of multiplication by the
function ρ is an operator of trace class (in the notation of the present paper, this means that the operator
L−1V is an operator of trace class). In this connection, the example of a non-trace-class multiplier ρ
constructed in [23] is of some interest.

The first goal in this paper is to obtain estimates of the eigenvalues and s-numbers of the opera-
tor L−1V . Let v =

´
ρ ∈ L2[0, π]. Then

n∑

j=1

sj ≤ C lnn, sn ≤ C
lnn

n
.

But if v ∈ W θ
2 [0, π], θ ∈ [0, 1] (here W θ

2 are Sobolev spaces with fractional smoothness exponent), then
∞∑

j=1

spj < ∞, sn ≤ Cn−1/p

for any p > 1/(1 + θ).
The second goal in the paper is to evaluate the sum

Tr−1 A(λ) :=

∞∑

n=1

λ−1
n , (1.4)

i.e., the spectral trace of order (−1) of the pencil A(λ) = L− λV . The value of the sum (1.4) will be
obtained in terms of the function v(x) and the resolvent of the operator L. The calculation of spectral
traces of differential operators has a long history. Here we shall cite only the survey [24], which contains
a fairly complete bibliography on topics of our interest. In addition, note that the formulas for the first
two traces (of negative order) for the quadratic pencil

−y′′ +
1

4
y = λρy + λ2σy, x ∈ R,

which is a modification of the spectral problem (1.1) as well as related to the Camassa–Holm equa-
tion (1.2), were obtained in [13]. These formulas were used further to model the interactions of two
isolated waves (peakons).
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2. PRELIMINARIES

Let H denote the space L2[0, π], let ‖ · ‖ be the L2-norm, and let ( · , · ) denote the inner product in H.
For functions f, g ∈ H, we set

〈f, g〉 =
ˆ π

0
f(x)g(x) dx.

Further, let W 1
2 [0, π] be the classical Sobolev space

W 1
2 = {f ∈ AC[0, π] : f ′ ∈ H} with norm ‖f‖1 := (‖f‖2 + ‖f ′‖2)1/2

and the corresponding inner product ( · , · )1. The space of distributions, the completion of the set of
functions f ∈ H in the norm

‖f‖−1 := sup
‖ϕ‖1=1

〈f, ϕ〉,

will be denoted by W−1
2 [0, π]. Thus, any linear continuous functional F on the space W 1

2 admits the
following two representations:

F (ϕ) = 〈f, ϕ〉 = (g, ϕ)1, where g, ϕ ∈ W 1
2 , f ∈ W−1

2 .

A unitary isomorphism J : W 1
2 → W−1

2 , J : g �→ f , is called a canonical isomorphism. The ac-
tion 〈f, ϕ〉, f ∈ W−1

2 , ϕ ∈ W 1
2 , can be written explicitly as

〈f, ϕ〉 = f0ϕ(0) + fπϕ(π)−
ˆ π

0
ϕ′(x)w(x) dx, w ∈ H.

Such a representation is not uniquely defined, because the triplets (w, f0, fπ), (w + c, f0 − c, fπ + c)
generate identical functionals. A function w defined in this way, up to a constant, will be called a
generalized antiderivative of the function f ∈ W−1

2 . Further, note that the expression

inf
c
(‖w + c‖+ |f0 − c|+ |fπ + c|)

provides an equivalent norm on the space W−1
2 [0, π]. We shall assume that the functions q and ρ

are elements of the space W−1
2 [0, π], and their generalized antiderivatives will be denoted by u and v,

respectively.
Our nearest goal is to reveal the exact meaning of the spectral problem (1.1). Consider the linear

operator pencil

A(λ) = L− λV , where Ly = −y′′ + q(x)y

and V is the operator of multiplication by the function ρ. In this paper, we shall consider the case of
separated boundary conditions. Strictly speaking (see [14], [15]),

Ly = l(y) = −(y[1](x))′ − u(x)y[1](x)− u2(x)y(x), y[1](x) := y′(x)− u(x)y(x),

D(L) =
{
y, y[1] ∈ AC[0, π] : l(y) ∈ H, y[1](0) + h0y(0) = y[1](π) + hπy(π) = 0

}
. (2.1)

Let us agree that the equality h0 = ∞ (or hπ = ∞) means that the first (or the second) boundary
condition takes the form y(0) = 0 (respectively, y(π) = 0). The potential q (i.e., the function u and the
numbers q0, qπ) will be assumed real, while and function ρ, complex.1

Let us define the operator T acting in the space H as follows. Set

Ty = −y′′ + y, D(T ) = {y ∈ W 2
2 [0, π] : y

′(0) = y′(π) = 0} if h0, hπ �= ∞, (2.2)

Ty = −y′′, D(T ) = {y ∈ W 2
2 [0, π] : y(0) = y′(π) = 0} if h0 = ∞, hπ �= ∞, (2.3)

Ty = −y′′, D(T ) = {y ∈ W 2
2 [0, π] : y

′(0) = y(π) = 0} if h0 �= ∞, hπ = ∞, (2.4)

Ty = −y′′, D(T ) = {y ∈ W 2
2 [0, π] : y(0) = y(π) = 0} if h0 = hπ = ∞. (2.5)

1Problem (1.1) can also be posed in the case of a complex potential q(x), but this requires a special technique.
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In any case, the operator T is self-adjoint and uniformly positive, and hence its root T 1/2 is well defined.
The Hilbert space with the norm of the graph (‖T 1/2x‖2 + ‖x‖2)1/2 will be denoted by H1. It is easy
to see that the space H1 coincides with W 1

2 [0, π] in case (2.2), while, otherwise, it is a subspace in
W 1

2 [0, π] defined by the conditions y(0) = 0 in case (2.3), y(π) = 0 in case (2.4), and y(0) = y(π) = 0
in case (2.5). In all the cases, the norm of the graph is equivalent to the norm of the space W 1

2 . The
space dual to H1 with respect to the action ( · , · ) will be denoted by H−1 (obviously H−1 ⊆ W−1

2 [0, π]).
By definition, the operator T 1/2 = (T ∗)1/2 is an isomorphism between H1 and H, and hence2 also
between H and H−1. The operator T = T ∗ is an isomorphism from H1 onto H−1.

Integrating by parts, we obtain the following representation for the quadratic form of the operator L
on the domain D(L) ⊂ H:

(Ly, y) = l[y, y] = ‖y′‖2 + b[y, y], (2.6)

where

b[y, y] = −h0|y(0)|2 + hπ|y(π)|2 −
ˆ π

0
u(x)(y(x)y(x))′ dx.

We have written the answer in the case h0 �= ∞, hπ �= ∞. In the other cases, the corresponding terms
after integration vanish. As proved in [15, Lemma 1.10], the form b admits the estimate

|b[y, y]| ≤ ε‖y‖21 +M(ε)‖y‖2

for an arbitrary ε > 0. Then, by the second representation theorem (see, for example, [25, Chap. VI,
Theorem 2.23]), the form l+ c for any sufficiently large c > 0 generates a positive self-adjoint operator
in H (coinciding naturally with the operator L+ c); further,

D((L+ c)1/2) = D(l) = H1,

and (L+ c)1/2 is an isomorphism between H1 and H. Passing to the dual spaces, we see that
the operator (L+ c)1/2 is also an isomorphism between H and H−1, while L+ c is an isomorphism
between H1 and H−1.

Since, for y ∈ H1,

〈qy, y〉 = q0|y(0)|2 + qπ|y(π)|2 −
ˆ π

0
u(x)(y(x)y(x))′dx,

we see that the choice of the numbers h0 and hπ is equivalent to the specification of the parameters q0
and qπ of the functional q. In other words, the definition of the operator L depends only on the choice of
the potential q ∈ W−1

2 and of one of the four spaces H1 described above.
It is well known (see [15]) that the spectrum of the operator L acting in the space H is discrete with

only one accumulation point +∞. We shall further assume that 0 /∈ σ(L). This will mean that the
operator L−1 is bounded in H. Then it follows from the equality

L−1 = (L+ c)−1 + c(L+ c)−1L−1

that L−1 boundedly acts from H to H1, and since

L−1 = (L+ c)−1 + cL−1(L+ c)−1,

it follows that L−1 boundedly acts from H−1 to H1. Thus, the operator L is an isomorphism between H1

and H−1.
Since the operator L defined in the space H on the domain (2.1), is self-adjoint, it follows that all

of its eigenvalues μk are real. Let us number them in increasing order. The existence and uniqueness
theorem for the system of differential equations readily implies that the initial condition

ϕ[1](0, μ) + h0ϕ(0, μ) = 0

2Here and further, changing the spaces in which the operator acts, we preserve its notation, indicating between what spaces
the operator acts.
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(in the case h0 = ∞, we set ϕ(0, μ) = 0) defines the solution of the equation l(ϕ(x, μ)) = μϕ(x, μ) up
to its coefficient. This implies that the geometric multiplicity of each eigenvalue of the operator L is 1. In
view of self-adjointness, it follows that the algebraic multiplicity of each number μk is also 1. Let {ϕk}∞1
denote the system of corresponding eigenfunctions normalized by the condition ‖ϕk‖ = 1. It follows
from [15, Theorem 2.9] that the system {ϕk}∞1 is an orthonormal basis in the space H.

Denote by κ ≥ 0 the number of negative eigenvalues of the operator L. In other words,

μ1 < μ2 < · · · < μκ < 0 < μκ+1 < · · · .

We have already noted that the operator (L+ c)−1/2, c > −μ1, is an isomorphism from H onto H1. This,
in particular, implies that the system

{(L+ c)−1/2ϕk = (μk + c)−1/2ϕk}∞1
is a Riesz basis in H1. Then also the systems

±{i|μ1|−1/2ϕ1, . . . , i|μκ|−1/2ϕκ} ∪ {μ−1/2
k ϕk}∞k=κ+1

are Riesz bases in H1. This means that the operators L−1/2
± given by the equalities

L
−1/2
± x = ±i

κ∑

k=1

|μk|−1/2(x, ϕk)ϕk +

∞∑

k=κ+1

μ
−1/2
k (x, ϕk)ϕk

are isomorphisms between H and H1. Passing to the dual spaces (obviously, (L−1/2
± )∗ = L

−1/2
∓ ), we

see that both the operators are isomorphisms between H−1 and H. In addition, it is obvious that

L
−1/2
+ · L−1/2

+ = L−1 (in this equality, we assume that the left operator L−1/2
+ acts from H to H1, while

the right one, from H−1 to H). The same holds for the operator L−1/2
− .

Let us turn to the operator V . We shall define it by the following rule:

〈V y, ϕ〉 = 〈ρ, yϕ〉 = ρ0y(0)ϕ(0) + ρπy(π)ϕ(π) −
ˆ π

0
v(x)(y(x)ϕ(x))′ dx.

Thus, the operator V : W 1
2 → W−1

2 is well defined. Using the inequality ‖ · ‖C ≤ Cabs‖ · ‖1, we obtain
the estimate

|〈V y, ϕ〉| ≤ (|ρ0|+ |ρπ|)‖y‖C‖ϕ‖C + ‖v‖L2(‖y‖C‖ϕ′‖L2 + ‖y′‖L2‖ϕ‖C)
≤ Cabs(|ρ0|+ |ρπ|+ ‖v‖)‖y‖1‖ϕ‖1 ≤ Cabs‖ρ‖−1‖y‖1‖ϕ‖1, (2.7)

from which we see that the operator V : W 1
2 → W−1

2 is bounded. Restricting the functional V y = ρ · y
to the subspace H1 ⊆ W 1

2 (which is equivalent to projecting the vector V y onto H−1), we obtain a
bounded operator from W 1

2 to H−1. In turn, this operator can restricted to the subspace H1 � y, yielding
a bounded operator from H1 to H−1. For all such operators, we shall preserve the common notation
V : y �→ V y, because each operator is identified by its image and argument spaces.

Thus, for any λ ∈ C, we have defined the bounded operator A(λ) = L− λV , acting from H1 to H−1.
Note that, for each fixed λ, the quadratic form of the operator A(λ), defined on the space H1 is of the
form

〈Ay, y〉 = ‖y′‖2 − (h0 + λρ0)|y(0)|2 + (hπ − λρπ)|y(π)|2

+

ˆ π

0
(λv(x) − u(x))(y(x)y(x))′ dx

(with specifications described above in the cases h0 = ∞ and/or hπ = ∞). In view of [15], this form
defines the closed operator

Ay = −(y′ + (λv − u)y)′ + (λv − u)y′

in the space H with the domain

D(A) =
{
y, y′ + (λv − u)y ∈ AC : Ay ∈ H,
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(y′ + (λv − u)y + (h0 + λρ0)y)(0) = (y′ + (λv − u)y + (hπ − λρπ)y)(π) = 0
}
.

Thus, the operator pencil A(λ) = L− λV can be regarded as a family of closed densely defined
unbounded operators in H. However, the domain D(A) may vary, depending on the parameter λ.

The spectrum of our operator pencil are all the points λ ∈ C for which the operator A(λ) : H1 → H−1

is noninvertible. Note that the operator L−1V : H1 → H1 is compact. Indeed, in the case ρ ∈ L2, the
operator V acts boundedly from H1 to H and it remains to use the compactness of the embedding
H ⊂ H−1 and the boundedness of the operator L−1 : H−1 → H1. Now, let us approximate the arbitrary
functional ρ ∈ W−1

2 by the sequence ρn → ρ in the norm ‖ · ‖−1, ρn ∈ L2, and let us use estimate (2.7),
obtaining

‖Vn − V ‖H1→H−1 ≤ Cabs‖ρn − ρ‖−1.

Thus, the compactness of the operator L−1V follows from the operator convergence L−1Vn → L−1V
and the compactness of the operators L−1Vn. The spectrum of the compact operator L−1V consists
(with the exception of the point zero) of the eigenvalues. Let μ be one of them, i.e., L−1V y = μy for
some y ∈ H1. Then Ly − μ−1V y = 0, i.e., μ−1 lies in the spectrum of the pencil A(λ). Conversely, if the
operator L−1V − μ is invertible, then the operator

A(μ−1) = L− μ−1V = −μ−1L(L−1V − μ)

is also invertible. Thus, σ(A(λ)) coincides with the image of the set σ(L−1V ) under the mapping
z �→ z−1 in C. We shall number the eigenvalues λn of the operator pencil A(λ) in increasing
order of their moduli, counting multiplicities (by the multiplicity of an eigenvalue λn we mean
dimKer(L−1V − λ−1

n )). The number of points of the spectrum σ(A(λ)) can be both finite (see the
examples in Sec. 5) and infinite. Nevertheless, for brevity, we shall abide by the numbering {λn}∞1 ,
assuming, where necessary, that λn = ∞ for n > N .

3. ESTIMATES FOR THE s-NUMBERS AND EIGENVALUES

Let us recall the definition of symmetrically normed ideals of compact operators (see [26]). A
function Φ(ξ) defined on the linear space of finite sequences is called a symmetric norming function if,
in addition to the norm axioms, it satisfies the conditions

Φ(1, 0, 0, . . . ) = 1, Φ(ξ) = Φ(ξ∗), (3.1)

where the sequence ξ∗ = (ξ∗n) is a nondecreasing rearrangement of the sequence (|ξn|). Obviously, the
function

Φ(ξ) := sup
n∈N

1

ψ(n)

n∑

j=1

ξ∗j , where ψ(t) =
ln(t+ 1)

ln 2
,

satisfies conditions (3.1). For it, the norm axioms also hold. The space of all sequences (ξn) for
which the expression for Φ(ξ) is finite endowed with the norm Φ(ξ), is the Marcinkiewicz space Mψ

constructed from the function ψ(t) (see [27]). The function Φ, just as any other symmetric norming
function, defines a two-sided ideal Sψ(H) in the space of bounded operators B(H) (here H is an arbitrary
Hilbert space). This ideal consists of all compact operators K whose s-numbers satisfy the condition
Φ((sj(K))∞1 ) < ∞. The last expression specifies the norm on Sψ, and the ideal Sψ is closed with
respect to this norm.

Remark 1. Any sequence ξ whose elements satisfy the estimate |ξn| ≤ Cn−1 belongs to the space Mψ

(here ‖ξ‖Mψ
≤ C). The converse statement is false. However, if ξ ∈ Mψ, then

‖ξ‖Mψ
ln(n+ 1) ≥ ln 2

n∑

j=1

ξ∗j = ln 2

(
nξ∗n −

n−1∑

j=1

j(ξ∗j+1 − ξ∗j )

)
≥ ln 2 · nξ∗n, (3.2)

i.e., ξ∗n ≤ C ln(n+ 1)/n, where C = ‖ξ‖Mψ
/ ln 2.
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Theorem 1. For any function v ∈ L2[0, π] and any operator L of the form (2.1),

L−1V ∈ Sψ(H1) and L
−1/2
+ V L

−1/2
+ , L

−1/2
− V L

−1/2
− ∈ Sψ(H).

In other words, the s-numbers of each of these operators satisfy the estimates
n∑

j=1

sj ≤ C lnn, sn ≤ C
lnn

n
. (3.3)

The numbers |λn|−1, where the λn are the eigenvalues of the pencil A(λ), satisfy the same
estimates.

Proof. Let us begin with the first assertion of the theorem. Since Sψ is a two-sided ideal, it suffices to
carry out the proof for any one of the operators

L−1V, L
−1/2
+ V L

−1/2
+ , L

−1/2
− V L

−1/2
− , T−1V ∈ B(H1) is or J−1V ∈ B(H1),

where J is a canonical isomorphism from W 1
2 [0, π] onto W−1

2 [0, π]. The space H1 depends on the
following boundary conditions:

• if h0 �= ∞ and hπ �= ∞, then H1 = W 1
2 [0, π];

• if h0 = ∞, hπ �= ∞, then H1 is a subspace in W 1
2 [0, π] and is defined by the constraint y(0) = 0;

• if h0 �= ∞, hπ = ∞, then H1 is defined by the constraint y(π) = 0;

• if h0 = hπ = ∞, then H1 is defined by the constraints y(0) = y(π) = 0.

It suffices to carry out the proof for one (any) of the four cases, because the operators J−1V for the
different spaces H1 differ from one another by the extension (restriction) to the subspace of dimension
(codimension) ≤ 2.

It will be convenient to work with the operator T−1V for the case h0 = ∞, hπ �= ∞. Here, first,
considering the operator T : H → H, we can explicitly present an operator S for which T−1 = SS∗:

(Sf)(x) =

ˆ x

0
f(t) dt, (S∗f)(x) =

ˆ π

x
f(t) dt.

It is easy to see that the operator S : H → H1 is bounded and bijective and S∗ can be extended
by continuity to the operator S∗ : H−1 → H. Since T−1V = S(S∗VS)S−1, it suffices to verify that
S∗VS ∈ Sψ(H). If ρ ∈ L2, then

(S∗VSf, g) = (VSf, Sg) = 〈VSf, Sg 〉. (3.4)

In the general case, we construct the sequence ρn ∈ L2, ‖ρ− ρn‖−1 → 0. In view of (2.7) we see that
‖V − Vn‖H1→H−1 → 0, and hence equality (3.4) remains valid. Then

(S∗VSf, g) = ρ0 · (Sf)(0)(Sg)(0) + ρπ · (Sf)(π)(Sg)(π) −
ˆ π

0
v(x)((Sf)(x)(Sg)(x) )′ dx

= ρπ

ˆ π

0
f(t) dt

ˆ π

0
g(x) dx −

ˆ π

0
v(x)f(x)

ˆ x

0
g(t) dt dx

−
ˆ π

0
v(x)g(x)

ˆ x

0
f(t) dt dx.

Thus,

(S∗VSf)(x) =: (Kf)(x) =

ˆ π

0
K(x, t)f(t) dt, K(x, t) =

{
v(x) + ρπ for t ≤ x,

v(t) + ρπ for t ≥ x.
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Let us express the operator K as the sum K = K+ +K−, where

(K−f)(x) = (v(x) + ρπ)

ˆ x

0
f(t) dt, (K+f)(x) =

ˆ π

x
(v(t) + ρπ)f(t) dt.

Since

(K∗
+f)(x) = (v(x) + ρπ)

ˆ x

0
f(t) dt,

i.e., the operator K∗
+ is of the same form as the operator K− (with the function v(x) + ρπ replaced by

v(x) + ρπ), it remains to carry out the proof for the operator K−. To do this, we write out the operator
M := K∗

−K−:

(Mf)(x) =

ˆ π

x
|v(t) + ρπ|2

ˆ t

0
f(s) ds dt

and find its eigenvalues s2n. After the replacement y(x) =
´ x
0 f(t) dt, the equation Mf = s2f takes the

form ˆ π

x
|v(t) + ρπ|2y(t) dt = s2y′(x) ⇐⇒

{
−y′′ = s−2|v(x) + ρπ|2y(x),
y(0) = y′(π) = 0.

(3.5)

Thus, we have returned to a spectral problem of the form (1.1), but now with the classical nonnegative
summable weight |v(x) + ρπ|2. The eigenvalues of this problem have the asymptotics s−2

n ∼ Cn2, i.e.,
sn ∼ Cn−1 (see [2]). Then K− ∈ Sψ(H), which proves the first of estimates (3.3).

The second estimate in (3.3) follows from Remark 1, whereby, for any operator B ∈ Sψ, the inequality
sn(B) ≤ C lnn/n holds. The last assertion of the theorem follows from Weyl’s inequality

n∑

j=1

|λj(L
−1V )|p ≤

n∑

j=1

spj(L
−1V ), p > 0, (3.6)

(see [26, Chap. II, Sec. 3]), where the eigenvalues λj(L
−1V ) are numbered in decreasing order of their

moduli. Indeed, choosing p = 1, we see that the sequence {|λn|(L−1V )} belongs to the space Mψ. It
remains to recall that the eigenvalues λn(A) of the pencil A(λ) = L− λV coincide with λ−1

n (L−1V ).
The theorem is proved.

It is not clear whether the estimate |λn| ≥ Cn/ lnn is sharp; however, in Vladimirov’s paper [23], an
example of the function ρ(x) was constructed for which the eigenvalues |λn(A)| were estimated from
above: |λn| ≤ Cn lnn.

The first assertion of Theorem 1 can be reformulated thus: the mapping ρ �→ L−1V acts from the

space W−1
2 to the space Sψ(H1) (respectively, the mappings ρ �→ L

−1/2
+ V L

−1/2
+ and ρ �→ L

−1/2
− V L

−1/2
−

act from W−1
2 to Sψ(H)). Obviously, these mappings are linear operators.

Proposition 1. The operators

ρ �→ L−1V, ρ �→ L
−1/2
+ V L

−1/2
+ , ρ �→ L

−1/2
− V L

−1/2
−

boundedly act from W−1
2 to Sψ. The constants in the estimates of the characteristic numbers

sn ≤ C lnn/n of the operators L−1V and L
−1/2
± V L

−1/2
± and in the estimates of the eigenvalues

|λn| ≥ Cn/ lnn of the pencil A(λ) can be chosen the same on the ball ‖ρ‖−1 ≤ 1.

Proof. Since Sψ is a Banach ideal, it suffices to carry out the proof for any one of the three operators.
Moreover, repeating arguments from the proof of Theorem 1, we see that it suffices carry out the proof
for any one of the operators ρ �→ T−1V , ρ �→ K, and ρ �→ K−. Certainly, the form of the integral kernel
K(x, t) ∈ L2[0, π]

2 immediately implies the continuity of the mapping ρ �→ K− acting from W−1
2 to the
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ideal of the Hilbert–Schmidt operators. This, in particular, implies the fact that the numbers s1(K−)
on the ball ‖ρ‖−1 ≤ 1 are bounded. To prove the boundedness of the mapping ρ �→ K− in the metric of
the ideal Sψ, we shall need slightly finer arguments. It suffices to obtain the estimate sn ≤ Cn−1 for
the characteristic numbers of the spectral problem (3.5) uniformly on the ball ‖ρ‖−1 ≤ 1 (see the remark
preceding Theorem 1). The last estimate is equivalent to the estimate n(λ) ≤ Cλ1/2 for the counting
function of the spectral problem

−y′′(x) = λr(x)y(x), y(0) = y′(π) = 0, r(x) = |v(x) + ρπ|2.
It is well known that the eigenvalues of the Sturm–Liouville operator −y′′ − try with boundary
conditions y(0) = y′(π) = 0 are continuous in the parameter t, and since r(x) ≥ 0, it follows that they
are monotone decreasing for t ∈ [0, λ]. This means that n(λ) coincides with the number of negative
eigenvalues of the operator −y′′ + λry; we will denote this number by ν−(λ). By the classical oscillation
theory (see, for example, [28, Chap. XI, Sec. 5]), for any solution of the equation −y′′ − λr(x)y where r is
a nonnegative continuous function, the number of zeros on the half-interval (0, π] satisfies the estimate

N ≤ λ1/2

√
π

2

(ˆ π

0
r(x) dx

)1/2

+ 1.

Now, approximating the arbitrary nonnegative function r ∈ L1[0, π] by continuous functions and pass-
ing to the limit in the inequality, we see that the estimate remains valid for r(x) = |v(x) + ρπ|2. It follows
from Sturm’s theory that

n(λ) = ν−(λ) ≤ N + 1 ≤ λ1/2

√
π

2

(ˆ π

0
r(x) dx

)1/2

+ 2

(for Sturm’s theory for operators with potentials-distributions, see [29]). Substituting λ = s−2
n into this

inequality, we obtain

sn ≤

√
π

2

(ˆ π

0
|v(x) + ρπ|2 dx

)1/2

n− 2
, n ≥ 3,

We have already referred to the uniform boundedness of the numbers s1 and s2 ≤ s1 on the ball
‖ρ‖−1 ≤ 1. The first assertion is proved. The second assertion follows from estimates (3.2) and (3.6).
The proposition is proved.

Now consider the case v ∈ W θ
2 [0, π], θ ∈ [0, 1]. Here by W θ

2 we denote Sobolev spaces with fractional
smoothness exponent θ. These spaces can be defined in a variety of ways. The following definition is
convenient for us:

W θ
2 = [L2,W

1
2 ]θ = (L2,W

1
2 )θ,2,

where by [ · , · ]θ we denote the complex and by ( · , · )θ,p the real method of interpolation of Banach
spaces. In our proof, we shall also need the quasinormed Besov spaces

Bs
2, q = (L2,W

1
2 )s,q, s ∈ (0, 1), q > 0.

Estimates of the operator L−1V will be searched for on the scale of quasinormed two-sided Neumann–
Schatten ideals Sp, p ∈ (0,∞). Recall that a compact operator K belongs to an ideal Sp if∑∞

n=1 s
p
n(K) < ∞.

Theorem 2. For any function v ∈ W θ
2 [0, π], θ ∈ [0, 1], and any operator L of the form (2.1), the

inclusion L−1V ∈ Sp(H1) holds, and

L
−1/2
+ V L

−1/2
+ , L

−1/2
− V L

−1/2
− ∈ Sp(H) for any p >

1

1 + θ
.
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The s-numbers of each one of the operators

L−1V, L
−1/2
+ V L

−1/2
+ , L

−1/2
− V L

−1/2
−

satisfy the estimate sn ≤ Cn−1/p, and the eigenvalues of the pencil A(λ) satisfy the estimate

|λn| ≥ Cn1/p, where p >
1

1 + θ
is arbitrary.

In these estimates, common constants on the ball ‖ρ‖−1 ≤ 1 can be chosen.

Proof. The case θ = 0 follows from the assertion of Theorem 1. Consider the case θ = 1 in which

ρ(x) = ρ0δ0(x) + ρπδπ(x) + v′(x), and v′(x) ∈ L2[0, π].

Here the function ρ(x) is a complex-valued σ-additive charge on [0, π], and hence it admits the Hahn
decomposition

ρ(x) = ρ1(x)− ρ2(x) + iρ3(x)− iρ4(x),

where the ρj(x), 1 ≤ j ≤ 4, are nonnegative measures. Denote by Vj the operator of multiplication by
the measure ρj . In the same way, just as in the proof of Theorem 1, we note that it suffices to present our
arguments for the operator T−1/2VjT

−1/2 of one of the types (2.2)–(2.5). Here it is convenient to choose
h0 = hπ = ∞, so that the numbers ρ0 and ρπ can be assumed zero, i.e., ρj ∈ L2[0, π]. Since ρj(x) ≥ 0,
it follows that the operators T−1/2VjT

−1/2 are nonnegative. Searching for their s-numbers leads to the
equation

T−1/2VjT
−1/2f = sf,

or, equivalently to,

ρj(x)y(x) = s(Ty)(x), where y = T−1/2f.

The last equation is of the form

−y′′ = s−1ρjy, y(0) = y(π) = 0.

Now it follows from (1.3) that sn ≤ Cn−2, i.e., T−1/2VjT
−1/2 ∈ Sp for any p > 1/2. Moreover, the

proof of Proposition 1 implies the estimate sn ≤ Cn−2 uniformly in the ball ‖vj‖W 1
2
≤ 1. Thus, the

mapping vj �→ T−1/2VjT
−1/2 is continuous as a linear operator from W 1

2 to Sp, and hence the sum of
four mappings, i.e., the mapping v �→ T−1/2V T−1/2, is also continuous.

We have proved the first assertion of the theorem in the cases θ = 0 and θ = 1. The intermediate
cases θ ∈ (0, 1) follow from the interpolation theorem. It is well known (see [30, Sec. 1.19.7] or the
original paper [31]) that

(Sp0 ,Sp1)θ,q = Sq, if
1

q
=

1− θ

p0
+

θ

p1
, θ ∈ (0, 1).

The scale of the spaces W θ
2 is closed with respect to the interpolation ( · , · )θ,q only for q = 2, so that

we must use the embeddings W θ
2 ⊂ Bθ−ε

2,q , valid for any q ∈ (0,∞); see, for example, [30, Sec. 4.6.1]
(here and further, we choose ε to be a suitable small positive number). We now choose p0 = 1/(1 − ε),
p1 = 1/(2− ε), q = 1/(1 + θ − 2ε) and note that

(L2,W
1
2 )θ−ε,q = Bθ−ε

2,q .

We have proved the boundedness of the operator ρ �→ T−1/2V T−1/2, acting from L2 to Sp0 and
from W 1

2 to Sp1 . It follows from the main interpolation theorem that it is bounded from Bθ−ε
2,q to Sq.

Taking into account the continuity of the embedding W θ
2 ⊂ Bθ−ε

2,q , we obtain that the operator from W θ
2

to S1/(1+θ−2ε) is bounded, which implies the first assertion of the theorem.
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The estimate for the numbers sn is a consequence of the following simple remark: if the sequence
{sn}∞1 is positive, monotone nonincreasing, and pth power summable, p > 0, then sn = O(n−1/p).
Indeed,

‖s‖plp ≥
n∑

j=1

spj = nspn −
n−1∑

j=1

j(spj+1 − spj) ≥ nspn,

whence sn ≤ ‖s‖lpn−1/p. Estimates for the numbers |λn| follow from the same remark and Weyl’s
inequality (3.6). The theorem is proved.

We have obtained estimates of the numbers sn and λn with “ε-losses” in the exponent. We consider
that our result can be strengthened, but this question remains open.

4. CALCULATION OF THE TRACE OF ORDER (−1)

We have already noticed that the spectrum of the pencil A(λ), up to a mapping z �→ z−1, coincides
with that of the operator L−1V . An example from [23] shows that L−1V is, possibly, not a trace-class
operator, and hence the series (1.4) can fail to be absolutely convergent. Certainly, we can pose the
question about its conditional convergence in the sense of limr→+∞

∑
λn : |λn|≤r λn

−1, but, in this paper,

we shall evaluate the sum (1.4) only under the condition that L−1V is a trace-class operator.
We already noted in Sec. 2 that the system of eigenfunctions {ϕk}∞1 of the operator L−1 constitutes

an orthonormal basis in H. In this basis, an operator L−1 can be expressed as the series

L−1 =
∞∑

k=1

μ−1
k ϕk( · , ϕk) (4.1)

convergent in the uniform operator norm of the space B(H). Since ‖ϕk‖H = 1, and μk ∼ Ck2 (see [15,
Theorem 2.6]), it follows that the function series

∞∑

k=1

μ−1
k ϕk(t)ϕk(s) =: K(t, s) (4.2)

converges in the norm of the space L2[0, π]
2, and hence the series (4.1) converges in the norm of the

Hilbert–Schmidt ideal S2(H). Thus, L−1 ∈ S2(H), and its integral kernel K(t, s) belongs to L2[0, π]
2.

Lemma 1. The series (4.2) converges uniformly on the square [0, π]2, so that the function K(t, s)

is continuous. Moreover, K(t, t) ∈ W 1
2 [0, π], and the series

∑∞
k=1 μ

−1
k ϕ2

k(t) converges to K(t, t) in
the norm of the space W 1

2 .

Proof. Here we shall need to know about the asymptotic behavior of the functions ϕk(x) as x → ∞.

Recall that ϕ[1]
k (x) := ϕ′

k(x)− u(x)ϕk(x), where u is the generalized antiderivative of q. Denote by ϕ̃ 0
k

the normalized eigenfunctions of the operator L0 with potential q = 0 and the boundary conditions in
which the quasiderivatives are replaced by the ordinary derivatives. By Theorem 2.7 from [15], the
following expressions are valid:

ϕk(x) = ϕ̃ 0
k (x) + ψk(x), ϕ

[1]
k (x) = (ϕ̃ 0

k (x))
′ + kψ1

k(x), (4.3)

where

sup
x∈[0,π]

∞∑

k=1

(|ψk(x)|2 + |ψ1
k(x)|2) < ∞.

The functions ϕ̃ 0
k can be written out explicitly. By a direct calculation (omitted here), we can show

that, in equalities (4.3), the functions ϕ̃ 0
k can be replaced by the normalized eigenfunction of the

operator −d2/dx2 with the following simplified boundary conditions:
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• y′(0) = y′(π) = 0 for h0 �= ∞, hπ �= ∞;

• y(0) = y′(π) = 0 for h0 = ∞, hπ �= ∞;

• y′(0) = y(π) = 0 for h0 �= ∞, hπ = ∞;

• y(0) = y(π) = 0 for h0 = hπ = ∞.

We shall denote these functions by ϕ0
k and note that, up to normalization bounded away both from zero

and from infinity by a sequence of multipliers, they are of the form

ϕ0
k(x) = cos(kx), k = 0, 1, . . . , for h0 �= ∞, hπ �= ∞;

ϕ0
k(x) = sin

(
k − 1

2

)
x, k = 1, 2, . . . , for h0 = ∞, hπ �= ∞;

ϕ0
k(x) = cos

(
k − 1

2

)
x, k = 1, 2, . . . , for h0 �= ∞, hπ = ∞;

ϕ0
k(x) = sin(kx), k = 1, 2, . . . , for h0 = hπ = ∞,

(4.4)

whence we have the estimate ‖ϕ0
k‖C ≤ 1. Then it follows from (4.3) that ‖ϕk‖C ≤ M . The uniform

convergence of the series (4.2) is proved.

Restricting the series (4.2) to the diagonal t = s, we see that the series
∑∞

k=1 μ
−1
k ϕ2

k(t) converges
to K(t, t) uniformly on [0, π]. It remains to verify that the series of the derivatives

∑∞
k=1 μ

−1
k ϕk(t)ϕ

′
k(t)

converges in the norm of the space L2[0, π]. In view of (4.3), we can write
∞∑

k=1

μ−1
k ϕk(t)ϕ

′
k(t) =

∞∑

k=1

μ−1
k ϕk(t)ϕ

[1]
k (t) +

∞∑

k=1

u(t)μ−1
k ϕ2

k(t)

=

∞∑

k=1

μ−1
k ϕ0

k(t)(ϕ
0
k(t))

′ +
∞∑

k=1

μ−1
k ψk(t)(ϕ

0
k(t))

′

+

∞∑

k=1

kμ−1
k ϕk(t)ψ

1
k(t) +

∞∑

k=1

u(t)μ−1
k ϕ2

k(t). (4.5)

The convergence of the fourth series on the right-hand side of the last equality follows from the uniform
convergence of the series

∑∞
k=1 μ

−1
k ϕ2

k(t). For the third series, we have
∥∥∥∥

∞∑

k=1

kμ−1
k ϕk(t)ψ

1
k(t)

∥∥∥∥
L2

≤
( ∞∑

k=1

|kμ−1
k |2

)1/2( ∞∑

k=1

‖ϕk‖2C‖ψ1
k‖2L2

)1/2

≤ M

( ∞∑

k=1

‖ψ1
k‖2L2

)1/2

, (4.6)

because kμ−1
k ∼ k−1. Applying Levi’s theorem to the sequence of partial sums of the series∑∞

k=1 |ψ1
k(x)|2 and taking into account (4.3), we obtain the convergence of the series

∑∞
k=1 ‖ψ1

k‖2L2
.

Thus, the third series on the right-hand side of (4.5) converges in the norm of L2[0, π]. The arguments
for the second series are quite similar, because ‖k−1(ϕ0

k)
′‖C ≤ M .

To estimate the first summand, we shall use the explicit form (4.4) of the functions ϕ0
k. We have

∞∑

k=1

μ−1
k ϕ0

k(t)(ϕ
0
k(t))

′ = ∓1

2

∞∑

k=1

kμ−1
k sin(2kx)
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for h0 �= ∞, hπ �= ∞ and for h0 = hπ = ∞, respectively. In the two remaining cases,
∞∑

k=1

μ−1
k ϕ0

k(t)(ϕ
0
k(t))

′ = ±1

2

∞∑

k=1

kμ−1
k sin(2k − 1)x.

Taking into account the square summability of the numbers kμ−1
k , we see that both series obtained above

converge in L2[0, π]. We have proved the L2-convergence of all four series in representation (4.5). The
lemma is proved.

Theorem 3. Let ρ, q ∈ W−1
2 [0, π], and let the operator L be of the form (2.1), where L−1V is a

trace-class operator. Then the series (1.4), where the λn are the eigenvalues of the pencil A(λ),
converges absolutely to the value of 〈ρ(x),K(x, x)〉, where K(t, s) is the integral kernel of the
operator L−1.

Proof. The fact that L−1V is a trace-class operator implies that any one of the operators L−1/2
+ V L

−1/2
+

or L−1/2
− V L

−1/2
− are trace-class operators (to be definite, we shall further consider only the first of these

two). As already noted, the numbers λ−1
n (with the point 0 added) constitute its spectrum, so that the

series (1.4) is the spectral trace of this operator. By the Lidskii theorem, the spectral trace of a trace-class
operator coincides with its matrix trace calculated in an arbitrary orthonormal basis. For such a basis,
we shall choose {ϕk}∞1 . Then

∞∑

n=1

λ−1
n =

∞∑

k=1

(L
−1/2
+ V L

−1/2
+ ϕk, ϕk) =

∞∑

k=1

〈
V L

−1/2
+ ϕk, L

−1/2
− ϕk

〉

(to prove the second equality, we argue just as in the proof of (3.4)). Recall that L−1/2
± ϕk = ±i|μk|−1/2ϕk

for k ≤ κ (when μk < 0) and L
−1/2
± ϕk = μ

−1/2
k ϕk for k > κ (when μk > 0). Taking into account the fact

that the functions ϕk are real, we obtain
∞∑

k=1

〈
V L

−1/2
+ ϕk, L

−1/2
− ϕk

〉
= −

κ∑

k=1

|μk|−1〈V ϕk, ϕk〉+
∑

k>κ

μ−1
k 〈V ϕk, ϕk〉

=
∞∑

k=1

μ−1
k 〈ρ, ϕ2

k〉.

Since the series
∑∞

k=1 μ
−1
k ϕ2

k(x) converges to K(x, x) in the norm of the space W 1
2 [0, π], we have

∞∑

n=1

λ−1
n =

〈
ρ,

∞∑

k=1

μ−1
k ϕ2

k(x)

〉
= 〈ρ(x),K(x, x)〉.

Corollary. For any function v ∈ W θ
2 [0, π], θ > 0, and any operator L of the form (2.1), the

series (1.4) converges absolutely to the value of 〈ρ(x),K(x, x)〉.

5. EXAMPLES

Let us present several examples dealing with the calculation of traces of the form (1.4). Let us
choose the trivial potential q(x) ≡ 0, because, in this case, the integral kernel K(t, s) can be written
out explicitly. We shall consider three cases: the Dirichlet boundary conditions y(0) = y(π) = 0;
the Dirichlet–Neumann boundary conditions y(0) = y′(π) = 0; and the Neumann–Dirichlet boundary
conditions y′(0) = y(π) = 0. We do not consider the Neumann boundary conditions, because, in this
case, the spectrum of the operator L will contain the point 0. Certainly, it is also easy to write out the
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answer for any third boundary-value problem (by considering the case of nonzero finite h0 and hπ). By a
direct calculation, we obtain

KD(t, s) = min(t, s)− ts

π
, KDN = min(t, s), KND = π −max(t, s),

where KD, KDN , and KND denote the corresponding integral kernels. These representations imply
that the trace of the pencil A(λ) can be expressed by the power moments of orders 0, 1, and 2 of the
generalized function (distribution) ρ. Namely, we have

Tr−1(LD − λV ) =

〈
ρ, x− x2

π

〉
,

Tr−1(LDN − λV ) = 〈ρ, x〉, Tr−1(LND − λV ) = 〈ρ, π − x〉,
(5.1)

where LD, LDN , and LND denote the corresponding second differentiation operators. The further
simplification of expressions (5.1) involves the calculation of the moments of the function ρ. We shall
consider several cases.

1) Let ρ(x) =
∑n

k=1mkδ(x− xk), where mk and xk ∈ [0, π], 1 ≤ k ≤ n, are known constants. Then

Tr−1(LD − λV ) =

〈 n∑

k=1

mkδ(x − xk), x− x2

π

〉
=

n∑

k=1

mkxk −
1

π

n∑

k=1

mkx
2
k,

Tr−1(LDN − λV ) =

〈 n∑

k=1

mkδ(x − xk), x

〉
=

n∑

k=1

mkxk,

Tr−1(LND − λV ) =

〈 n∑

k=1

mkδ(x − xk), π − x

〉
=

n∑

k=1

mk(π − xk).

2) The weight ρ is the derivative of a self-similar real function v ∈ L2[0, π]. Recall (see [18]) that the
function v is a self-similar function if it satisfies the following functional equation:

v(x) =

n∑

k=1

χ(αk ,αk+1)(x)

{
βk + dkv

(
x− αk

ak

)}
. (5.2)

Here n ≥ 2, while the points αk, k = 1, . . . , n+ 1, specify the subdivision of the closed interval [0, π] of
the form

0 = α1 < α2 < · · · < αn+1 = π.

Then the points ak, k = 1, . . . , n, are uniquely determined by the equalities ak = (αk+1 − αk)/π. The
numbers dk, k = 1, . . . , n, satisfy the condition

∑n
k=1 ak|dk|2 < 1, while the numbers βk are arbitrary.

It is well known (see [16, Lemma 3.1]) that, under these conditions on the self-similarity parameters,
Eq. (5.2) uniquely determines the self-similar function v ∈ L2[0, π]. Let us consider the function ρ, the
generalized derivative of a self-similar function f ; namely, we set

〈ρ, ϕ〉 = ρ0ϕ(0) + ρπϕ(π)−
ˆ π

0
v(x)ϕ′(x) dx.

It is necessary to find the expressions for the first and second moments of the function ρ in terms of
the self-similarity parameters. The formulas that we obtain below are well known (see, for example, [29]
in the case of a Dirichlet conditions). The calculations will be given for the benefit of the reader. It is easy
to see that 〈ρ, 1〉 = ρ0 + ρπ. Further,

〈ρ, x〉 = ρπ −
ˆ π

0
v(x) dx,

and the last integral can be evaluated using Eq. (5.2):
ˆ π

0
v(x) dx =

n∑

k=1

βk(αk+1 − αk) +
n∑

k=1

dkak

ˆ π

0
v(y) dy
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(in the integral, we make the replacement x = aky + αk). Thus, for the first moment of the function ρ,
we have

〈ρ, x〉 = ρπ − π
∑n

k=1 akβk
1−

∑n
k=1 dkak

. (5.3)

The denominator of the fraction is nonzero, because

∣∣∣∣
n∑

k=1

dkak

∣∣∣∣ ≤
( n∑

k=1

ak|dk|2
)1/2( n∑

k=1

ak

)1/2

< 1.

Similarly, for the second moment, we have

〈ρ, x2〉 = ρπ − 2

ˆ π

0
xv(x) dx,

and the last integral is again evaluated using the self-similarity equation

ˆ π

0
xv(x) dx =

1

2

n∑

k=1

βk(α
2
k+1 − α2

k) +

n∑

k=1

dka
2
k

ˆ π

0
yv(y) dy +

n∑

k=1

dkakαk

ˆ π

0
v(y) dy,

whence

〈ρ, x2〉 = ρπ −

n∑

k=1

βk(α
2
k+1 − α2

k)

1−
n∑

k=1

a2kdk

−
2π

n∑

k=1

akβk ·
n∑

k=1

akdkαk

(
1−

n∑

k=1

akdk

)(
1−

n∑

k=1

a2kdk

) . (5.4)

Using (5.3) and (5.4), we can easily obtain formulas for the traces of order (−1) for all boundary
conditions considered in the present paper. Let us illustrate this for the Cantor weight in detail, i.e.,
for the case in which ρ is the generalized derivative of a function v, which is a Cantor function on the
closed interval [0, π]. For the self-similarity parameters, we have

n = 3, α1 = 0, α2 =
π

3
, α3 =

2π

3
, α4 = π,

a1 = a2 = a3 =
1

3
, β1 = 0, β2 = β3 =

1

2
, d1 = d3 =

1

2
, d2 = 0;

also, ρ0 = 0, ρπ = π. Then

〈ρ, 1〉 = π, 〈ρ, x〉 = π

2
, 〈ρ, x2〉 = π − 5π2

8
.

Hence

Tr−1(LD − λV ) =
9π

8
− 1,

Tr−1(LDN − λV ) =
π

2
, Tr−1(LND − λV ) = π2 − π

2
.
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