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Abstract—Topological properties of connected ortho-convex sets in the plane, i.e., connected sets
convex along the horizontal and vertical lines are studied. Several geometric statements concerning
the ortho-separation of ortho-convex sets are proved.
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Let R2 be the Euclidean plane. A set A ⊂ R
2 is said to be ortho-convex if the intersection of A

with any horizontal or vertical line is empty or connected. Properties of ortho-convex sets in the plane
were studied by many authors (see, e.g., the bibliography in [1] and [2]). In recent years, the attention of
researchers has been attracted by topological and separation-type properties [1]–[3], which have turned
out to be closely related to the theory of extremal problems. This paper studies the separation of two
disjoint connected ortho-convex sets. We show that, under fairly natural constraints on these sets,
they are separated by an “ortho-convex hyperplane.” We also consider supporting properties of closed
ortho-convex sets. The proof of the main results is preceded by a series of statements concerned with
topological properties of connected ortho-convex sets.

Throughout, we use the following notation: G denotes the class of all ortho-convex sets in R
2;

Gc is the class of all connected ortho-convex sets in R
2; lu(mu) is the horizontal (vertical) straight

line passing through a point u; ‖ · ‖ is the Euclidean norm on R
2; cl, int, and fr are the operators of

taking topological closure, interior, and boundary, respectively; Ax(Ay) is the projection of a set A on
the abscissa (ordinate) axis; for i ∈ {I, II, III, IV}, the Δi

u are the closed quarter-planes determined by
a point u and the lines lu and mu; u◦(•)–◦(•)v is an undirected interval (open, half-open, or closed)
joining points u, v ∈ R

2 for which uy = vy, where a solid (empty) circle after the notation of the point
of R2 indicates that this point (does not) belong to the interval (e.g., u◦–◦v denotes an open interval);
rays lu ∩Δi

u and lu ∩Δi
u \ {u} are denoted, like intervals, by s◦–•u and s◦–◦u, respectively, where

s = (±∞, uy) and the sign in front of ∞ is determined by the quarter-plane Δi
u; if uy �= vy , then we set

u•–•v = ∅;

A•–•B := {u•–•v | u ∈ A, v ∈ B, uy = vy};
and the expression A•-/-•B means that A•–•B = ∅. The symbols ◦|◦ and •�• mean the same as ◦–◦
and •-/-•, respectively, but with a horizontal interval replaced by a vertical one.

Using this notation, we can define an ortho-convex set A as

A ∈ G ⇐⇒ ∀u, v : (uy = vy ⇒ u•–•v ⊂ A) ∧ (ux = vx ⇒ u•|•v ⊂ A).

Following the terminology of [4], we say that a set H ∈ G is an ortho-half-space if its com-
plement R

2 \H belongs to G as well. To the boundary Γ = frH of a half-space we refer to as an
ortho-hyperplane.

The properties of ortho-convex sets given in the following two propositions are similar to those of sets
in R

2 convex in the ordinary sense.

Proposition 1. If A ∈ Gc, then clA ∈ Gc. If A ∈ G, then intA ∈ G.

*E-mail: dulliev@yandex.ru

443



444 DULLIEV

Proof. First, we show, that the closure of A ∈ Gc is ortho-convex. Consider u, v ∈ clA for which
u•–•v �= ∅. Obviously, it suffices to consider the case where u �= v. Suppose that there exists an open
disk Br = {w ∈ R

2 | ‖w‖ < r} such that the sets

Du = (u+Br) ∩A, Dv = (v +Br) ∩A

cannot be joined by a horizontal interval, i.e., Du•-/-•Dv. We claim that this contradicts the connected-
ness of A.

Without loss of generality, we can assume that (u+Br)∩ (v+Br) = ∅ (this is so if r ≤ |ux− vx|/2).
Obviously, we have Du

y ∩Dv
y = ∅. Since Du•-/-•Dv, it follows that at least one of the points u and v,

say v, does not belong to A. Consider the line lu; clearly, v ∈ lu. It divides the plane R
2 into the two

disjoint open half-planes π+ and π− above and below lu, respectively. Consider the possible different
locations of Du and Dv with respect to the line lu.

(1) Suppose that the sets Du and Dv contain points on the same side of lu, say in π+, i.e.,

Du+ := Du ∩ π+ �= ∅ �= Dv+ := Dv ∩ π+.

If u /∈ clDu+ or v /∈ clDv+, we can decrease the radius r so that one of the corresponding sets Du+

and Dv+ becomes empty and, as a result, either we arrive at one of the situations analyzed in (2) and
(3) or u ∈ clDu− and v ∈ clDv−, i.e., the situation essentially coinciding with that considered below in
the proof of (1) occurs. Thus, throughout the proof of (1), we assume that the points u and v are limit
for Du+ and Dv+, respectively.

The sets Du
y and Dv

y can be represented as disjoint unions of their connected components:
Du

y =
⋃

α I
u
α, Dv

y =
⋃

β I
v
β , and

Iuα ∩ Ivβ = ∅

for all α and β. Clearly, the sets Iuα and Ivβ are intervals of the vertical line and, therefore, can be ordered
coordinatewise.

Let J(ỹ ) = Du ∩ lỹ , where ỹ ∈ Du
y ; since Du, it follows that the set J(ỹ ), which is the intersection

of the two ortho-convex sets u+Br and A, is an interval. We set J(I) =
⋃

ỹ∈I J(ỹ ) for I ∈ {Iuα, Ivβ}.
Note that Jx(Iuα1

) and Jx(I
u
α2
) with α1 �= α2 are disjoint; indeed, otherwise, the components Iuα would

intersect (since Du is ortho-convex, the existence of an x ∈ Jx(I
u
α1
) ∩ Jx(I

u
α2
) would imply that of a

vertical interval with abscissa x joining J(Iuα1
) with J(Iuα2

) and, hence, Iuα1
with Iuα2

). Consider the set

Φ = {α | J(Iuα) ∩mu \ {u} �= ∅}.
It cannot contain more than one element, because if (J(Iuα′)•|•J(Iuα′′)) ∩mu �= ∅ for different
α′, α′′ ∈ Φ, then again Iuα1

and Iuα2
must intersect. Taking into account this property of Φ, we choose

a radius of Br so that Φ = ∅. This ensures that any set J(Iuα) above the line lu is contained entirely in
one of the open quarter-planes I or II with respect to u, i.e., on the right or on the left of the line mu.
Moreover, since u ∈ clDu+, it follows that u ∈ cl(

⋃
α J(I

u
α)) for all sets J(Iuα) contained in some of

these open quarter-planes, say in quarter-plane I. Thanks to this observation, in case (1), it suffices to
study only those sets Iuα for which the corresponding sets J(Iuα) are contained in quarter-plane I.

Now, consider any points y1, y2 ∈ Dv+
y satisfying the conditions

y1 < y2, ∃ I u
α2

: y2 < I
u
α2
, ∃ I u

α1
⊂ (y1, y2).

Such points exist, because, otherwise, the conditions u ∈ cl(
⋃

α J(I
u
α)) and v ∈ clDv+ are violated.

Let πy1 denote the open upper half-plane determined by the line ly1 , and let πy2 denote the open lower
half-plane determined by ly2 . Obviously, we have J(I

u
α1
) ⊂ πy1 ∩ πy2 .

Take any point x2 of Jx(I
u
α2
). By virtue of the observation made above, the set J(I

u
α2
) is contained

entirely in open quarter-plane I with respect to u; hence x2 < ux. The point (x2, y2) ∈ R
2 belongs

to u+Br, i.e.,

‖(x2, y2)− u‖ < r.
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Indeed, if ‖(x2, y2)− u‖ ≥ r, then there exists a t ∈ J(I
u
α2
) for which tx = x2, ty > y2 and, hence,

‖t− y‖ ≥ r; however, J(I
u
α2
) ⊂ u+Br. Moreover, this implies the inclusion

[ux, x2]× [uy, y2] ⊂ u+Br.

Consider the open left half-plane πx2 determined by the line mx2 . Since u ∈ cl(
⋃

α J(I
u
α))

and v ∈ clDv+, it follows that

∃ I u
α1

⊂ [y1, y2] : J(I
u
α1
) ⊂ πy1 ∩ πy2 ∩ πx2

if we choose sufficiently small y1. Next, take any point x1 > ux of a set Jx(I
u
α3
) < x2 for which

I
u
α3

⊂ (uy, y1). The existence of such a point x1 is again ensured by the conditions u ∈ cl(
⋃

α J(I
u
α)) and

v ∈ clDv+. The same conditions ensure also the existence of a set J(I
u
α1
) such that I

u
α1

⊂ (y1, y2) and
Jx(I

u
α1
) ⊂ (x1, x2), provided that y1 is sufficiently small. Let πx1 be the open right half-plane determined

by mx1 . We have

J(I
u
α1
) ⊂ πx1 ∩ πy1 ∩ πx2 ∩ πy2 ⊂ u+Br,

and J(I
u
α1
) is entirely contained in quarter-plane I.

We set

C = πx1 ∩ πy1 ∩ πx2 ∩ πy2 , M = A ∩ C, N = A \ C.
The sets M and N are open and closed in A. Indeed, let s ∈ clM ; then either s ∈ intC = C and,
therefore, s /∈ N , or s ∈ frC . Obviously, in the latter case, it suffices to consider two cases:

(a) s ∈ ly2 , in which case sx ∈ [ux, x2] and sy = y2;

(b) s ∈ mx2 , in which case sx = x2 and sy ∈ [uy, y2].

Consider each of these cases in more detail.
Suppose that case (a) occurs and s ∈ clM ∩N . Then s ∈ ([ux, x2]× [uy, y2]) ∩A, whence, by

virtue of the remarks made above, we obtain s ∈ (u+Br) ∩A = Du. Thus, y2 ∈ Du
y ∩Dv

y , which
contradicts the requirement Du•-/-•Dv, and, therefore, s /∈ N . In case (b), we have s /∈ N from the
following considerations. Suppose that s ∈ N , which again means that s ∈ Du and, by construction, s
lies on the same vertical line as some of the points t ∈ J(I

u
α2
) ⊂ Du, for which tx = x2 and ty > y2; then

(s•|•t) ∩ ly2 �= ∅, and the ortho-convexity Du implies ((s•|•t) ∩ ly2)y = y2 ∈ Du
y , so that the condition

Du•-/-•Dv is again violated. Thus, s ∈ clM implies s /∈ N ; precisely the same argument shows that
s ∈ clN implies s /∈ M .

As a result, we obtain a contradiction: the set A is disconnected, although it is assumed to be
connected in the proposition being proved. Therefore, for any disk Br, we have Du•–•Dv. Consider
two sequences {un} and {vn} satisfying the conditions

un → u, vn → v, un ∈ Du, vn ∈ Dv, un•–•vn �= ∅.

In each of the intervals un•–•vn, we take a point wn = λun + (1− λ)vn ∈ A, λ ∈ (0, 1). Obviously,

wn → w = λu+ (1− λ)v ∈ clA.

Thus, u, v ∈ clA, u•–•v �= ∅ implies the inclusion u•–•v ⊂ clA.

(2) Suppose that the sets Du \ lu and Dv \ lu are on opposite sides of the line lu. To be specific,
we assume that Du+ �= ∅ �= Dv−. Then, obviously, Du− ∪Dv+ = ∅. Here, as in case (1), we either
assume that the points u and v are limit for Du+ and Dv−, respectively, or arrive at a situation analyzed
in (3).

Since the set A is connected, it follows that some of its intersection points with lu \ {u} must
lie outside the disks u+Br and v +Br. (Indeed, otherwise, A can be partitioned into two disjoint
components A1 and A2:

A = A1 ∪A2, A1 ⊂ π+ ∪ U(u), A2 ⊂ π− \ clU(u),

MATHEMATICAL NOTES Vol. 101 No. 3 2017



446 DULLIEV

where U(u) is a neighborhood (not necessarily circular) of u satisfying the conditions

Du ⊂ U(u) ⊂ u+Br and A ∩ π− ∩ clU(u) = ∅).

Consider the possible locations of these points on the line lu with respect to u and v; without the loss of
generality, we assume that ux < vx.

(2) A. Suppose that there exists a point e ∈ A ∩ lu outside the interval u•–•v and the disk u+Br on
the same side as u. This point e is nonisolated, because A is disconnected. Suppose that e ∈ cl(A∩ π−).
Then we can apply the argument of (1) to De = A ∩ (e+Br) and Dv = A ∩ (v +Br), which gives
e•–•v ⊂ clA; moreover, since u ∈ e•–•v, it follows that u•–•v ⊂ clA. If a point with the properties
specified above does not exist, i.e., (s◦–◦u) ∩A ∩ clA ∩ π− = ∅ for s = (−∞, uy), then either there
exists a point in A ∩ lu \ (s◦–•u) and case (2) B or (2) C occurs, or the set A is again disconnected:

A = A1 ∪A2, A1 ⊂ π+ ∪
( ⋃

e∈A∩lu,
ex≤ux

U(e)

)

, A2 ⊂ π− \ cl
( ⋃

e∈A∩lu,
ex≤ux

U(e)

)

,

where the U(e) are neighborhoods of the points e with ex ≤ ux satisfying the condition

A ∩ π− ∩ clU(e) = ∅

and Du ⊂ U(u) ⊂ u+Br.

(2) B. Suppose that there exists a point e ∈ A ∩ lu on the right of v outside the disk v +Br. As in
case (2) A, we assume that e ∈ cl(A ∩ π+) and again show that u•–•v ⊂ clA. If the required points
exist is none of the cases (2) A and (2) B, then either there is a point in A ∩ lu \ ((s−◦–•u) ∪ (v•–◦s+))
for s± = (±∞, uy) and case (2) C occurs or the set A is disconnected:

A = A1 ∪A2,

A1 ⊂ π+ ∪
( ⋃

e∈A∩lu,
ex≤ux

U(e)

)

\ cl
( ⋃

e∈A∩lu,
ex≥vx

U(e)

)

,

A2 ⊂ π− ∪
( ⋃

e∈A∩lu,
ex≥vx

U(e)

)

\ cl
( ⋃

e∈A∩lu,
ex≤ux

U(e)

)

,

where the U(e) are neighborhoods of points e chosen as in case (2) A if ex ≤ ux and satisfying the
condition

A ∩ π+ ∩ clU(e) = ∅

if ex ≥ vx and Dv ⊂ U(u) ⊂ v +Br.

(2) C. Suppose that there exists a point e ∈ E := (u◦–◦v) ∩A outside the disks u+Br and v +Br.
If

∃ e′1 ∈ E ∩ cl(A ∩ π+) and ∃ e′2 ∈ E ∩ cl(A ∩ π−),

then, applying the argument of (1) to the pairs u, e′1 and e′2, v and taking into account the inclusion
e′1•–•e′2 ⊂ A, we obtain u•–•e′1 ⊂ clA and e′2•–•v ⊂ clA, whence u•–•v ⊂ clA.

Now, consider the case where points with the properties specified in (2) A–C do not exist. As applied
to (2) C, we can write

E ∩ cl(A ∩ π+) = ∅ or E ∩ cl(A ∩ π−) = ∅.

Suppose, e.g., that E ∩ cl(A ∩ π−) = ∅. Then, as in cases (2) A and (2) B, we obtain a contradiction:
the set A is disconnected, because

A = A1 ∪A2,
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A1 ⊂ π+ ∪
( ⋃

e∈A∩lu,
ex<ex

U(e)

)

\ cl
( ⋃

e∈A∩lu,
ex>ex

U(e)

)

,

A2 ⊂ π− ∪
( ⋃

e∈A∩lu,
ex>ex

U(e)

)

\ cl
( ⋃

e∈A∩lu,
ex<ex

U(e)

)

,

where e = (supEx, Ey) and the neighborhoods U(e) are chosen so that

U(e) ∩ {e} = ∅, A ∩ π− ∩ clU(e) = ∅ if ex < ex, A ∩ π+ ∩ clU(e) = ∅ if ex > ex.

(3) It remains to consider the case where one of the sets Du and Dv lies entirely on the line lu;
to be specific, suppose that Du ⊂ lu. Then, by virtue of the assumption Du•-/-•Dv, we can assert
that Dv ∩ lu = ∅, i.e., Dv = Dv+ ∪Dv− �= ∅. If the set {e | e ∈ A ∩ lu, ex ≤ vx} contains a point e′

belonging to cl(A \ lu), then, applying the argument used in (1) and (2) to the points e′ and v and
taking into account the inclusion u•–•e′ ⊂ clA, we obtain u•–•v ⊂ clA. The situation in which there
is no point e′ with the required properties cannot occur, because, in this situation, the set A is again
disconnected, which is a contradiction:

A = A1 ∪ A2, A1 ⊂
⋃

e∈A∩lu,
ex<ex

U(e), A2 ⊂ R
2 \ cl

( ⋃

e∈A∩lu,
ex<ex

U(e)

)

,

where e = (sup{ex | e ∈ lu ∩ A, ex ≤ vx}, uy), and the neighborhoods U(e) are chosen so that
U(e) ∩ {v} = ∅ and (A \ lu) ∩ clU(e) = ∅.

Summarizing the study performed in (1)–(3), we conclude that the set clA is horizontally convex.
Similar considerations show that clA is also vertically convex; therefore, this set is ortho-convex. Since
the connectedness of any set is preserved by the closure operation, it follows that clA is connected.

It remains to prove that the interior of each set A ∈ G is ortho-convex. Take any two points
u, v ∈ intA for which u•–•v �= ∅. There exists a disk B such that u+B, v +B ∈ intA. Let w
be any point in the interval u•–•v; then the disk w +B is entirely contained in intA. Indeed, if
w = λu+ (1− λ)v for λ ∈ (0, 1) and w′ ∈ w +B, then the relations

u′ = u+ (w′ − w) ∈ u+B, v′ = v + (w′ − w) ∈ v +B

imply the chain of equalities

w′ = u′ + (w − u) = u′ + (1− λ)(v − u) = u′ + (1− λ)(v′ − u′) = λu′ + (1− λ)v′,

but since A is ortho-convex and u′•–•v′ �= ∅, it follows that w′ ∈ A. Therefore, the set intA is
horizontally convex. A similar argument proves that it is also vertically convex, which implies its
ortho-convexity. This completes the proof of the proposition.

Proposition 2. Let H �= ∅ be the ortho-half-space determined by an ortho-hyperplane Γ �= ∅.
Then intH �= ∅, int Γ = ∅, and Γ ∈ G. If, in addition, H ∈ Gc and R

2 \H ∈ Gc, then Γ ∈ Gc.

Proof. First, we show that the given half-space has nonempty interior; we argue by contradiction.
Suppose that the half-space H has no interior points. Take any point w ∈ H ; for any open disk B
centered at zero, we have

(w +B) ∩H �= ∅ �= (w +B) ∩ (R2 \H).

Since H is ortho-convex, it follows that the line lw intersects (w +B) ∩H in a horizontal interval with
endpoints u and v, which do not necessarily belong to H . Consider the three possible locations of the
point w with respect to this interval.

Case 1: w = u = v, i.e., (w +B) ∩H ∩ lw = {w}. In this case, (w +B) ∩ lw \ {w} ⊂ R
2 \H .

Consider two points s, t ∈ (w +B) ∩ lw on opposite sides of w. They belong to the set R2 \H , and
the ortho-convexity of this set implies s•–•t ⊂ R

2 \H .
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Since w ∈ s•–•t, it follows that w ∈ R
2 \H , which is a contradiction.

Case 2: w ∈ u◦–◦v. Let us choose the radius of the disk B so small that w +B does not contain u
and v. Consider the line mw; it again intersects the set (w +B) ∩H in an interval with endpoints p
and q, which is vertical this time. We again consider several subcases.

Case 2, A: w = p = q. As in Case 1, we obtain a contradiction.

Case 2, B: w ∈ p◦|◦q. We again decrease the radius of B, this time so that w +B does not contain
p and q. Next, we take any point z ∈ (w +B) ∩mw \ {w} and consider the line lz. It intersects
(w +B) ∩H in an interval with endpoints u′ and v′. If z = u′ = v′, then

(w +B) ∩ lz \ {z} ⊂ R
2 \H;

taking two points s, t ∈ (w +B) ∩ lz \ {z} on opposite sides of z, we obtain a contradiction: z ∈ H
and z ∈ R

2 \H . If z ∈ u′•–•v′ and u′ �= v′, then the points of u′◦–◦v′ can be joined by vertical intervals
with the corresponding points of lw, because H is ortho-convex; these intervals form a set (rectangle)
with nonempty interior contained in H . However, this contradicts the assumption intH = ∅.

Case 2, C: w ∈ {p, q}, p �= q. Without loss of generality, we assume that w = q. Applying an
argument similar to that used in Case 2, B to any point z ∈ p◦|◦w, we again obtain a contradiction.

Case 3: w ∈ {u, v}, u �= v. Without loss of generality, we assume that w = u. Instead of w, take
any point w′ ∈ w◦–◦v. Obviously, the argument used in Case 2 applies to w′ and again leads to a
contradiction.

Thus, any ortho-half-space must have interior points.
The fact that the interior of the ortho-hyperplane Γ is empty readily follows from the definition of Γ:

Γ = frH . The ortho-convexity of Γ follows from the ortho-convexity of the sets clH and cl(R2 \H),
which, in turn, follows from Proposition 1, the relation Γ = clH ∩ cl(R2 \H), and the fact that the
intersection of ortho-convex sets is ortho-convex.

It remains to prove the last assertion of the proposition, namely, that Γ is connected provided that
so are the ortho-half-spaces determining it. Note that the plane R

2 is contractible with respect to the
circle; therefore, given any two closed connected sets E and F such that R2 = E ∪ F , the intersection
E ∩ F is connected as well [5]. Therefore, the relations

R
2 = clH ∪ cl(R2 \H) and Γ = clH ∩ cl(R2 \H),

and the connectedness of clH and cl(R2 \H), which follows from Proposition 1, imply the connected-
ness of the ortho-hyperplane Γ. This completes the proof of the proposition.

Remark. Our proof of the first assertion of Proposition 2 does not use the connectedness of the set H
or R2 \H . At the same time, simple examples show that the connectedness of an ortho-half-space does
not imply that of its complement. We refer to ortho-half-spaces and ortho-hyperplanes satisfying the
assumptions of the last assertion of Proposition 2 as proper ones. The importance of this definition
is demonstrated by Propositions 6 and 7. It is easy to see that improper ortho-hyperplanes can be
disconnected.

In what follows, we say that a map t
γ�−→ (x(t), y(t)) of a connected set C ⊂ R to R

2 determines a
continuous monotone curve γ, if γ is one-to-one and the functions x(t) and y(t) are continuous and
monotone. By an abuse of language, we refer to the image of γ(C) as a continuous monotone curve,
too. If C = [α, β], then we say that the curve γ is compact.

In what follows, we use the following construction. Suppose that a point u and its closed
quarter-plane Δj

u, j ∈ {I, II, III, IV}, are fixed and either a point s ∈ lu ∩Δj
u \ {u}, a ray s◦–•u ⊂ Δj

u

and a point t ∈ mu ∩Δj
u \ {u}, or a ray t◦|•u ⊂ Δj

u is chosen. (Recall that, in the case of rays,
s = (±∞, uy) and t = (ux,±∞), where the sign in front of ∞ is determined by the quarter-plane Δj

u).
We refer to the figure

T = γi ∪ (s◦(•)–•u) ∪ (t◦(•)|•u)
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formed by the intervals s◦(•)–•u and t◦(•)|•u and a continuous monotone curve γi for which
C ∩ frC �= ∅ with endpoint u ∈ γi(C ∩ frC) contained in the closed quarter-plane

Δi
u, i = j + 2(−1)[j/3] ∈ {I, II, III, IV},

opposite to Δj
u as a tripod with node u. (Here the sign after s and t is always ◦ in the case of rays, and

[ · ] denotes the integer part of a number.)
Propositions 3 and 4 presented below describe the structure of connected ortho-convex sets with

empty interior.

Proposition 3. If A ∈ Gc is a compact set with empty interior, then it has one of the following
types:

i) a compact continuous monotone curve;

ii) a union of at most two tripods of the form described above.

Proof. Since the set A is compact, it can be included in a rectangle; let Δ be the minimal rect-
angle containing A. (Here and in what follows, by a rectangle we mean the closed convex hull of
points a, b, c, d ∈ R

2 satisfying the conditions a•–•b �= ∅, c•–•d �= ∅, a•|•d �= ∅, and b•|•c �= ∅.) If
intΔ = ∅, then A is an interval and, therefore, is of type (i). Suppose that intΔ �= ∅ and take any point
u ∈ A. The set A is closed and connected; hence any neighborhood of u contains infinitely many points
of A. The lines lu and mu divide the rectangle Δ into four parts according to quarters; we denote these
parts minus lu and mu by Δ̃i

u, i ∈ {I, II, III, IV} (Δ̃i
u := Δ ∩Δi

u \ (lu ∪mu)). Consider the possible
intersections of these lines with A and the location of the point u with respect to these intersections.

Case 1: A ∩ lu = A ∩mu = {u}, u ∈ A ∩ intΔ. In this case, some of the rectangles Δ̃i
u,

i ∈ {I, II, III, IV}, contains infinitely many points of A arbitrarily close to u. To be specific, suppose
that this is the rectangle Δ̃II

u , i.e., u ∈ clDII, where Di := A ∩ Δ̃i
u, i ∈ {I, II, III, IV}. Let us show that

the rectangles Δ̃I
u and Δ̃III

u contain no points of A. Consider two cases.

Case 1, A: the rectangle Δ̃I
u contains infinite many points of A arbitrarily close to u (u ∈ clDI).

Suppose that DI•–•DII �= ∅, i.e., there exists a t ∈ DI and an s ∈ DII such that s•–•t ⊂ A. Then

(s•–•t) ∩mu = {w} ⊂ A;

by construction, we have w �= u. At the same time, A ∩mu = {u}. This contradiction shows that
DI•-/-•DII. Applying the argument used in the proof of Proposition 1, case (1), to the sets DI and DII,
we see that A is disconnected. Therefore, this case cannot occur.

Case 1, B: the point u has a neighborhood disjoint from the rectangle Δ̃I
u and the set A (u /∈ clDI).

Without loss of generality, we can assume that the rectangle Δ ∩ΔI
u contains a closed rectangle with

sides parallel to lu and mu and vertex u which intersects A only in u. (We have taken into account the
relations A∩ lu = A∩mu = {u}.) Let us denote this rectangle by Δ̃. Consider the open half-planes πlu
and πmu above lu and on the right of mu, respectively. Suppose that the rectangle Δ̃I

u intersects A. We
set

C = πlu ∩ πmu \ Δ̃, M = A ∩ C, N = A \ C.
Obviously, M is open and closed in A, and so is N , because N ⊂ A \ clC. Therefore, A is disconnected,
which eliminates this case, too.

A similar argument proves that A ∩ Δ̃III
u = ∅. Since A ∩ lu = A ∩mu = {u} and u ∈ intΔ, it

follows that A∩ Δ̃IV
u �= ∅, because otherwise (Δ̃III

u ∪ Δ̃IV
u )∩A = ∅ and the rectangle Δ is not minimal.

Thus, we have obtained the inclusion A ⊂ Δ̃II
u ∪ Δ̃IV

u ∪ {u}; moreover,

A ∩ Δ̃II
u �= ∅ �= A ∩ Δ̃IV

u .
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Case 2: A ∩ lu = A ∩mu = {u}, u ∈ A ∩ frΔ. It is easy to show that, in this case, the point u must
be a vertex of Δ. This is proved by analogy with the preceding case, where two of the four rectangles
with respect to u were eliminated and the remaining two adjacent rectangles were analyzed, after which
it was shown that only one rectangle can intersect A.

Case 3: (A ∩ lu) ∪ (A ∩mu) �= {u}. Without loss of generality, taking into account the ortho-
convexity of A, we can assume that A∩ lu = s•–•t, s �= t. Consider the possible locations of the point u
in the interval s•–•t.

Case 3, A1: u ∈ s◦–◦t, A ∩mu �= {u}. Since A is ortho-convex, it follows that A ∩mu = v•|•w,
where v /∈ lu or w /∈ lu. Without loss of generality, we assume that sx < tx and vy < uy. We claim
that v ∈ frΔ. Suppose that, on the contrary, v ∈ intΔ. Consider the rectangles ΔIII

u ∩Δi
lv∩ms

,
i ∈ {I, II, III, IV}. We have

ΔIII
u ∩ΔI

lv∩ms
∩A = (s•–•u) ∪ (u•|•v), ΔIII

u ∩ΔII
lv∩ms

∩A = {s},
ΔIII

u ∩ΔIII
lv∩ms

∩A = ∅, ΔIII
u ∩ΔIV

lv∩ms
∩A = {v}.

Indeed, if the first relation is false, then the condition intA = ∅ is violated; if the second or fourth one is
false, then either the condition intA = ∅ or one of the conditions A ∩ lu = s•–•t and A ∩mu = v•|•w,
respectively, is violated; and if the third relation is false, then either the condition intA = ∅ is violated
or the set A is disconnected: for a set C separating A we can take, e.g., C = Δ ∩ΔIII

lv∩ms
. Similar

considerations apply to the rectangles ΔIV
u ∩Δi

lv∩mt
, i ∈ {I, II, III, IV}. It follows that the set

Δ ∩
( ⋃

i∈{III,IV},
a∈{s,t}

Δi
lv∩ma

)

\ lv,

which coincides with the rectangle lying in Δ strictly below lv, is disjoint from A. However, this
contradicts the minimality of Δ; therefore, v ∈ frΔ.

Note that, as a byproduct, we have proved the relation A∩ (Δ̃III
u ∪ Δ̃IV

u ) = ∅. It remains to determine
the location of A with respect to Δ̃I

u and Δ̃II
u . Suppose that the rectangle Δ̃II

u contains infinitely many
points of A. Then, clearly, Δ̃I

u ∩A = ∅. Moreover, recalling that u ∈ s◦–◦t, we see that this relation
can be strengthened:

A ∩ΔI
u \ (s•–•t) = ∅.

Since A ∩ (Δ̃I
u ∪ Δ̃IV

u ) = ∅ and t �= u �= v, it follows from the same considerations as above that
t ∈ frΔ, which implies the inclusion A ⊂ Δ̃II

u ∪ (s•–•t) ∪ (u•|•v), in which A ⊂ Δ̃II
u �= ∅. The set

A ∩ Δ̃II
u cannot be finite, because if it is, then A is disconnected. The situation where A ∩ Δ̃I

u �= ∅ is
considered in a similar way.

Now, suppose that (Δ̃I
u ∪ Δ̃II

u ) ∩A = ∅. Then w ∈ frΔ, because otherwise the rectangle Δ is not
minimal. By assumption, we have u ∈ s◦–◦t; hence v,w ∈ frΔ, the minimality of Δ, and the relations
Δ̃i

u ∩ A = ∅, i ∈ {I, II, III, IV}, imply A = (s•–•t) ∪ (v•|•w) (i.e., s, t, v, w ∈ frΔ).

Case 3, A2: u ∈ s◦–◦t, A ∩mu = {u}. Obviously, in this case, the location of A with respect
to the point u is characterized by its location with respect to the points of the set s•–◦u◦–•t.
First, suppose that two rectangles adjacent along lu, say Δ̃II

u and Δ̃III
u , satisfy the condition

A ∩ Δ̃II
u �= ∅ �= A ∩ Δ̃III

u . Then, by analogy with Case 1, we have A ∩ (Δ̃I
u ∪ Δ̃IV

u ) = ∅, and there
exists a v ∈ s•–◦u : A ∩mv �= {v}; indeed, otherwise, we have A ∩ (Δ̃II

u ∪ Δ̃III
u ) = ∅ if s ∈ frΔ and

(A ∩ Δ̃II
s ) • |•

(
A ∩ Δ̃III

s ) �= ∅ and ((A ∩ Δ̃II
s ) • |•(A ∩ Δ̃III

s )) ∩ (s•–•t) = ∅

if s /∈ frΔ. Therefore, the location of A with respect to v is as described in Cases 3, A, 3, B1, and 3, B2,
in which v is a node of some tripod. Moreover, it follows from the analysis of these cases that the number
of such nodes in s•–•t cannot exceed two, and two different nodes necessarily give two right-angled
tripods on opposite sides of the line lu.
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Now, suppose, e.g., that A ∩ Δ̃III
u = ∅. Then either A ∩ Δ̃I

u = ∅ or A ∩ Δ̃IV
u = ∅. If A ∩ Δ̃IV

u = ∅,
then A ∩mu = {u} implies s◦–◦t ∈ frΔ; hence either A ∩ Δ̃II

u �= ∅ or A ∩ Δ̃I
u �= ∅; for example, if

A ∩ Δ̃II
u �= ∅, then we obtain the inclusion

A ⊂ Δ̃II
u ∪ (s•–•t),

where t is a vertex of Δ. If A ∩ Δ̃I
u = ∅, then

A ⊂ Δ̃II
u ∪ Δ̃IV

u ∪ (s•–•t).

Case 3, B: u ∈ {s, t}. It is sufficient to consider the situation in which u = s and sx < tx. Consider
the three possible intersections of ms with A.

Case 3, B1: A ∩ms = v•|•w, v �= s �= w. Clearly, this case reduces to Case 3, A1.

Case 3, B2: A ∩ms = s•|•v, v �= s. Without loss of generality, we assume that vy < sy. Since
the intervals s•–•t and s•|•v are nondegenerate, A is connected, and intA = ∅, it follows that
A ∩ Δ̃IV

u = ∅. Suppose that the rectangle Δ̃II
s contains infinitely many points of A. The assumptions

made above imply

A ∩Δ ∩ΔII
s \ {s} = A ∩ Δ̃II

s .

Using the considerations performed in Case 1, we obtain

A ∩ΔIII
s \ms = ∅ = A ∩ΔI

s \ ls;

this means that the set A is contained in the rectangles Δ̃II
s and ΔIV

s . Moreover, taking into account the
relation A ∩ Δ̃IV

s = ∅, we obtain A ⊂ Δ̃II
s ∪ (ΔIV

s \ Δ̃IV
s ) and A ∩ Δ̃II

s �= ∅. For the same reasons as in
Case 3, A1, this is possible only if t, v ∈ frΔ. As a result, we obtain

A ⊂ Δ̃II
s ∪ (s•–•t) ∪ (s•|•v), A ∩ Δ̃II

s �= ∅.

As in Case 3, A1, the set A ∩ Δ̃II
s cannot be finite. Now, suppose that A ∩ Δ̃II

s = ∅; then, obviously,

A ⊂ Δ̃III
s ∪ Δ̃I

s ∪ (s•–•t) ∪ (s•|•v).

Case 3, B3: A ∩ms = {s}. Suppose that the rectangle Δ̃II
s contains points of A. As in Case 3, B2,

the number of such points is infinite. Using the argument from Case 1 yet again, we obtain

A ∩ΔIII
s \ {s} = ∅ = A ∩ΔI

s \ ls.
This implies the inclusion

A ⊂ Δ̃II
s ∪ Δ̃IV

s ∪ (s•–•t), where A ∩ Δ̃II
s �= ∅.

In particular, if A∩ Δ̃IV
s = ∅, then s•–•t ⊂ frΔ and the point t is a vertex of the rectangle Δ: otherwise,

Δ would not be minimal. If A ∩ Δ̃III
s �= ∅, then, similarly,

A ⊂ Δ̃III
s ∪ Δ̃I

s ∪ (s•–•t), where A ∩ Δ̃III
s �= ∅.

If (Δ̃II
s ∪ Δ̃III

s )∩A = ∅, then, necessarily, s ∈ frΔ, and we must examine the points of s◦–•t. However,
as is easy to see, to these points the considerations of all preceding Cases 3, * apply. It follows from these
considerations that if A ∩ Δ̃I

s �= ∅ �= A ∩ Δ̃IV
s , then the interval s◦–•t contains the nodal points of one

or two tripods; otherwise, when A ∩ Δ̃I
s = ∅ or A ∩ Δ̃IV

s = ∅, we have s•–•t ⊂ frΔ, and the point s is
a vertex of the rectangle Δ. In particular, if A ∩ Δ̃I

s = ∅, then A ⊂ Δ̃IV
s ∪ (s•–•t).

It is easy to see that in Cases 3 A1, 3, B1, and 3, B2, the point u may be the node of a tripod. Moreover,
if the set A contains a tripod, then it follows from the considerations in these cases that it cannot contain
more than two different nodes of tripods.
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Suppose that A contains no tripods. If there exists a u ∈ A for which A ∩ Δ̃II
u �= ∅, then, as shown

in Cases 1–3, we have

A \ (lu ∪mu) ⊂ Δ̃II
u ∪ Δ̃IV

u .

It turns out, a similar condition holds for any point v ∈ A:

A \ (lv ∪mv) ⊂ Δ̃II
v ∪ Δ̃IV

v .

Indeed, first consider the situation where v ∈ A ∩ Δ̃II
u . Suppose that

(A \ (lv ∪mv)) ∩ (Δ \ (Δ̃II
v ∪ Δ̃IV

v )) �= ∅.

Again, according to considerations in Cases 1–3, this is possible only if

A \ (lv ∪mv) ⊂ Δ̃I
v ∪ Δ̃III

v ,

i.e., A ∩ (Δ̃II
v ∪ Δ̃IV

v ) = ∅; however, by construction, we have u ∈ Δ̃IV
v , which is a contradiction. Next,

suppose that

v ∈ (lu ∪mu) ∩A and (A \ (lv ∪mv)) ∩ (Δ \ (Δ̃II
v ∪ Δ̃IV

v )) �= ∅.

Without loss of generality, we assume that v ∈ lu and vx < ux. We have lu = lv, Δ̃III
v ⊂ Δ̃III

u ,
and A ∩ Δ̃III

u = ∅; therefore, A \ (lv ∪mv) ⊂ Δ̃I
v. The relations A ∩ Δ̃I

u = ∅ and A ∩ Δ̃II
v = ∅ and the

absence of tripods imply the inclusions

A \ (lv ∪mv) ⊂ Δ̃I
v ∩mu, A \ (lu ∪mu) ⊂ Δ̃II

u ∩mv.

Take points u′ ∈ A \ (lv ∪mv) and v′ ∈ A \ (lu ∪mu) on the same horizontal line. Since A is
ortho-convex, it follows that the rectangle with vertices u, u′, v, and v′ is entirely contained in A and
has nonempty interior, which contradicts the assumption intA = ∅. Thus, for all u ∈ A, we have

A \ (lu ∪mu) ⊂ Δ̃II
u ∪ Δ̃IV

u ,

which implies, in particular, that the only vertices of Δ contained in A are the left upper vertex
(x(0), y(0)) and the right lower vertex (x(1), y(1)). The construction of the required curve (i) is trivial:
any circle of radius at most d = ‖(x(0), y(0)) − (x(1), y(1))‖ centered at (x(0), y(0)) contains only
one point of A; thus, for the parameter t we take r/d, where r is the distance from (x(0), y(0)) to
(x(t), y(t)). The case where A ∩ Δ̃II

u = ∅ for all u ∈ A is handled in precisely the same way (we have
A \ (lu ∪mu) ⊂ Δ̃I

u ∪ Δ̃III
u for any u ∈ A). This completes the proof of the proposition.

Before stating Proposition 4, we give the following definition. A continuous monotone curve
γ : C → R

2 is said to be unbounded in norm if

C = (α, β), −∞ ≤ α < β ≤ +∞, and ‖(x(t), y(t))‖ −−−−→
t→α+0
t→β−0

∞.

Proposition 4. If Γ �= ∅ is a proper ortho-hyperplane, then Γ is a continuous monotone curve
unbounded in norm.

Proof. In the case where Γ is a horizontal or vertical line, the proof is trivial.

Let us show by contradiction that Γ contains no tripods. Let u ∈ Γ be the node of a tripod, e.g.,

γI ∪ (s◦–•u) ∪ (t◦|•u),

where γI ⊂ ΔI
u, s = (−∞, uy), and t = (ux,−∞). Then ΔIII

u is entirely contained in a closed
ortho-half-space H ∈ Gc determining generating Γ. Clearly,

ΔII
u ∩H \mu ⊂ lu, ΔIV

u ∩H \ lu ⊂ mu;
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otherwise, there exist, e.g., v ∈ ΔIII
u \ (lu ∪mu) and w ∈ ΔII

u \ (lu ∪mu) for which v•|•w �= ∅,
v,w,∈ intH . By Proposition 1, we have v•|•w ⊂ intH , and hence (v•|•w) ∩ Γ ⊂ intH , which
contradicts the definition of Γ. Therefore, we have

(ΔII
u ∪ΔIV

u ) \ (lu ∪mu) ⊂ R
2 \H.

If (ΔI
u \ (lu ∪mu)) ∩ (R2 \H) �= ∅, then, taking v ∈ (ΔI

u \ (lu ∪mu)) ∩ (R2 \H), we obtain

ΔI
u ∩ΔIII

u \ {u} ⊂ R
2 \H.

However, the curve γI \ {u} ⊂ ΔI
u contains point arbitrarily close to u, so that

∅ �= (γI \ {u}) ∩ (ΔI
u ∩ΔIII

v \ {u}) ⊂ R
2 \H;

since H is closed, this curve cannot be contained in the boundary of the ortho-half-space R2 \H , which
contradicts the assumption. Therefore,

(ΔI
u \ (lu ∪mu)) ∩ (R2 \H) = ∅,

or, equivalently, ΔI
u \ (lu ∪mu) ⊂ H . The closedness of H allows us to strengthen this inclusion to

ΔI
u ⊂ H . Thus, we have

ΔI
u ∪ΔIII

u = H, R
2 \H = (ΔII

u ∪ΔIV
u ) \ (lu ∪mu);

as is easy to see, the second ortho-half-space is not connected, which again contradicts the definition
of Γ. Thus, Γ does not contain the tripod specified above. A similar argument shows that tripods of other
types (s �= (−∞, uy) and t �= (ux,−∞)) are not contained in Γ either.

Thus, a proper ortho-hyperplane contains no tripods. The ortho-hyperplane Γ is nondegenerate and
does not coincide with a horizontal or vertical line; hence Γ has a limit point u ∈ Γ, for which precisely
one of the conditions

Γ ∩ΔII
u \ (lu ∪mu) �= ∅ and Γ ∩ΔIII

u \ (lu ∪mu) �= ∅

holds. To be specific, suppose that Γ ∩ΔII
u \ (lu ∪mu) �= ∅. Following the scheme of the proof of

Proposition 3, we can show that

Γ \ (lv ∪mv) ⊂ (ΔII
v ∪ΔIV

v ) \ (lv ∪mv)

for all v ∈ Γ and construct a continuous monotone curve γ : C → R
2 determining Γ, e.g., by fixing a

point u ∈ Γ, setting γ(0) = u, and defining the parameter t to equal the distance from u to v ∈ Γ with
positive (negative) sign if v ∈ Γ ∩ΔIV

u \ {u} (respectively, v ∈ Γ ∩ΔII
u \ {u}).

Now, let us show that the curve γ is unbounded in norm. We argue by contradiction. First, suppose
that the set C is not open, i.e., C is a half-open or closed interval. Let C = [α, β) (the case C = (α, β]
is similar). In this case, the curve γ is entirely contained in one of the closed quarter-planes ΔIV

γ(α) and

ΔII
γ(α); suppose that it is contained in ΔIV

γ(α). If ‖(x(t), y(t))‖ −−−−→
t→β−0

∞, then γ divides ΔIV
γ(α) into two

closed subsets A and B:

A ∪B = ΔIV
γ(α), A ∩B = Γ.

The point γ(α) ∈ Γ is a vertex of the quarter-plane ΔIV
γ(α); therefore, the ray ΔIV

γ(α) ∩mγ(α) is entirely

contained in one of the sets A and B. Let this set be A; then the ray ΔIV
γ(α) ∩ lγ(α) is entirely contained

in B. Since Γ intersects only the quarter-planes II and IV with respect to any of its points, it follows that
one of the rays mentioned above, say ΔIV

γ(α) ∩mγ(α), contains a point v /∈ Γ.

Consider any point u ∈ ΔIV
γ(α) ∩mγ(α). Obviously, we have u ∈ H , where H ∈ Gc is a closed

ortho-half-space determining Γ. It follows from the closedness ofH that lu ∩A ⊂ H (lu ∩A and mu ∩A
coincide with the intervals u•–•(lu ∩ Γ) and u•|•(mu ∩ Γ), respectively) and (lu ∩A)•|•Γ ⊂ H . At the
same time, we have

A =
⋃

{(lu ∩A)•|•Γ : u ∈ ΔIV
γ(α) ∩mγ(α)};
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therefore, A ⊂ H . Taking into account the relations v ∈ A \ Γ and mv = mγ(α), we can write the
boundary of A in explicit form and use a well-known property of the boundary:

v ∈ (mv ∩ A) ∪ Γ = frA = fr(A ∩H) ⊂ frA ∩ frH ⊂ frH = Γ.

This contradicts the assumption v /∈ Γ.
Suppose that C = [α, β) and ‖(x(t), y(t))‖ −−−−→

t→β−0
/ ∞. The functions x(t) and y(t) are monotone

and bounded; hence there exists an x̃ = limt→β−0 x(t) and a ỹ = limt→β−0 y(t). Therefore, the point
(x̃, ỹ ) is limit for the ortho-hyperplane Γ. At the same time, we have (x̃, ỹ ) /∈ Γ, which is impossible,
because any ortho-hyperplane is closed.

In the case C = [α, β], we again obtain a contradiction. This case is considered in the same way
as the case where C = [α, β) and ‖(x(t), y(t))‖ −−−−→

t→β−0
∞, but instead of the quarter-plane ΔIV

γ(α), the

compact rectangle

Δ = ΔIV
γ(α) ∩ΔII

γ(β) ⊃ Γ

is considered, and the rays ΔIV
γ(α) ∩mγ(α) and ΔIV

γ(α) ∩ lγ(α) are replaced by the intervals Δ ∩mγ(α)

and Δ ∩ lγ(α), respectively.

It is easy to see that the remaining cases, in which C = (α, β) and

‖(x(t), y(t))‖ −−−−→
t→α+0
/ ∞ or ‖(x(t), y(t))‖ −−−−→

t→β−0
/ ∞,

do not essentially differ from the case where C = [α, β) and ‖(x(t), y(t))‖ −−−−→
t→β−0
/ ∞, which has already

been considered.
Thus, the continuous monotone curve γ determining the ortho-hyperplane Γ is unbounded in norm.

This completes the proof of the proposition.

Proposition 5. If a set A ∈ Gc is closed, then any two points in this set can be joined by a compact
continuous monotone curve entirely contained in A.

Proof. Clearly, it suffices to consider the case of two points u, v ∈ A not lying on the same horizontal or
vertical line. The intersection Δ ∩A, where Δ is the closed rectangle formed by the lines lu, mu, lv, and
mv, is an ortho-convex compact set, because A is closed and ortho-convex. Let us show that Δ ∩A, is
also connected, i.e., this is an ortho-convex continuum.

Let πmu be the closed half-plane determined by the line mu and containing the point v. Consider
the sets A1 = A \ int πmu and A2 = A ∩ πmu . These sets are closed; their union is connected, because
this is A; and their intersection A1 ∩A2 ⊂ frπmu is connected as well, because A is ortho-convex.
According to a well-known theorem on connected sets [5], each of the sets A1 and A2 is connected.
In a similar way, constructing a half-plane πlu , we prove that A2 ∩ πlu is connected. Finally, having
constructed the half-planes πmv and πlv containing u, we conclude that Δ ∩A is connected.

If int(Δ ∩A) = ∅, then the required curve is obtained by applying Proposition 3. Suppose that
int(Δ ∩ A) �= ∅. Take any point w in int(Δ ∩A). There exists a closed rectangle Δw ⊂ intA for which
w ∈ intΔw �= ∅. Choose two closed half-planes π1 and π2 determined by two adjacent sides of Δw so
that w ∈ π1 ∩ π2 and u, v /∈ π1 ∩ π2. Consider the sets

A′
1 = Δ ∩ A \ int(π1 ∩ π2), A′′

1 = Δ ∩A ∩ π1 ∩ π2.

These sets are connected, because they are closed, their union A′
1 ∪A′′

1 = Δ∩A is connected (as shown
above), and their intersection A′

1 ∩A′′
1 = Δ ∩A ∩ fr(π1 ∩ π2) is connected as well (this follows from the

ortho-convexity of Δ ∩ A and the inclusion frπ1 ∩ frπ2 ⊂ Δ ∩A). Thus, each of the sets A′
1 and A′′

1 is
an ortho-convex continuum. Moreover, the set A′

1 satisfies the conditions w /∈ A′
1 and u, v ∈ A′

1. If A′
1

has an interior point, then we apply the same procedure to this set, and so on. As a result, we obtain a
sequence

(Δ ∩A) ⊃ A′
1 ⊃ A′

2 ⊃ · · ·
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of embedded continua, in which each member contains u and v. We can assume this sequence to be at
most countable, because the Euclidean plane is second countable. According to well-known theorems
of topology, it has a limit, and this limit is a continuum. It contains the points u and v, has no interior
points by construction, and is ortho-convex. Therefore, we can apply Proposition 3, which gives the
required curve. This completes the proof of the proposition.

The results presented below describe several separation-type properties of ortho-convex sets, which
are similar, in a certain respect, to the corresponding properties of convex sets in the plane. We mention
at once that, in this paper, we give only the geometric statements of these results.

Proposition 6. Any closed set A in Gc can be represented as the intersection of at most four
closed proper ortho-half-spaces in Gc containing A.

Proof. Consider the possible cases.

(1) Suppose that A is not bounded by any vertical or horizontal line. Without loss of generality, we
can assume that A does not coincide with R

2. Consider the set of horizontal lines intersecting A. On
each of such lines l, we fix the point

ul = (sup{ux | u ∈ l, ux ≤ (A ∩ l)x}, ly)

if it exists; otherwise, we set ul = (−∞, ly). Obviously, the latter point exists when the intersection of l
with A contains a left-unbounded ray. Each of the points ul and ulx �= −∞ determines two rays, the open
left ray L−

u = s◦–◦ul, s = (−∞, uly), and the closed right ray L+
u = ul•–◦t, t = (+∞, uly). As we shall

see later on, each of the sets ∪L−
u and ∪L+

u has at most two connected components, which are, in turn,
ortho-convex sets; moreover, these connected components turn out to be proper ortho-half-spaces, and
their complements give some of the required ortho-half-spaces.

If there are more than one points of type ul with ulx = −∞, then the set {uly | ulx = −∞} is closed
and convex. Indeed, if there are more than one such points, then we can choose two points ul1 and ul2

with ul1x = ul2x = −∞, for which ul1y ≥ ul2y . Since A is ortho-convex, it follows that, for any points vl1

and vl2 on the open parts of left-unbounded rays contained in the sets l1 ∩A and l2 ∩A, respectively,
and satisfying the condition vl1•|•vl2 �= ∅, we have vl1•|•vl2 ⊂ A. Therefore, for any w ∈ vl1•|•vl2 , the
ray s◦–◦w, s = (−∞, wy), is contained in A, and hence the set {uly | ulx = −∞} is convex. Let show
that it is closed. Suppose that there exists a point

z′ ∈ cl{uly | ulx = −∞} \ {uly | ulx = −∞}.

For the line l′ with l′y = z′, we have ul
′ ∈ A and ul

′
x �= −∞, because the set A is unbounded and closed.

Take a point z′′ ∈ {uly | ulx = −∞}; without loss of generality, we can assume that z′′ < z′. Since the
set {uly | ulx = −∞} is convex, it follows that [z′′, z′) ⊂ {uly | ulx = −∞}. Obviously, there exists a point

v ∈ A for which vx < ul
′
x and vy = z′′. By Proposition 5, v and ul

′
can be joined by a compact continuous

monotone curve γvul′ ⊂ A. For each point w ∈ γvul′ with wy ∈ [z′′, z′), we have

vx ≤ wx ≤ ul
′
x , s◦–•w ⊂ A, s = (−∞, wy).

Take a point v′ ∈ s◦–◦ul′ with v′x = vx and v′y = z′ for s = (−∞, z′) and choose any sequence
{zn ∈ [z′′, z′]} converging to z′. This sequence determines the sequence {vn | (vn)x = vx, (vn)y = zn},
which converges to v′, and a sequence {wn | wn ∈ γvul′ , (wn)y = zn}. Since vn ∈ s◦–•wn ⊂ A, it
follows that vn ∈ A; therefore, v′ ∈ A, because A is closed. Thus, we have found a point v′ ∈ A for which
v′x < ul

′
x ; this contradicts the definition of the point ul

′
x . Hence the set {uly | ulx = −∞} is closed.

If there exists at least one (i.e., one or infinitely many) point of type ul with ulx = −∞, then the
set ∪L−

u can be partitioned into two disjoint parts, the open upper part LII above the upper line in
{l | ulx = −∞} and the open lower part LIII below the lower line in {l | ulx = −∞}. Possibly, LII = ∅

or LIII = ∅. Clearly, in the absence of points ul with ulx = −∞, the open set ∪L−
u is not separated
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by straight lines. First, consider the situation in which there exists at least one point of type ul with
ulx = −∞ in more detail.

Clearly, it suffices to determine the structure of one of the sets LII and LIII. Consider, e.g., the set
LIII. Let us show that it is ortho-convex. By construction, all horizontal intervals are contained in LIII.
Take u ∈ frLIII; clearly, u ∈ frA. Let us show that

A ∩ΔIII
u \ (lu ∪mu) = ∅.

Suppose that, on the contrary, there exists a w ∈ A ∩ΔIII
u \ (lu ∪mu). Since the set A is unbounded,

we can choose a point v ∈ frLIII : vx < wx with vy ≥ uy (moreover, it can be chosen in the set
frLIII ∩ {l | ulx = −∞}). By construction, we have u, v, w ∈ A, vx < wx < ux, and wy < uy ≤ vy.
Since A is closed, it follows by Proposition 5 that the points v and w can be joined by a compact
continuous monotone curve γvw ⊂ A; moreover, (γvw)x < ux and uy ∈ (γvw)y . Since u ∈ frLIII, it
follows that, for r ≤ min{|ux − wx|, |uy − wy|}, we have

(u+Br) ∩ LIII ∩ π− �= ∅, (u+Br) ∩ γvw = ∅,

where π− is the open half-plane under the line lu. Let q ∈ (u+Br)∩LIII ∩ π−. Then the corresponding
point ql ∈ lq satisfies the conditions

(ql)x > qx > wx ≥ (lq ∩ γvw)x, uy > (ql)y > wy.

Therefore, we have

lq ∩ γvw ∈ A, (ql)x > (lq ∩ γvw)x,

which contradicts the definition of the ray L−
q . Thus, for all u ∈ frLIII, we have

A ∩ΔIII
u \ (lu ∪mu) = ∅.

Next, take any two points u and v with uy > vy in LIII on the same vertical line. By the definition of
LIII, we have u ∈ s◦–◦ul and v ∈ t◦–◦vl, where s = (−∞, uy), t = (−∞, vy), and ul, vl ∈ frLIII; the
relations readily imply the inclusion

(u ◦ | • v) ⊂ ΔIII
ul \ (lul ∪mul).

Moreover, since A ∩ΔIII
ul \ (lul ∪mul) = ∅, it follows that (u•|•v) ∩A = ∅. We see that, for any

point w ∈ (u•|•v), we have wl
x > wx, which means that w ∈ LIII. Thus, LIII ∈ G. The proof of the

connectedness of LIII is simple: any two points in LIII can be joined by the sides of a right angle entirely
contained in LIII. As a consequence, for all u ∈ frLIII, we have L−

u ⊂ LIII and L+
u ⊂ R

2 \ LIII.

Repeating the same considerations for the vertical lines intersecting A, we see that, for all u ∈ frLIII,
we have

M−
u ⊂ LIII, M+

u ⊂ R
2 \ LIII,

where

M−
u = s◦–◦um, s = (ux,−∞), M+

u = um•–◦t, t = (ux,+∞),

um = (mx, sup{uy | u ∈ m, uy ≤ (A ∩m)y}).

These inclusions readily imply that the set R2 \ LIII is closed and belongs to the class Gc. In other
words, this is a closed proper ortho-half-space; by construction, A ⊂ R

2 \LIII. The set R2 \LII has the
same properties. As a result, we obtain

A ⊂ (R2 \ LII) ∩ (R2 \ LIII).

The situation in which there are no points of type ul with ulx = −∞ is considered in a similar way.
Thus, R2 \ ∪L−

u is a closed proper ortho-half-space containing A.
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If we chose a point

vl = (inf{vx | v ∈ l, vx ≥ (A ∩ l)x}, ly)

instead of ul at the beginning of (1), then, instead of the set ∪L−
u , we would have to consider the set

∪L+
v , for which assertions similar to those proved above hold: either

A ⊂ (R2 \ LI) ∩ (R2 \ LIV),

where ∪L+
v = LI ∪ LIV, or

A ⊂ R
2 \ ∪L+

v ,

where R
2 \ LI,IV and R

2 \ ∪L+
v are closed proper ortho-half-spaces.

(2) The set A is bounded by a vertical direct on only one side, say on the left. Then μ0 = sup{μ ∈ R |
μ ≤ Ax} exists, and the vertical line m, mx = μ0, intersects A in a closed convex subset of m, because A
is closed and ortho-convex. Take u ∈ A ∩m. Let us construct a horizontal ray s◦–•u, s = (−∞, uy),
and add it to the set A. Applying the considerations of (1) to the resulting set A′ = A ∪ (s◦–•u), we
find R

2 \ (LII)′ and R
2 \ (LIII)′ for this set. Augmenting (LII)′ and (LIII)′ by the open half-plane π−

m on
the left of m and leaving the set R

2 \ ∪L+
v unchanged, as in case (1) for A, we obtain the required

proper ortho-half-spaces R
2 \ ((LII)′ ∪ π−

m), R
2 \ ((LIII)′ ∪ π−

m), and either R
2 \ LI,IV or R

2 \ ∪L+
v .

(The fact that R2 \ ((LII)′ ∪ π−
m) and R

2 \ ((LIII)′ ∪ π−
m) are ortho-half-spaces again follows from the

considerations in case (1)).

(3) The set A bounded by a horizontal line from only one side, say from above. Then, by analogy with
the preceding case, there exists a horizontal line l for which

ly = ν0, ν0 = inf{ν ∈ R | ν ≥ Ay}.

Therefore, the sets ∪L−
u and ∪L+

v are bounded by this line. We add the open half-plane π+
l above l to LI

and LII. Again applying the technique of (1), we obtain the required proper ortho-half-spaces, which
are either R2 \ (LII ∪ π+

l ) and R
2 \ LIII or R2 \ ((∪L−

u ) ∪ π+
l ) and either R2 \ (LI ∪ π+

l ) and R
2 \LIV or

R
2 \ ((∪L+

v ) ∪ π+
l ).

(4) If the set A is bounded by vertical or horizontal lines from more than one side, then we
appropriately combine results obtained in cases (2) and (3), assuming that the sets Li, i ∈ {I, II, III, IV},
in (3) are obtained on the basis of (2), and again obtain the required ortho-half-spaces.

The proof is completed by the observation that, by virtue of the constructions performed in (1)–(4),
the intersection of the obtained closed ortho-half-spaces containing A is A. Indeed, let us denote these
ortho-half-spaces by Hk, k ∈ K ⊂ {I, II, III, IV}, so that

{Hk | k ∈ K} ⊂ {R2 \ LI, R2 \ ∪L−
u , R

2 \ ((∪L−
u ) ∪ π+

l ), . . . }.
Take any horizontal line l and any point w ∈ l. If l ∩A �= ∅, then, according to (1)–(4), either w ∈ A or
there exists an i ∈ K for which w ∈ R

2 \H i. If l ∩A = ∅, then the set A is bounded, say above, by a
horizontal line l′ with l′y < ly ; hence, according to (3), there exists a j ∈ K for which w ∈ π+

l′ ⊂ R
2 \Hj .

Thus,

(∪{R2 \Hk | k ∈ K}) ∪A = R
2.

Noting that A ∩ (R2 \Hk) = ∅ for all k ∈ K, we obtain A = ∩{Hk | k ∈ K}. This completes the proof
of the proposition.

Remark. The boundaries of the closed ortho-half-spaces H i constructed in the proof are essentially
supporting ortho-hyperplanes, i.e.,

frH i ∩A �= ∅ = (R2 \H i) ∩A.

Corollary 6.1. For any closed set A ∈ Gc and any point u /∈ A, there exists a closed proper
ortho-half-space H strongly separating u and A, i.e., such that A ⊂ intH and u ∈ R

2 \H .
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Proof. According to Proposition 6, the point u is contained in an open ortho-half-space supporting
for A, e.g., in R

2 \HIV. Since HIV ∈ Gc and the point u is interior for R2 \HIV, it follows that

frHIV ∩ (ΔII
u \ (lu ∪mu)) �= ∅.

Take v ∈ frHIV ∩ (ΔII
u \ (lu ∪mu)). Let us show that the required ortho-half-space can be defined,

e.g., by H = HIV + w, where w = (u− v)/2. First, note that the ortho-half-spaces HIV and H are
above the hyperplanes ΓIV and Γ which they determine. Therefore, the inequality wy < 0 directly implies
the inclusion HIV ⊂ H , whence A ⊂ H . To prove the inclusion HIV ⊂ intH , it suffices to show that
ΓIV ∩ Γ = ∅, which readily follows from Proposition 4 and the inequalities wx > 0 and wy < 0. Thus,
A ⊂ intH . The fact that u ∈ R

2 \H follows from the relations

HIV ∩ΔIV
v \ (lv ∪mv) = ∅, u ∈ ΔIV

v \ (lv ∪mv) = ∅.

This proves the corollary.

Corollary 6.2. Any continuous monotone curve Γ unbounded in norm determines a closed
ortho-half-space H ∈ Gc for which Γ = frH .

Proof. Obviously, the curve Γ is a closed set in Gc located in opposite quarter-planes, say II and IV.
This makes it possible to construct the required ortho-half-space H by using Proposition 6. Without
loss of generality, we give the result of such a construction for only one special case of Γ. Suppose,
e.g., that Γ is bounded by a line m on the left and by a line l from below; by analogy with the proof of
Proposition 6, we assume these lines to be limit. We have H = cl((LIII)′ ∪ π−

l ∪ π−
m), which proves the

corollary.

Proposition 7. For any two disjoint closed sets A,B ∈ Gc, there exists a closed proper
ortho-half-space H such that A ⊂ H and B ⊂ cl(R2 \H). In other words, the proper ortho-
hyperplane determined by the ortho-half-space H separates the sets A and B.

Proof. Suppose that A and B cannot be separated by any horizontal direct (otherwise, there is nothing
to prove). Since A ∩B = ∅ and A and B are ortho-convex, it follows that, for any horizontal line l
intersecting these sets, we have either (A ∩ l)x > (B ∩ l)x or (A ∩ l)x < (B ∩ l)x. This directly implies,
in particular, that either ul,Ax ≥ vl,Bx or ul,Bx ≥ vl,Ax , respectively.

Suppose, e.g., that some line l1 satisfies the first condition. Then so does any line l2 intersecting A
and B. Indeed, if (A∩ l2)x < (B ∩ l2)x, then choosing any ai ∈ A∩ li and bi ∈ B ∩ li for each i ∈ {1, 2}
and applying Proposition 5, we see that, first, a1 and a2 can be joined by a compact continuous
monotone curve γa1a2 ⊂ A and b1 and b2 can be joined by a curve γb1b2 ⊂ B. Second, the curves γa1a2
and γb1b2 are monotone, and hence both of them are entirely enclosed by a minimal compact rectangle Δ
with sides contained in l1 and l2. Continuing these curves by horizontal intervals to vertices of this
rectangle Δ so that monotonicity is preserved and taking into account the inequalities (a1)x > (b1)x
and (a2)x < (b2)x, we obtain continuous monotone curves γ1 ⊃ γa1a2 and γ2 ⊃ γb1b2 entirely contained
in Δ and joining different pairs of opposite vertices of Δ. By the theorem “on passing customs” [6],
the curves γ1 and γ2 must have at least one common point. Moreover, by virtue of the inequalities
(a1)x > (b1)x and (a2)x < (b2)x, at least one of these common points belongs to both curves γa1a2 ⊂ A
and γb1b2 ⊂ B. However, this contradicts the assumption A ∩B = ∅. Therefore, for l2, only the
inequality (A ∩ l2)x > (B ∩ l2)x can hold. In other words, the set A is on the right of B.

Let us show that one of the ortho-half-spaces determined by the set ∪L−
u,A constructed in Propo-

sition 6 is as required. (In what follows, we omit the subscript indicating the set, assuming that the
corresponding notation refers to A, unless otherwise specified; we also use some notation from the proof
of Proposition 6 without mention.) Consider two cases.

(1) If the set A is not bounded on the left by a vertical line, then, obviously, either B ∩ clLII �= ∅

or B ∩ clLIII �= ∅. Suppose, e.g., that B ∩ clLIII �= ∅. The construction of the ortho-half-space HIII

allow us to write the inclusion

B ∩ clLIII ⊂ R
2 \ intHIII.
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If follows from the considerations in case (3) of the proof of Proposition 6 and the fact that A is on the
right of B that the inequality B \ clLIII �= ∅ holds if and only if A is bounded below by a horizontal line l,
which can be assumed to be highest, and B \ clLIII ⊂ clπ−

l , where π−
l is the open half-plane below l.

According to Proposition 6, these two inclusions give the required ortho-half-space H = HIII.

(2) The set A is bounded on the left by a vertical line m, which can be assumed to be rightmost, as
in case (2) of the proof of Proposition 6. If A and B are separated by this line, then there is nothing to
prove. Thus, suppose that, on the contrary, B ∩ π+

m �= ∅, where π+
m is the open half-plane on the right

of m. Take u ∈ m ∩A. Without loss of generality, we assume that

B ∩ cl(LIII)′ ∩ π+
m �= ∅.

Let us show that H = HIII. (Recall the expression for HIII derived in case (2) in the proof of
Proposition 6: HIII = R

2 \ ((LIII)′ ∪ π+
m).) Since A is on the right of B, it follows from remarks made in

case (1) that

B ∩ π−
lu
∩ π+

m ⊂ cl(R2 \HIII).

Take any point v in B ∩ cl(LIII)′ ∩ π+
m. Supposing that the set B ∩ clπ+

lu
∩ π+

m is nonempty, choose
any point w in this set. According to Proposition 5, the points v and w can be joined by a compact
continuous monotone curve γvw ⊂ B, which entirely contained π+

m as well, because it is monotone. The
inequalities wy ≥ uy and vy ≤ uy imply the existence of an s ∈ γvw ∩ lu ⊂ B, and sx > ux. At the same
time, as mentioned above, we have (A ∩ lu)x ≥ (B ∩ lu)x, which implies sx ≤ ux. This contradiction
shows that B ∩ cl π+

lu
∩ π+

m = ∅. This equality, together with the expression for HIII and the inclusion
obtained above, gives the final relation B ⊂ cl(R2 \HIII), which proves the proposition.

It is clear, without any doubt, that all results obtained in this paper remain valid when the horizontal
and vertical lines in the definition of an ortho-convex set are replaced by any two nonparallel lines l′

and l′′: it suffices to replace all sets in the above statements by those obtained from the initial ones by
applying an appropriate linear transformation. In fact, ortho-convex sets are a special case of so-called
biconvex sets [7], [8]. Therefore, hopefully, some properties of ortho-convex sets can be generalized to
biconvex sets.

REFERENCES
1. E. Fink and D. Wood, Restricted-Orientation Convexity, in Monogr. in Theoret. Comput. Sci. An EATCS

Ser. (Springer-Verlag, Berlin, 2004).
2. V. G. Naidenko, “Contractibility of half-spaces of partial convexity,” Mat. Zametki 85 (6), 915–926 (2009)

[Math. Notes 85 (5–6), 868–876 (2009)].
3. V. G. Naidenko, “Partial convexity,” Mat. Zametki 75 (2), 222–235 (2004) [Math. Notes 75 (1–2), 202–212

(2004)].
4. V. P. Soltan, Introduction to the Axiomatic Theory of Convexity (Shtiintsa, Kishinev, 1984) [in Russian].
5. K. Kuratowski, Topology (Academic Press, New York–London; PWN, Warsaw, 1968; Mir, Moscow, 1969),

Vol. 2.
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