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1. INTRODUCTION

The averaging method, usually associated with the names of Krylov, Bogolyubov, and Mitropol’skii,
originated in works dealing with celestial mechanics. In rigorous mathematical form, this method was
described in the classical monographs [1], [2] for normal systems of differential equations in the case
of the Cauchy problem on a finite interval and for some problems on the whole time axis (problems
of periodic, almost periodic, and generally bounded solutions). However, it seems that the averaging
method has not been developed for problems with boundary conditions. In the present paper, this method
is justified for boundary-value problems on a finite interval and for the problem of bounded solutions
on the positive semiaxis with boundary condition at its left endpoint. In the case of linear normal
systems of differential equations with constant coefficients, such problems (not related to the averaging
method) were posed, for example, in [3]. In addition, note that, in contrast to the classical systems
of the averaging method [1], [2], the normal systems under consideration involve rapidly oscillating
high-frequency summands proportional to the square root of the oscillation frequency. Earlier, we
already considered various systems with large rapidly oscillating summands in the case of the Cauchy
problem and problems on the whole axis in [4]–[7]. Note that the papers [4]–[7] were stimulated by
Yudovich’s important works (see, for example, [8], [9]), in which such systems were first considered, but
this was done on a “physical” level without proper mathematical justification. Finally, note that, in the
absence of large summands, Theorems 1 and 2, were published in [10], [11].

2. MAIN RESULTS

2.1. Problem on the Closed Interval

Let Ω be a domain in R
n, and let

Σ = {(x, t, τ) : x ∈ Ω, t ∈ [0, 1], τ ∈ [0,∞)}.
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AVERAGING METHOD FOR DIFFERENTIAL EQUATIONS 81

On the interval t ∈ [0, 1], we consider the boundary-value problem
⎧
⎨

⎩

dx

dt
= f(x, t, ωt) +

√
ωϕ(x, t, ωt), ω � 1,

Lx(0) = l, Rx(1) = r.
(1)

Here f(x, t, τ) and ϕ(x, t, τ) are vector functions continuous on Σ and taking values in R
n, L and R

are matrices having n columns and n1 and n2 rows, respectively, and l and r are column vectors of the
corresponding dimensions; the entries of the matrices and vectors are real. Also assume the following.

1) The derivatives f ′
x(x, t, τ), ϕ′

x(x, t, τ), ϕ′
t(x, t, τ), ϕ′′

xt(x, t, τ), and ϕ′′
xx(x, t, τ) exist and are

continuous on Σ; the latter derivative, for example, is the matrix composed of all possible second-order
derivatives of the components of the vector function ϕ(x, t, τ) with respect to x.

2) The vector functions f(x, t, τ), ϕ(x, t, τ), ϕ′
t(x, t, τ) and the matrix functions f ′

x(x, t, τ),
ϕ′
x(x, t, τ), ϕ

′′
xt(x, t, τ), and ϕ′′

xx(x, t, τ) are uniformly bounded on Σ.
3) The matrix functions f ′

x(x, t, τ), ϕ
′′
xt(x, t, τ), and ϕ′′

xx(x, t, τ) satisfy, on Σ, a uniform Lipschitz
condition for the variable x, i.e., there exists a constant λ > 0 such that, for all (x1, t, τ), (x2, t, τ) ∈ Σ,

|r(x1, t, τ) − r(x2, t, τ)| ≤ λ|x1 − x2|,
where r = f ′

x, ϕ
′′
xt, ϕ

′′
xx and |u| is the norm of the vector u ∈ R

n.
4) The vector function f(x, t, τ) and the matrix functions f ′

x(x, t, τ), ϕ
′′
xt(x, t, τ), and ϕ′′

xx(x, t, τ)
satisfy Hölder’s condition for the variable t on the set Σ, i.e., there exist constants C > 0 and γ ∈ (0, 1)
such that, for all (x, t1, τ), (x, t2, τ) ∈ Σ,

|r(x, t2, τ)− r(x, t1, τ)| ≤ C|t2 − t1|γ ,
where r = f, f ′

x, ϕ
′′
xt, ϕ

′′
xx.

5) The limits

F (x, t) ≡ lim
T→∞

1

T

ˆ T

0
(f(x, t, τ) + χ(x, t, τ)) dτ,

F ′
x(x, t) ≡ lim

T→∞

1

T

ˆ T

0
(f ′

x(x, t, τ) + χ′
x(x, t, τ)) dτ,

where

χ(x, t, τ) = ϕ′
x(x, t, τ)

ˆ τ

0
ϕ(x, t, s) ds,

exist uniformly with respect to the variable (x, t) ∈ Ω× [0, 1].
6) The averaged problem

⎧
⎨

⎩

dy

dt
= F (y, t),

Ly(0) = l, Ry(1) = r
(2)

has a solution ẙ(t) (with values in Ω).
7) The limits

lim
N→∞

1
4
√
N

ˆ N

0
r(x, t, τ) dτ = 0

for r = ϕ,ϕ′
x, ϕ

′′
xx and

lim
N→∞

1√
N

ˆ N

0
s(x, t, τ) dτ = 0

for s = ϕ′
t, ϕ

′′
xt exist uniformly with respect to (x, t) ∈ Ω× [0, 1].
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82 LEVENSHTAM, SHUBIN

8) It is assumed that n1 + n2 = n and also that
∣
∣
∣
∣
∣
∣

L

RV (1)

∣
∣
∣
∣
∣
∣
�= 0,

where V (t) is the matriciant of the system

dz

dt
= F ′

z(ẙ, t)z, (3)

i.e., V (t) is the fundamental system of solutions satisfying the condition V (0) = E.

In what follows, the symbol Cγ(J), where γ ∈ (0, 1) and J = [0, 1] or J = [0,∞), will denote
the Banach space of vector functions x : J → R

n satisfying Hölder’s condition with exponent γ and
equipped with the norm

‖x‖Cγ (J) = sup
t∈J

|x(t)|+ sup
t1,t2∈J
t1 �=t2

|x(t2)− x(t1)|
|t2 − t1|γ

.

The following statement holds.

Theorem 1. For each μ ∈ (0, 1/2), there exists a number ω0 > 0 such that, in some Cμ([0; 1])-nei-
ghborhood of the vector function ẙ, problem (1) has a unique solution xω for ω > ω0, and the
following limit equality holds:

lim
ω→∞

‖xω − ẙ‖Cμ([0;1]) = 0.

2.2. Problem on the Semiaxis

Let Ω be a domain in R
n, and let

Σ = {(x, t, τ) : x ∈ Ω, t ∈ [0,∞), τ ∈ [0,∞)}.
On the semiaxis t ∈ [0,∞), we consider the boundary-value problem

⎧
⎨

⎩

dx

dt
= f(x, t, ωt) +

√
ωϕ(x, t, ωt), ω � 1,

Mx(0) = η,
(4)

involving bounded solutions. Here f(x, t, τ) and ϕ(x, t, τ) are vector functions continuous on Σ and
taking values in R

n, M is a matrix, η is a vector whose dimension coincides with the number of rows in
the matrix M ; further, the elements of the matrix and the vector are real. Also assume the following.

1) The derivatives f ′
x(x, t, τ), ϕ′

x(x, t, τ), ϕ′
t(x, t, τ), ϕ′′

xt(x, t, τ), and ϕ′′
xx(x, t, τ) exist and are

continuous on Σ.
2) The vector functions f(x, t, τ), ϕ(x, t, τ), ϕ′

t(x, t, τ) and the matrix functions f ′
x(x, t, τ),

ϕ′
x(x, t, τ), ϕ

′′
xt(x, t, τ), and ϕ′′

xx(x, t, τ) are uniformly bounded on Σ.
3) The matrix functions f ′

x(x, t, τ), ϕ
′′
xt(x, t, τ), and ϕ′′

xx(x, t, τ) on Σ satisfy the uniform Lipschitz
condition in the variable x, i.e., there exists a constant λ > 0 such that, for all (x1, t, τ), (x2, t, τ) ∈ Σ,

|r(x1, t, τ) − r(x2, t, τ)| ≤ λ|x1 − x2|,
where r = f ′

x, ϕ
′′
xt, ϕ

′′
xx.

4) The vector function f(x, t, τ) and the matrix functions f ′
x(x, t, τ), ϕ

′′
xt(x, t, τ), ϕ

′′
xx(x, t, τ) on the

set Σ satisfy Hölder’s condition in the variable t, i.e., there exist constants C > 0 and γ ∈ (0, 1) such
that, for all (x, t1, τ), (x, t2, τ) ∈ Σ,

|r(x, t2, τ)− r(x, t1, τ)| ≤ C|t2 − t1|γ ,
where r = f, f ′

x, ϕ
′′
xt, ϕ

′′
xx.
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AVERAGING METHOD FOR DIFFERENTIAL EQUATIONS 83

5) The limits

F (x, t) ≡ lim
T→∞

1

T

ˆ a+T

a
(f(x, t, τ) + χ(x, t, τ)) dτ,

F ′
x(x, t) ≡ lim

T→∞

1

T

ˆ a+T

a
(f ′

x(x, t, τ) + χ′
x(x, t, τ)) dτ,

where

χ(x, t, τ) = ϕ′
x(x, t, τ)

ˆ τ

0
ϕ(x, t, s) ds,

exist uniformly with respect to a ∈ R and (x, t) ∈ Ω× [0,∞).

6) The averaged problem
⎧
⎨

⎩

dy

dt
= F (y, t),

My(0) = η
(5)

has a bounded solution ẙ(t) (with values in Ω) on the semiaxis t ∈ [0,∞).

7) One of the following conditions hold:

(a) the limits

lim
N→∞

1
4
√
N

ˆ N

0
t1/4r(x, t, τ) dτ = 0 for r = ϕ,ϕ′

x, ϕ
′′
xx,

lim
N→∞

1√
N

ˆ N

0
t1/2s(x, t, τ) dτ = 0 for s = ϕ′

t, ϕ
′′
xt

exist uniformly with respect to (x, t) ∈ Ω× [1,∞);

(b) the vector function ϕ(x, t, τ) is T -periodic (T > 0) in τ with zero mean

1

T

ˆ T

0
ϕ(x, t, τ) dτ = 0.

8) The equation

du

dt
= A(t)u, (6)

where A(t) = F ′
x(ẙ(t), t), is exponentially dichotomous on the semiaxis t ∈ [0,∞), and B1, B2 are

subspaces of Rn ensuring this dichotomy (see, for example, [12, Chap. IV, Sec. 3] or Sec. 4.2 below).
Denote by {ek}r1 the basis in the subspace B1 in which the solutions bounded on the right semiaxis
begin and by S the matrix whose columns are the vectors columns ek, k = 1, . . . , r. It is assumed that
the matrix MS is invertible.

The following statement holds.

Theorem 2. For each μ ∈ (0, 1/2), there exists a number ω0 > 0 such that, in some Cμ([0;∞))-nei-
ghborhood of the vector function ẙ, problem (4) has a unique bounded solution xω on the semiaxis
t ∈ [0,∞) for ω > ω0, and the following limit equality holds:

lim
ω→∞

‖xω − ẙ‖Cμ([0;∞)) = 0.
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84 LEVENSHTAM, SHUBIN

3. EXAMPLES

In this section, Theorems 1 and 2 are illustrated using simple examples.

1. On the interval t ∈ [0, 1], consider the boundary-value problem

ẍ+ x+ f(x, t) sin(3ωt) +
√
ωϕ(x, t) cos(ωt) = 0,

x(0) = 0, x(1) = cos(1), ω � 1.
(7)

Replacing ẋ = −y, we obtain the normal system of differential equations
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= −y,

dy

dt
= x+ f(x, t) sin(3ωt) +

√
ωϕ(x, t) cos(ωt), ω � 1,

x(0) = 1, x(1) = cos(1).

(8)

Here1 (x(t), y(t))T is the unknown vector function, and

L = (1, 0), R = (1, 0)

are the matrices of the boundary conditions, and we assume that the functions f and ϕ satisfy the
conditions given in Sec. 2.1 (it suffices that, on the set {(x, t) ∈ R

2 : |x| < 2, t ∈ [0, 1]}, the functions f ,
f ′
x, ϕ, ϕ′

x, ϕ′
t, ϕ

′′
xt, ϕ

′′
xx be continuous and satisfy the uniform Lipschitz condition in x, t). It is easy to

verify that the averaged problem is of the form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= −y,

dy

dt
= x,

x(0) = 1, x(1) = cos(1).

(9)

Its solution is the vector function

ẙ(t) = (cos(t), sin(t))T ;

hence

F ′
x =

⎛

⎝
0 −1

1 0

⎞

⎠ , and V (t) =

⎛

⎝
cos(t) − sin(t)

sin(t) cos(t)

⎞

⎠

where V (t) is the matriciant of the system of differential equations (9) (see (3)). Further,

RV (1) =
(

cos(1) − sin(1)

)
,

so that
∣
∣
∣
∣
∣
∣

L

RV (1)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

1 0

cos(1) − sin(1)

∣
∣
∣
∣
∣
∣
= − sin(1) �= 0.

By Theorem 1, for each μ ∈ (0, 1/2), there exists an ω0 > 0 such that, in some C1,μ([0; 1])-neighborhood
of the function cos(t), problem (7) for ω > ω0 has a unique solution xω(t), and the following limit equality
holds:

lim
ω→∞

‖xω(t)− cos(t)‖C1,μ([0;1]) = 0.

Here ‖u‖C1,μ = ‖u‖Cμ + ‖(d/dt)u‖Cμ .

1Translator’s note. Here and below, to save space, column vectors with coordinates x1, . . . , xn are denoted by
(x1, . . . , xn)

T .
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AVERAGING METHOD FOR DIFFERENTIAL EQUATIONS 85

2. On the interval t ∈ [0, 1], consider the boundary-value problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= −2x1 + f1(x1, x2, x3, t) sin(5ωt) +
√
ωϕ1(x1, t) cos(ωt),

dx2
dt

= f2(x1, x2, x3, t) cos(2ωt) +
√
ωϕ2(x2, t) sin(3ωt),

dx3
dt

= x3 + f3(x1, x2, x3, t) cos(ωt) +
√
ωϕ3(x3, t) sin(7ωt), ω � 1,

x1(0) = 1, x2(0) = 1, 2x2(1) + x3(1) = 2 + exp(1).

(10)

Here

L =

⎛

⎝
1 0 0

0 1 0

⎞

⎠ , R =
(

0 2 1

)

are the matrices of the boundary conditions and the functions fi, ϕi, i = 1, 2, 3, satisfy the conditions
given in Sec. 2.1. In the previous example, these conditions were concretized. In this and subsequent
examples, we do not concretize these conditions, because this is trivial. We can easily verify that the
averaged problem is of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1
dt

= −2y1,

dy2
dt

= 0,

dy3
dt

= y3,

y1(0) = 1, y2(0) = 1, 2y2(1) + y3(1) = 2 + exp(1).

(11)

Its solution is the vector function ẙ(t) = (exp(−2t), 1, exp(t))T . Therefore,

F ′
x =

⎛

⎜
⎜
⎜
⎝

−2 0 0

0 0 0

0 0 1

⎞

⎟
⎟
⎟
⎠

and V (t) =

⎛

⎜
⎜
⎜
⎝

exp(−2t) 0 0

0 1 0

0 0 exp(t)

⎞

⎟
⎟
⎟
⎠

.

Hence RV (1) =
(

0 2 exp(1)

)
, so that

∣
∣
∣
∣
∣
∣

L

RV (1)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0

0 1 0

0 2 exp(1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

= exp(1) �= 0.

By Theorem 1, for each μ ∈ (0, 1/2), there exists an ω0 > 0 such that, in some Cμ([0; 1])-neighborhood
of the vector function ẙ(t), problem (10) has a unique solution xω(t), for ω > ω0 and the following limit
equality holds:

lim
ω→∞

‖xω(t)− ẙ(t)‖Cμ([0;1]) = 0.

3. Consider the following problem for the bounded (on the positive semiaxis) solutions of the system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx1
dt

= 2x1 + 3x2 + f1(x1, x2, t) sin(2ωt) +
√
ωϕ1(x1, t) cos(ωt),

dx2
dt

= 4x1 + x2 + f2(x1, x2, t) cos(3ωt) +
√
ωϕ2(x2, t) sin(7ωt), ω � 1,

x1(0) = 3.

(12)
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86 LEVENSHTAM, SHUBIN

Here M =
(

1 0

)
is the boundary condition matrix and the functions fi, ϕi, i = 1, 2 satisfy the

conditions given in Sec. 2.2.
It is easy to see that the averaged problem is of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dy1
dt

= 2y1 + 3y2,

dy2
dt

= 4y1 + y2,

y1(0) = 3.

Its bounded solution is the vector function

ẙ(t) = (3 exp(−2t),−4 exp(−2t))T .

The matrix

F ′
x =

⎛

⎝
2 3

4 1

⎞

⎠

has two eigenvalues λ1 = 5 and λ2 = −2, so that the exponential dichotomy condition holds. To the
eigenvalue λ2 corresponds the eigenvector e1 = (3,−4)T . Hence

|MS| =
∣
∣
∣
∣

(

1 0

)
⎛

⎝
3

−4

⎞

⎠

∣
∣
∣
∣ = 3 �= 0.

By Theorem 2, for each μ ∈ (0, 1/2), there exists an ω0 > 0 such that, in someCμ([0;∞))-neighborhood
of the vector function ẙ(t), problem (12) has a unique bounded solution xω on the semiaxis t ∈ [0,∞)
for ω > ω0, and the following limit equality holds:

lim
ω→∞

‖xω − ẙ‖Cμ([0;∞)) = 0.

4. Consider another example of the boundary-value problem for bounded solutions on the positive
semiaxis:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= 2x1 + x2 + f1(x1, x2, x3, t) sin(2ωt) +
√
ωϕ1(x1, t) cos(5ωt),

dx2
dt

= 2x2 + f2(x1, x2, x3, t) cos(3ωt) +
√
ωϕ2(x2, t) sin(ωt),

dx3
dt

= −x3 + f3(x1, x2, x3, t) cos(ωt) +
√
ωϕ3(x3, t) sin(7ωt), ω � 1,

x1(0) + 2x2(0) + x3(0) = 1.

(13)

Here M =
(

1 2 1

)
is the boundary condition matrix and the functions fi, ϕi, i = 1, 2, 3 satisfy the

smoothness conditions given in Sec. 2.2.
The averaged problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1
dt

= 2y1 + y2,

dy2
dt

= 2y2,

dy3
dt

= −y3,

y1(0) + 2y2(0) + y3(0) = 1
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AVERAGING METHOD FOR DIFFERENTIAL EQUATIONS 87

has a bounded solution

ẙ(t) = (0, 0, exp(−t))T .

The matrix

F ′
x =

⎛

⎜
⎜
⎜
⎝

2 1 0

0 2 0

0 0 −1

⎞

⎟
⎟
⎟
⎠

has eigenvalues λ1,2 = 2 and λ3 = −1, which are real, so that the exponential dichotomy condition
holds. To the eigenvalue λ3 corresponds the eigenvector e1 = (0, 0, 1)T , so that

|MS| =

∣
∣
∣
∣
∣
∣
∣
∣
∣

(

1 2 1

)

⎛

⎜
⎜
⎜
⎝

0

0

1

⎞

⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 �= 0.

By Theorem 2, for each μ ∈ (0, 1/2), there exists an ω0 > 0 such that, in some Cμ([0;∞))-neigh-
borhood of the vector function ẙ(t), problem (13) has a unique bounded solution xω on the semiaxis
t ∈ [0,∞) for ω > ω0, and the following limit equality holds:

lim
ω→∞

‖xω − ẙ‖Cμ([0;∞)) = 0.

4. FRAGMENTS OF THE PROOFS OF THEOREMS 1 AND 2

4.1. Passage to the Integral Equation

4.1.1. Problem on the closed interval. Let us begin with some well-known auxiliary results concern-
ing the construction of the Green matrices for the boundary-value problem

dx

dt
= A(t)x+ f(t), t ∈ [0, 1], (14)

Lx(0) = l, Rx(1) = r, (15)

where A(t) is a square matrix of order n with continuous elements, f(t) is a continuous n-dimensional
vector function, L and R are rectangular matrices of dimensions n1 × n and n2 × n, respectively, and l
and r are vectors of the corresponding size. All the given problems are assumed real. By the symbol (C)
we denote the following conditions:

(C) : n1 + n2 = n,

∣
∣
∣
∣
∣
∣

L

RV (1)

∣
∣
∣
∣
∣
∣
�= 0.

These conditions are necessary and sufficient for the unique solvability of the boundary-value problem
(14), (15) for any f , l, and r. In the case of a constant matrix A(t) ≡ A, this assertion was proved in [3,

Chap. I, Sec. 11]; in the case of a variable matrix A(t) that proof, essentially, remains the same.

Under conditions (C), consider the Green matrices of problem (14), (15). These constitute the
following triplet of matrix functions: G(t, s) of order n× n, GL(t) and GR(t) of sizes n1 × n and n2 × n
satisfying the conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G(s + 0, s)−G(s− 0, s) = En,

d

dt
G(t, s) = A(t)G(t, s), t, s ∈ [0, 1], t �= s,

LGL(0, s) = 0, RGR(1, s) = 0,
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⎧
⎨

⎩

d

dt
GL(t) = A(t)GL(t), t ∈ [0, 1],

LGL(0) = En1 , RGL(1) = 0;

⎧
⎨

⎩

d

dt
GR(t) = A(t)GR(t), t ∈ [0, 1],

LGR(0) = 0, RGR(1) = En2 .

Problem (14) (15) is uniquely solvable, and its solution is expressed by the formula

x(t) = GL(t)l +

ˆ 1

0
G(t, s)f(s) ds +GR(t)r.

This statement for a constant matrix A(t) ≡ A was proved in [3, Chap. I, Sec. 11]; In the case of a
variable matrix A(t), the proof, essentially, remains valid.

Let us pass to the study of our nonlinear problem (1). Making the Krylov–Bogolyubov change of
variables [2]

x(t) = v(t) +
1√
ω

ˆ ωt

0
ϕ(v(t), t, τ) dτ, (16)

we obtain the problem
⎧
⎪⎪⎨

⎪⎪⎩

dv

dt
= f(v, t, ωt) + χ(v, t, ωt) + r(v, t, ω), ω � 1,

Lv(0) = l, Rv(1) = r − 1√
ω
R

ˆ ω

0
ϕ(v(1), 1, τ) dτ.

(17)

The expression for the vector function χ(v, t, τ) is the same as in Sec. 2.1, while that for the vector
function r(v, t, ω) is fairly awkward. To simplify the latter function, we denote

Kω(t) ≡
1√
ω

ˆ ωt

0
ϕ(v(t), t, τ) dτ, Mω(t) ≡

1√
ω

ˆ ωt

0
ϕ′
v(v(t), t, τ) dτ.

Then

r(v, t, ω) = (E +Mω)
−1f(v(t) +Kω, t, ωt)− f(v(t), t, ωt)

+
√
ω(E +Mω)

−1

[

ϕ(v(t) +Kω, t, ωt)− ϕ(v(t), t, ωt)

− ω−1

ˆ ωt

0
ϕ′
s(v(t), s, τ)|s=t dτ

]

− χ(v(t), t, ωt).

In problem (17), we replace v = ẙ + u, where ẙ is the solution of problem (2), which was mentioned
in Condition 6 of Sec. 2.1, obtaining

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du

dt
−A(t)u = f(ẙ + u, t, ωt) + χ(ẙ + u, t, ωt) + r(ẙ + u, t, ω)− F (ẙ, t)− F ′

u(ẙ, t)u

≡ ψ(u, t, ωt),

Lu(0) = 0, Ru(1) = − 1√
ω
R

ˆ ω

0
ϕ(ẙ(1) + u(1), 1, τ) dτ, ω � 1,

(18)

where A(t) = F ′
u(ẙ, t). In (18), we pass to the equivalent integral equation

u(t) =

ˆ 1

0
G(t, s)ψ(u(s), s, ωs) ds −GR(t)

1√
ω
R

ˆ ω

0
ϕ(ẙ(1) + u(1), 1, τ) dτ.

Here G(t, s), GR(t) are the Green matrices that were mentioned above.
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For γ ∈ (0, 1), we define the operator N : Cγ([0; 1]) × [1;∞] → Cγ([0; 1]) as follows:

N(u, ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(t)−
ˆ 1

0
G(t, s)ψ(u(s), s, ωs) ds

−GR(t)
1√
ω
R

ˆ ω

0
ϕ(ẙ(1) + u(1), 1, τ) dτ if ω ∈ [1;∞);

u(t)−
ˆ 1

0
G(t, s)[F (ẙ + u, s)− F (ẙ, s)− F ′

u(ẙ, s)u] ds if ω = ∞.

4.1.2. Problem on the semiaxis. Let us begin with some well-known auxiliary results.

On the semiaxis J : t ∈ [0,∞), we consider the differential equation

dx

dt
= A(t)x, (19)

where A(t) is a square matrix of order n with elements continuous on J . We say that Eq. (19) is
exponentially dichotomous on J if the space R

n splits into in the direct sum of its subspaces B1

and B2:

R
n = B1 ⊕B2, (20)

and, for positive numbers N1, N2, ν1, and ν2, the following conditions hold:

a) the solution x1(t) of Eq. (19) with initial condition x1(0) ∈ B1 for all t, s ∈ J , t ≥ s satisfies the
estimate

|x1(t)| ≤ N1 exp(−ν1(t− s))|x1(s)|,

b) the solution x2(t) of Eq. (19) with initial condition x2(0) ∈ B2 for all t, s ∈ J , t ≤ s satisfies the
estimate

|x2(t)| ≤ N2 exp(ν2(t− s))|x2(s)|.

Denote by P and Q the projections corresponding to the decomposition (20) and by V (t) is the
matriciant of system (19). Let us define the vector function

G(t, τ) =

{
V (t)PV −1(τ) for t > τ,

−V (t)QV −1(τ) for t < τ,
(21)

which is called the Green function of Eq. (19) on the semiaxis J . For it, the following relations and
important estimates hold (see [12, Chap. IV, Sec. 3]):

dG(t, τ)

dt
= A(t)G(t, τ), t �= τ, (22)

dG(t, τ)

dτ
= −G(t, τ)A(τ), t �= τ, (23)

and also

‖V (t)PV −1(s)‖ ≤ c1 exp(−ν1(t− s)), t ≥ s,

‖V (t)QV −1(s)‖ ≤ c2 exp(−ν2(s− t)), s ≥ t,
(24)

where c1 and c2 are positive constants.
Now consider the inhomogeneous equation

dx

dt
= A(t)x+ f(t), f ∈ C(J). (25)
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The corresponding homogeneous equation (f = 0) is assumed exponentially dichotomous. As is well
known [12, Chap. IV, Theorem 3.2], for any continuous vector function f bounded on J , the vector
function

x0(t) =

ˆ ∞

0
G(t, s)f(s) ds, t ∈ J (26)

is a bounded (on J) solution of Eq. (25). Let M and S be the same matrices as in Sec. 2.2. Any bounded
(on J) solution x(t) of Eq. (25) with boundary condition

Mx(0) = η, (27)

is, obviously, of the form

x(t) = x0(t) + V (t)v0, (28)

where v0 ∈ B1 and Mv0 = η −Mx0(0). This implies

v0 = Sa, (MS)a = η −
ˆ ∞

0
MG(0, s)f(s) ds, a ∈ R

r. (29)

From (26), (28), (29), we obtain the following unique bounded (on J) solution of problem (25), (27):

x(t) =

ˆ ∞

0
[G(t, s) + V (t)S(MS)−1MQV −1(s)]f(s) ds+ V (t)S(MS)−1η

≡
ˆ ∞

0
G1(t, s)f(s) ds+G2(t)η. (30)

The matrix functions G1 and G2 are called (see [3, Chap. I, Sec. 14, where A(t) ≡ A = const]), the
Green functions of problem (25), (27). We can easily verify that G1(t, τ) satisfies relations (22), (23).
Estimates (24) also imply the inequalities

‖G1(t, s)‖ ≤ c1 exp(−ν(t− s)) + c2 exp(−ν1t) exp(−ν2s),

where t, s ∈ J , ν = min(ν1, ν2), and c1, c2 = const > 0.
Let us now turn to problem (4). In it, making the Krylov–Bogolyubov change of variables [2],

x(t) = v(t) +
1√
ω

ˆ ωt

0
ϕ(v(t), t, τ) dτ,

we obtain the problem
⎧
⎨

⎩

dv

dt
= f(v, t, ωt) + χ(v, t, ωt) + r(v, t, ω),

Mv(0) = η, ω � 1.
(31)

Here the expressions for the vector functions χ(v, t, τ) and r(v, t, ω) are of the same form as for these
vector functions in Sec. 4.1.4.1.1.

In problem (31), we replace v = ẙ + u, where ẙ is the solution of problem (5) mentioned above,
obtaining

⎧
⎪⎪⎨

⎪⎪⎩

du

dt
−A(t)u = f(ẙ + u, t, ωt) + χ(ẙ + u, t, ωt) + r(ẙ + u, t, ω)− F (ẙ, t)− F ′

u(ẙ, t)u

≡ ψ(u, t, ωt),

Mu(0) = 0, ω � 1,

(32)

where A(t) = F ′
u(ẙ, t). In (32), we pass to the equivalent integral equation

u(t) =

ˆ ∞

0
G1(t, s)ψ(u(s), s, ωs) ds.

Here G1(t, s) is the Green matrix introduced above.
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For γ ∈ (0, 1), we define the operator N : Cγ([0;∞)) × [1;∞] −→ Cγ([0;∞)) as follows:

N(u, ω) =

⎧
⎪⎪⎨

⎪⎪⎩

u(t)−
ˆ ∞

0
G1(t, s)ψ(u(s), s, ωs) ds if ω ∈ [1,∞);

u(t)−
ˆ ∞

0
G1(t, s)[F (ẙ + u, s)− F (ẙ, s)− F ′

u(ẙ, s)u] ds if ω = ∞.

4.2. Scheme of the Principal Part of the Proof

Theorems 1 and 2 follow, essentially, from the classical implicit-operator theorem if we use the
following statement.

For the operators N defined in Sec. 4.1.4.1.1 and Sec. 4.1.4.1.2, respectively, the following lemma
holds.

Lemma 1. The operator N is continuous and is continuously Fréchet differentiable at the point
(0,∞). Here N(0,∞) = 0, (DuN)(0,∞) = I.

The equalities given in the lemma are obvious. The proof of the continuity of the operator N and that
of the existence and the continuity of its Fréchet differential (DuN) at the point (0,∞) are, essentially,
simple, but cumbersome. Moreover, the techniques used the greater part of these proofs goes back to the
classical theory of the averaging method (in which there are no large rapidly oscillating summands) and,
therefore, are fairly well known. In this connection, we omit the proofs of the continuity of N and (DuN)
and note only a simple technical lemma related to the large summand in problem (4).

Lemma 2. Under the assumptions of Theorem 2, the following asymptotic relations uniform with
respect to (x, t) ∈ Ω× [0,∞) hold:

1√
ω

ˆ ωt

0
r(x, t, τ) dτ = o(ω−1/4), ω → ∞, for r = ϕ,ϕ′

x, ϕ
′′
xx;

1√
ω

ˆ ωt

0
s(x, t, τ) dτ = o(1), ω → ∞, for s = ϕ′

t, ϕ
′′
xt.

Let us now clarify what we mean by the word “essentially” at the beginning of the subsection.
The point is that, on the strength of the implicit-operator theorem, Lemma 1 implies the existence,
relative uniqueness, and asymptotic proximity to zero in the norm of Cγ of the solution uω, ω � 1, of
problem (17), just as in the case of problem (32). After this, the two preceding changes of variables must
also be taken into account. Namely, it is at this step that one must pass (and this is necessary!) from the
spaces Cγ , γ ∈ (0, 1), to the spaces Cμ, μ ∈ (0, 1/2).

Note, in conclusion, that the idea of applying the implicit-operator theorem to the theory of the
averaging method was used earlier in [13], [14].
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