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Abstract—A fluid flow along a semi-infinite plate with small periodic irregularities on the surface
is considered for large Reynolds numbers. The boundary layer has a double-deck structure: a thin
boundary layer (“lower deck”) and a classical Prandtl boundary layer (“upper deck”). The aim of this
paper is to prove the existence and uniqueness of the stationary solution of a Rayleigh-type equation,
which describes oscillations of the vertical velocity component in the classical boundary layer.
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1. INTRODUCTION

In this paper, we continue our study of the Rayleigh-type equation (1.8), which was started in [1];
see also [2]. It is known that the Rayleigh equation (see [3]) plays an important role in fluid mechanics
problems; see [4]. In this paper, this equation is considered on a semi-infinite cylinder (see (1.8), (1.9)),
and it describes oscillations of the vertical velocity component in the classical Prandtl boundary layer
(in the “upper deck” of a boundary layer with a double-deck boundary layer structure, see region II in
Fig. 2) in the problem of an incompressible viscosity fluid flow along a semi-infinite flat plate with small
periodic perturbations on the surface (see Fig. 1) for large Reynolds number Re; for more details, see
below.

In [1], it was proved that the stationary solution of the Rayleigh-type equation (1.8) exists and is
unique for all x > δ and δ > M , where x is the distance from the edge of the plate and M is a constant;
see (2.1). The aim of this paper is to prove that a stationary solution of the Rayleigh-type equation (1.8)
exists and is unique for all x > δ and δ ∈ (0,M ] (i.e., at the edge of the plate).

As will be shown in Section 2, the proof of the existence of the solution in this case is reduced to
proving that the discrete spectrum of a Schrödinger-type operator on the half-space with a potential in
the form of a well of a small depth (see Fig. 3) is empty, and the last statement is proved (see Lemma 1).

We note that the results of this paper (see Theorem 2) together with the results in [1] prove that the
stationary solution of the Rayleigh-type equation (2.2) exists and is unique for all x > δ and δ > 0 (i.e.,
in the entire region under study) and this fact actually means the existence of the double-deck structure
(because all equations describing this structure are solvable).

In this section, we present the main results from [1, 2], which we need for further discussion.
We assume that the plate surface is described by the relation

ys = ε4/3μ
(
x, x/ε

)
, (1.1)
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where ε = 1/
√
Re is a small parameter,

μ(x, ξ + 2π) = μ(x, ξ),
ˆ 2π

0
μ(x, ξ) dξ = 0.

We suppose that the upstream flow is a plane-parallel one with velocity U0 = (1, 0).

Fig. 1.

This problem is described by the system of Navier–Stokes and continuity equations
⎧
⎨

⎩
ε−2/3 ∂U

∂t
+

〈
U,∇

〉
U = −∇p+ ε2ΔU,

〈
∇,U

〉
= 0,

(1.2)

where U = (u, v) is the velocity vector and p is the pressure. The boundary conditions are

U

∣
∣∣
∣ y = ys
x>0

=

⎛

⎝0

0

⎞

⎠ ,
∂u

∂y

∣
∣∣
∣ y=0
x<0

= 0, v

∣
∣∣
∣ y=0
x<0

= 0, U

∣
∣∣
∣
y→±∞

→

⎛

⎝1

0

⎞

⎠ , U

∣
∣∣
∣
x→−∞

→

⎛

⎝1

0

⎞

⎠ . (1.3)

According to the results of [2], the asymptotic solution of problem (1.2), (1.3) has a double-deck
structure, which consists of a thin boundary layer and a classical Prandtl boundary layer; see Fig. 2. The
coefficient ε−2/3 at ∂/∂t in (1.2) is due to the fact that the double-deck structure generates a special
hierarchy of times. The time scale for velocity fluctuations in the thin boundary layer is significantly
smaller than that in the Prandtl boundary layer; see Theorem 1 below.

Fig. 2.

For further discussion, we introduce the following definitions.

Definition 1. For any 2π–periodic smooth the function g(x, ξ) on R× [0, 2π], we define

(i) the mean value by the formula

g(x)
def
=

1

2π

2πˆ

0

g(x, ξ) dξ,
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(ii) the oscillating part by the formula

g̃(x, ξ)
def
= g(x, ξ)− g(x).

Definition 2. For any 2π–periodic smooth the function g̃(x, ξ) on R× [0, 2π] such that g(x, ξ) = 0, we
define the function

G(x, ξ)
def
=

ξˆ
g̃(x, ξ) dξ

so that G(x, ξ) = 0.

We introduce the scale

θ =
y

ε4/3
, τ =

y

ε
, ξ =

x

ε
. (1.4)

As indicated above, it follows from the results of [2] that our asymptotic solution of (1.2), (1.3) has a
double-deck structure. We shall make use of the following notation. The superscript at the function
stands for the number of the deck on which the function is defined (in the sense of Definition 3 below):
I is the thin boundary layer, II is the classical Prandtl boundary layer, and III is the external region; see
Fig. 2.

Definition 3. Let N ∈ Z+ be sufficiently large. Then

(i) a smooth 2π-periodic function decaying as |θ−N |, θ → ∞ is called the boundary function in the
thin boundary layer I;

(ii) a smooth 2π-periodic function decaying as |τ−N |, τ → ∞ is called the boundary function in the
classical boundary layer II.

We suppose that the initial conditions for problem (1.2), (1.3) are

U(x, y) = f ′(τ/
√
x
)
+ ε1/3

(
U I
1(x, ξ, θ) + uII1 (x, ξ, τ)

)
+O

(
ε2/3

)
,

V (x, y) = ε2/3
(
V I
2 (x, ξ, θ) + Ṽ II

2 (x, ξ, τ)
)
+O(ε),

P (x, y) = P0 + ε2/3P̃ II
2 (x, ξ, τ) +O(ε), (1.5)

where the functions U I
1, V I

2 , Ṽ II
2 , P̃ II

2 are boundary layer functions (see Definition 3 above) and
P0 = const.

The main result of [2] (see also [1]) is the following theorem.

Theorem 1. Let x ≥ δ > 0. Then the formal asymptotic solution of problem (1.2), (1.3) has the
form

u(t, x, y) = u0(x, τ) + ε1/3
(
uI1(t, x, ξ, θ) + uII1 (t, x, ξ, τ)

)
+O(ε2/3),

v(t, x, y) = ε2/3
(
ṽI2(t, x, ξ, θ) + ṽII2 (t, x, ξ, τ)

)
+O(ε),

p(t, x, y) = p0 + ε2/3p̃II2 (t, x, ξ, τ) +O(ε), (1.6)

where θ = y/ε4/3, τ = y/ε, ξ = x/ε, p0 is constant, u0 = f ′(τ/
√
x
)
. The the function f(γ) is the

Blasius function; see [5] and Fig. 4.

The functions uI1 and ṽI2 are determined by the relations

uI1 = u∗1 − uII1
∣
∣
τ=0

− θ
∂u0
∂τ

∣
∣
∣∣
τ=0

, ṽI2 = v∗2 − ṽII2
∣
∣
τ=0

,
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where the functions u∗1 and v∗2 describing the flow in the thin boundary layer are the solution of
the boundary-value problem

⎧
⎪⎪⎨

⎪⎪⎩

∂u∗1
∂t

+ u∗1
∂u∗1
∂ξ

+ v∗2
∂u∗1
∂θ

=
∂2u∗1
∂θ2

+
∂p̃II2
∂ξ

∣
∣∣
∣
τ=0

,

∂u∗1
∂ξ

+
∂v∗2
∂θ

= 0,

(1.7)

u∗1
∣∣
θ=μ

= μ
∂u0
∂τ

∣
∣∣
∣
τ=0

, v∗2
∣∣
θ=μ

= 0, u∗1
∣∣
ξ
= u∗1

∣∣
ξ+2π

, v∗2
∣∣
ξ
= v∗2

∣∣
ξ+2π

,

∂u∗1
∂θ

∣
∣∣
∣
θ→∞

→ ∂u0
∂τ

∣
∣∣
∣
τ=0

,
∂u∗1
∂ξ

∣
∣∣
∣
θ→∞

→ 0

with the initial condition u∗1
∣∣
t=0

= U I
1 + uII1

∣∣
τ=0

+ θ
∂u0
∂τ

∣
∣∣
∣
τ=0

.

The the function ṽII2 describing the flow in the classical boundary layer is a solution of the
following Rayleigh-type equation:

ε1/3
∂

∂t
Δ

ξˆ
ṽII2 dξ + u0ΔṽII2 − ṽII2

∂2u0
∂τ2

= 0 (1.8)

ṽII2
∣
∣
τ=0

= lim
θ→∞

ṽ∗2 , lim
τ→∞

ṽII2 = 0, ṽII2
∣
∣
ξ
= ṽII2

∣
∣
ξ+2π

. (1.9)

with the initial condition ṽII2
∣∣
t=0

= Ṽ II
1 .

The function uII1 is a solution of the linearized Prandtl equation
⎧
⎪⎨

⎪⎩

ε−2/3 ∂u
II
1

∂t
+ u0

∂uII1
∂x

+ uII1
∂u0
∂x

+ v∗3
∂uII1
∂τ

+ v∗4
∂uII1
∂τ

− ∂2uII1
∂τ2

= 0,

∂uII1
∂x

+
∂v∗4
∂τ

= 0

(1.10)

with some boundary conditions, but this function plays no significant role if we are interested in
the properties of the flow near the surface.

The pressure p̃II2 is determined by the expression

∂p̃II2
∂ξ

= u0
∂ṽII2
∂τ

− ṽII2
∂u0
∂τ

+ ε1/3
∂

∂t

ξˆ
∂ṽII2
∂τ

dξ. (1.11)

2. EXISTENCE OF THE STATIONARY SOLUTION OF A RAYLEIGH-TYPE EQUATION

In [1] we proved that the stationary solution of the Rayleigh-type equation (1.8), (1.9) exists for
all x > M (x is the distance from the edge of the plate), where

M = max
γ∈[0,∞)

∣
∣
∣∣
f ′′′(γ)

f ′(γ)

∣
∣
∣∣. (2.1)

The aim of this paper is to prove that the stationary solution of the Rayleigh-type equation (1.8) exists
for all x ≥ δ, where δ ∈ (0,M ].

Theorem 2. The stationary solution of the Rayleigh-type equation (1.8), (1.9) exists and is unique
for all x ≥ δ, where δ ∈ (0,M ], and M is defined above; see (2.1).

MATHEMATICAL NOTES Vol. 99 No. 5 2016



640 BORISOV, GAYDUKOV

Proof. We write the stationary equation corresponding to (1.8) in the classical boundary layer vari-
able η = τ/

√
x = y/(ε

√
x). Taking into account that u0 = f ′(τ/

√
x) = f ′(η), we have

⎧
⎪⎨

⎪⎩

f ′(η)

(
1

x

∂2ṽ

∂η2
+

∂2ṽ

∂ξ2

)
− 1

x
ṽf ′′′(η) = 0,

ṽ
∣
∣
η=0

= lim
θ→∞

v∗2 , ṽ
∣
∣
η→∞ → 0, ṽ

∣
∣
ξ
= ṽ

∣
∣
ξ+2π

.

(2.2)

We expand the function ṽ into the Fourier series

ṽ =
∑

k �=0

vk(η)e
ikξ . (2.3)

By substituting (2.3) into (2.2), we obtain the equations for the coefficients vk:

−v′′k + Uvk + xk2vk = 0, k �= 0, k ∈ Z, vk(0) = v0k, vk
∣
∣
η→∞ → 0, (2.4)

where

U(η) = f ′′′(η)/f ′(η), (2.5)

and v0k is a coefficient of the Fourier expansion of the function ṽ∗2
∣∣
θ→∞ (i.e., it is the boundary condition

expansion; see (1.9)).

The potential U(η) is a well of depth M and it has the following properties:

U(0) = 0, U
∣
∣
η→∞ = O

(
|η|−N

)
,

where N is any number; see Fig. 3 and also [6].

Fig. 3. The potential U(η), M ≈ 0.1442.

Let us reduce problem (2.4) to a problem with zero boundary condition at γ = 0. We put

vk = φk + gkv0k,

where gk ∈ C∞[0,∞) is a given function such that

gk
∣
∣
η=0

= 1, gk
∣
∣
η→∞ = O

(
η−N

)
, ∀N ∈ Z+. (2.6)

Then we have
{
(Ĥ + xk2)φk = −v0k(Ĥ + xk2)gk,

φk

∣∣
η=0

= 0, φk

∣∣
η→∞ → 0,

(2.7)
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where Ĥ is the differential expression

Ĥ = − d2

dη2
+ U(η).

It was shown in [1] that if x ≥ δ > M , then problem (2.7) is uniquely solvable. Here we consider the
case δ ∈ (0,M ].

By H we denote the self-adjoint operator in L2(0,+∞) with the differential expression Ĥ subject to
the Dirichlet condition at η = 0. The domain of this operator is

D(H) =
{
u ∈ W 2

2 (0,+∞) : u(0) = 0
}
.

Then problem (2.7) can be rewritten in terms of the above introduced operator

(H + xk2)φk = −v0k(Ĥ + xk2)gk. (2.8)

This equation is uniquely solvable if and only if −xk2 is not in the spectrum of operator H . Since the
potential U is fast decaying at infinity, it follows that the essential spectrum of operator H is [0,+∞).
Since k �= 0, x > 0, the number −xk2 belongs to the spectrum of H only if it is a discrete eigenvalue
of H . Our next lemma asserts the absence of such eigenvalues.

Lemma 1. The discrete spectrum of operator H is empty.

Proof. We argue by contradiction. Let λ0 < 0 be the lowest eigenvalue of operator H and ψ0 be the
associated eigenfunction normalized in L2(0,+∞). Then by the minimax principle we know that

λ0 = inf
u∈W1

2
(0,+∞),

u(0)=0, u �≡0

‖u′‖2L2(0,+∞) + (Uu, u)L2(0,+∞)

‖u‖2L2(0,+∞)

= ‖ψ′
0‖2L2(0,+∞) + (Uψ0, ψ0)L2(0,+∞).

Then the function |ψ0| also minimizes the above infimum and, therefore, it is an eigenfunction associated
with λ0. Thus, we can assume that the function ψ0 is non-negative. We also note that since λ0 < 0, the

function ψ0 decays exponentially at infinity: ψ0(η) = O
(
e−

√
|λ0|η

)
, η → +∞.

Consider the function ψ1 = f ′(η). The properties of Blasius function imply that ψ1 ∈ C2[0,+∞),
ψ1(0) = 0, ψ1(η) > 0, η > 0 and ψ1(η) → 1 as η → +∞ (cf. Fig. 4).

(a) (b)

Fig. 4.

It is straightforward to check that the function ψ1 solves the equation

−ψ′′
1 + Uψ1 = 0, η > 0.

We multiply this equation by ψ0 and integrate twice by parts over (0, R), where R > 0 is a fixed constant:

0 =

R̂

0

ψ0(−ψ′′
1 + Uψ1)dη = λ0

R̂

0

ψ0ψ1dη − ψ0(R)ψ′
1(R) + ψ′

0(R)ψ1(R).
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We pass to the limit as R → +∞ and employ the above described behavior of ψ0, ψ1 at infinity to obtain:

+∞ˆ

0

ψ0ψ1dη = 0.

This identity is impossible since both functions ψ0, ψ1 are non-negative. This completes the proof.

The proven lemma implies the unique solvability of equation (2.8), and therefore, of problem (2.7).
Hence, the stationary solution of the Rayleigh-type equation (1.8) exists and is unique for all x ≥ δ and
for all δ ∈ (0,M ].
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