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Abstract—We obtain exact constants in Jackson-type inequalities for smoothness characteristics
Λk(f), k ∈ N, defined by averaging the kth-order finite differences of functions f ∈ L2. On the basis
of this, for differentiable functions in the classes Lr

2, r ∈ N, we refine the constants in Jackson-type
inequalities containing the kth-order modulus of continuity ωk. For classes of functions defined
by their smoothness characteristics Λk(f) and majorants Φ satisfying a number of conditions, we
calculate the exact values of certain n-widths.
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1. INTRODUCTION

In solving a number of problems dealing with the approximation of functions of a real variable, one
often uses various modifications of the classical smoothness characteristic of a function, its modulus of
continuity [1], [2], because, in many cases, this is motivated by the specific features of the problems under
consideration and leads to new meaningful results (see, for example, [2], [3]). So, to define the effective
smoothness characteristics of functions, the papers of Tregub, Runovskii, Pustovoitov, Abilov, and
others [3]–[8] dealt with various methods for averaging finite differences as well as with methods for their
modification based on the application of smoothing operators, such as the Steklov operator [9]–[13],
instead of the shift operator Th(f, x) := f(x+ h). The subject matter of the present paper is similar and
it involves the use of a specific smoothness characteristic of functions examined earlier in the paper of
Runovskii [4].

Let L2 ≡ L2([0, 2π]) be the space of Lebesgue measurable 2π-periodic functions whose norm is

‖f‖ :=

{
1

π

ˆ 2π

0
|f(x)|2 dx

}1/2

< ∞.

By the symbol Δk
h(f, x) we denote the kth finite difference of a function f ∈ L2 at a point x with step

width h, i.e.,

Δk
h(f, x) :=

k∑
j=0

(−1)k−j

⎛
⎝k

j

⎞
⎠ f(x+ jh).
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On the basis of [4], by the averaged smoothness characteristic of a function f ∈ L2 we shall mean the
quantity

Λk(f, t) :=

{
1

t

ˆ t

0
‖Δk

h(f)‖2 dh
}1/2

, (1.1)

where t > 0. Let us define, as usual, the kth modulus of continuity of a function f ∈ L2 by the equality

ωk(f, t) := sup
|h|≤t

‖Δk
h(f)‖. (1.2)

It follows from formulas (1.1) and (1.2) that, for any t > 0, the following inequality holds:

Λk(f, t) ≤ ωk(f, t). (1.3)

Let us point out a number of properties of the quantity (1.1), assuming that the functions f , f1, f2
are elements of the space L2.

Property 1. The function Λk(f, t) is a continuous function for t > 0.

Property 2. The equality limt→0+0 Λk(f, t) = 0 is valid.

Property 3. The estimate Λk(f, t) ≤ 2k‖f‖ holds for any t > 0.

Property 4. The following estimate holds: Λk(f, nt) ≤ nkΛk(f, t), where n ∈ N and t > 0 are
arbitrary numbers.

Proof. Making the change of variable h = nτ in formula (1.1), we obtain the relation

Λk(f, nt) =

{
1

nt

ˆ nt

0
‖Δk

h(f)‖2 dh
}1/2

=

{
1

t

ˆ t

0
‖Δk

nτ (f)‖2 dτ
}1/2

. (1.4)

Further, let us consider the equality

Δk
nτ (f, x) =

n−1∑
j1=0

· · ·
n−1∑
jk=0

Δk
τ (f, x+ (j1 + · · ·+ jk)τ).

Using this equality and taking into account the periodicity of the function f , we can write

‖Δk
nτ (f)‖ ≤ nk‖Δk

τ (f)‖. (1.5)

From formulas (1.1), (1.4), and (1.5), we obtain property 4.

Property 5. The following inequality holds:

Λk(f1 + f2, t) ≤
√
2 (Λk(f1, t) + Λk(f2, t)).

Property 6. The function Λk(f, t) is almost increasing, i.e., there exists a constant c independent
of t such that, for all 0 < t1 < t2, the inequality Λk(f, t1) ≤ cΛk(f, t2) holds.

Proof. Using the sketch of proof for Theorem 3.1 from the paper of Runovskii [4], we can show that, for
an arbitrary positive number t, the following inequality holds:

ωk(f, t) ≤ cΛk(f, t), (1.6)

where the constant c is independent of f ∈ L2 and t. From formulas (1.3) and (1.6), for 0 < t1 < t2 and
an arbitrary function f ∈ L2, we obtain

Λk(f, t1) ≤ ωk(f, t1) ≤ ωk(f, t2) ≤ cΛk(f, t2),

i.e., property 6 holds.
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224 VAKARCHUK, ZABUTNAYA

2. JACKSON-TYPE INEQUALITIES IN THE CASE OF BEST APPROXIMATION
BY TRIGONOMETRIC POLYNOMIALS IN L2

Let the symbol Lr
2, where r ∈ N, denote the class of functions f ∈ L2 whose (r − 1)th derivatives

are absolutely continuous and whose rth derivatives belong to the space L2. By Tn−1 we denote the
subspace of trigonometric polynomials of degree n− 1. For an arbitrary function f ∈ L2 that has the
Fourier series expansion

f(x) =

∞∑
j=0

λj(aj(f) cos jx+ bj(f) sin jx),

where

λj :=

⎧⎨
⎩

1

2
if j = 0,

1 if j ∈ N,

and the equality is regarded in the sense of convergence in the metric of the space L2, the value of its
best approximation by elements of the subspace Tn−1 is

En−1(f) := inf
Tn−1∈Tn−1

‖f − Tn−1‖ = ‖f − Sn−1(f)‖ =

{ ∞∑
j=n

ρ2j (f)

}1/2

, n ∈ N. (2.1)

Here

Sn−1(f, x) :=
n−1∑
j=0

λj(aj(f) cos jx+ bj(f) sin jx)

is the (n − 1)th partial sum of the Fourier series of the function f and ρ2j (f) := a2j (f) + b2j(f).

Recall that by an inequality of Jackson type we mean an inequality in which the value of the best
approximation of a function by a finite-dimensional subspace is estimated from above by its smoothness
characteristic.

In what follows, the ratio 0/0 will be regarded as zero. Denote

ψj,k(x) :=

{
1

x

ˆ x

0
(1− cos jh)k dh

}1/2

, (2.2)

where j, k ∈ N and x > 0. Obviously,

ψj,k(x) = ψ1,k(jx). (2.3)

Theorem 1. Let 0 < t ≤ 3π/4. Then the following relation holds:

sup
f∈L2

f �≡const

En−1(f)

Λ1(f, t/n)
=

1√
2(1− sinc t)

, (2.4)

where

sinc t :=

⎧⎨
⎩

sin(t)

t
if t �= 0,

1 if t = 0.

Proof. For an arbitrary function f ∈ L2, we have

‖Δ1
h(f)‖2 = 2

∞∑
j=1

ρ2j (f)(1− cos jh).
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BEST POLYNOMIAL APPROXIMATIONS AND SMOOTHNESS CHARACTERISTICS 225

Using this equality and formulas (1.1) and (2.2), we obtain

Λ1(f, τ) =

{
2

∞∑
j=1

ρ2j (f)ψ
2
1,1(jτ)

}1/2

≥
{
2

∞∑
j=n

ρ2j (f)(1− sinc jτ)

}1/2

. (2.5)

Consider the function

(1− sinc τ)0 :=

⎧⎪⎨
⎪⎩
1− sinc τ if 0 < τ ≤ 3π

4
,

1− 2
√
2

3π
if
3π

4
≤ τ < ∞.

From geometric considerations related to the behavior of the function sinc τ , we obtain the inequality

(1− sincaτ)0 ≥ (1− sinc bτ)0, (2.6)

where 0 < τ < ∞, 1 ≤ b < a < ∞ are arbitrary numbers. In view of formulas (2.1) and (2.6), using
inequality (2.5), we can write

Λ1(f, τ) ≥
√

2(1− sincnτ)0 En−1(f).

Hence, for 0 < τ ≤ 3π/4, we have the upper bound

sup
f∈L2

f �≡const

En−1(f)

Λ1(f, τ)
≤ 1√

2(1− sincnτ)
. (2.7)

To obtain a lower bound for the extremal characteristic located on the left-hand side of equality (2.7),
we consider the function f0(x) := cosnx belonging to the space L2. In view of relation (2.5), we have
Λ1(f0, τ) =

√
2(1− sincnτ) ; since En−1(f0) = 1, we have

sup
f∈L2

f �≡const

En−1(f)

Λ1(f, τ)
≥ En−1(f0)

Λ1(f0, τ)
=

1√
2(1− sincnτ)

. (2.8)

Setting τ := t/n, where 0 < t ≤ 3π/4, from inequalities (2.7) and (2.8), we obtain the required
equality (2.4). Theorem 1 is proved.

Theorem 2. Suppose that n, r, k ∈ N and 0 < t ≤ 2π. Then the following equality holds:

sup
f∈Lr

2
f �≡const

nrEn−1(f)

Λk(f (r), t/n)
=

1

2k/2ψ1,k(t)
. (2.9)

Proof. Let f be an arbitrary function from the class Lr
2. Since

‖Δk
h(f

(r))‖2 = 2k
∞∑
j=1

j2rρ2j (f)(1− cos jh)k,

it follows that, for any positive number τ , using formulas (1.1) and (2.2), (2.3), we can write

Λk(f
(r), τ) =

{
2k

τ

ˆ τ

0

∞∑
j=1

j2rρ2j (f)(1− cos jh)k dh

}1/2

≥
{
2k

∞∑
j=n

j2rρ2j (f)ψ
2
1,k(jτ)

}1/2

. (2.10)

Consider the auxiliary function

Fτ (x) := x2rψ2
1,k(xτ) =

x2r−1

τ

ˆ xτ

0
(1− cos v)k dv, (2.11)
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226 VAKARCHUK, ZABUTNAYA

where n ≤ x < ∞. It follows from formula (2.11) that Fτ is an increasing function of x for an arbitrary
fixed value of τ > 0, i.e.,

inf
n≤x<∞

Fτ (x) = Fτ (n). (2.12)

Using formulas (2.1) and (2.10)–(2.12), we can write

Λk(f
(r), τ) ≥

{
2k

∞∑
j=n

Fτ (j)ρ
2
j (f)

}1/2

≥ 2k/2 nr ψ1,k(nτ)En−1(f).

Hence, setting τ := t/n, we obtain the upper bound

sup
f∈Lr

2
f �≡const

nrEn−1(f)

Λk(f (r), t/n)
≤ 1

2k/2ψ1,k(t)
. (2.13)

Let us obtain a lower bound for the extremal characteristic under consideration. To do this, we set
f1(x) := sinnx. For f1 ∈ L2, using relations (2.1) and (2.10) we can write

En−1(f1) = 1, Λk

(
f
(r)
1 ,

t

n

)
= 2k/2nrψ1,k(t).

Therefore,

sup
f∈Lr

2
f �≡const

nrEn−1(f)

Λk(f (r), t/n)
≥ nrEn−1(f1)

Λk(f
(r)
1 , t/n)

=
1

2k/2ψ1,k(t)
. (2.14)

Comparing inequalities (2.13) and (2.14), we obtain the required relation (2.9). Theorem 2 is proved.

It should be noted that limt→0+0 ψ1,k(t) = 0 and, for 0 < t ≤ π, ψ1,k is an increasing function.
Indeed, calculating the first derivative of the function ψ2

1,k and estimating it from below for 0 < t ≤ π, we
obtain

dψ2
1,k

dt
=

d

dt

(
1

t

ˆ t

0
(1− cos v)k dv

)
=

1

t

{
(1− cos t)k − 1

t

ˆ t

0
(1− cos v)k dv

}

>
1

t
{(1 − cos t)k − (1− cos t)k} = 0.

Therefore, 0 < ψ1,k(t1) < ψ1,k(t2) if 0 < t1 < t2 ≤ π.

3. RELATIONSHIP BETWEEN THEOREMS 1 AND 2 AND THE BEHAVIOR
OF THE EXACT CONSTANTS IN JACKSON-TYPE INEQUALITIES

FOR THE ORDINARY MODULUS OF CONTINUITY FOR THE CLASSES Lr
2, r ∈ N

Consider the relationship between the result of Theorem 1 and the behavior of the constants in
Jackson-type inequalities for 2π-periodic functions. To do this, we set

Kn,r(ωk, t) := sup
f∈Lr

2
f �≡const

nrEn−1(f)

ωk(f (r), t/n)
, (3.1)

where k, n ∈ N, r ∈ Z+, f (0) ≡ f , L0
2 ≡ L2, t > 0. For r = 0, we assume Kn(ωk, t) := Kn,0(ωk, t).

Recall that, in the case r = 0, extremal characteristics of the form (3.1) were studied earlier in the papers
of Chernykh, Arestov, Babenko, Vasil’ev, Kozko, and Rozhdestvenskii (see, for example, [14]–[19]).
Thus, Chernykh showed [14] that1

Kn(ω1, t) =
1√
2

for t ≥ π, Kn(ω1, t) >
1√
2

for 0 < t < π,

1Translator’s note. Here and elsewhere, Cm
n stands for the binomial coefficient

(
n
m

)
.
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BEST POLYNOMIAL APPROXIMATIONS AND SMOOTHNESS CHARACTERISTICS 227

Kn(ωk, t) =
1√
Ck
2k

for n > k ≥ 2, 2π ≤ t <
2πn

k
.

As to the behavior of the quantity Kn(ω1, t), Arestov and Chernykh noted [15] that, in the case 0 < t < π,
it is nonincreasing.

At present, the following equality is known:

Kn(ωk, t) =
1√
Ck
2k

for n ∈ N, t ≥ 7

5
π.

Recall that the upper bound for Kn(ωk, t) was established by Vasil’ev [17] and the lower bound was
obtained by Kozko and Rozhdestvenskii [18].

For 0 < t ≤ 3π/4, using inequalities (1.3) and Theorem 1, we derive the upper bound

Kn(ω1, t) ≤
1√

2(1 − sinc t)
. (3.2)

From inequality (1.6), we obtain the lower bound

1

c
√

2(1 − sinc t)
≤ Kn(ω1, t), (3.3)

where the constant c > 0 is independent of t and f ∈ L2. Relations (3.2), (3.3) imply the order-sharp
estimate

Kn(ω1, t) 

1√

2(1 − sinc t)
, (3.4)

where 0 < t ≤ 3π/4, n ∈ N. From our point of view, the order-sharp estimate (3.4) can be regarded as
an extension of the corresponding result from [15] related to the study of the behavior of Kn(ω1, t).

Using inequality (1.3), from Theorem 2, we obtain

En−1(f) ≤
ωk(f

(r), t/n)

2k/2nrψ1,k(t)
,

where f ∈ Lr
2, r, k, n ∈ N, 0 < t ≤ 2π; hence we have the following upper bound for Kn,r(ωk, t) (3.1):

Kn,r(ωk, t) ≤
1

2k/2ψ1,k(t)
. (3.5)

Taking into account inequality (1.6), formula (3.1), and Theorem 2, we can write

1

c2k/2ψ1,k(t)
≤ Kn,r(ωk, t).

Therefore, the following relation holds in the sense of weak equivalence for the extremal characteris-
tic (3.1):

Kn,r(ωk, t) 

1

2k/2ψ1,k(t)
, (3.6)

where n, r, k ∈ N; 0 < t ≤ 2π. In the case n, r, k ∈ N and t = 2π, Chernykh’s result (mentioned above;
see [14]) implies the upper bound

Kn,r(ωk, 2π) ≤
1√
Ck
2k

. (3.7)

Using the formula
(
2 sin

v

2

)2k

= Ck
2k − 2

k∑
j=1

(−1)j+1Ck−j
2k cos jv (3.8)
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228 VAKARCHUK, ZABUTNAYA

and relation (2.2), we can show the validity of the formula

2k/2ψ1,k(mπ) =
√

Ck
2k , m ∈ N.

Using this equality and relation (3.5), we obtain the upper bound for Kn,r(ωk) at the point t = π, i.e.,

Kn,r(ωk, π) ≤
1√
Ck
2k

. (3.9)

Naturally, in the case r ∈ N, the question of whether inequalities (3.7), (3.9) are sharp remains open;
however, the fact (noted above) that, in view of formula (3.6), the function ψ1,k(t) is monotone increasing
on the set 0 < t ≤ π allows us to draw certain conclusions about the behavior of Kn,r(ωk, t) (3.1) for
t ∈ (0, π], for example, that this quantity is monotone decreasing on the point set 0 < t ≤ π at the rate
given by the right-hand side of relation (3.6).

4. JACKSON-TYPE INEQUALITIES FOR THE AVERAGED WEIGHTED SMOOTHNESS
CHARACTERISTIC Λk FOR THE CLASSES Lr

2, r ∈ N

Let

ηj,k,r,p(ϕ, τ) :=

{
jrp

ˆ τ

0
ψp
1,k(jt)ϕ(t) dt

}1/p

. (4.1)

The following theorem can be regarded as an extension of a result of Ligun (see, for example, [20,
Theorem 1]) to the case of the smoothness characteristic (1.1) under consideration in this paper.

Theorem 3. Suppose that n, r, k ∈ N, 0 < p ≤ 2, τ ∈ (0, 2π/n] is an arbitrary number, and ϕ is a
nonnegative summable (on [0, τ ]) function not equivalent to zero. Then the following inequalities
hold:

1

2k/2ηn,k,r,p(ϕ, τ)
≤ sup

f∈Lr
2

f �≡const

En−1(f)

{
´ τ
0 Λp

k(f
(r), t)ϕ(t) dt}1/p

≤ 1

2k/2 infn≤j<∞ ηj,k,r,p(ϕ, τ)
. (4.2)

Proof. Let us use the following version of Minkowski’s inequality given in the monograph of Pinkus [21,
p. 104];

{ˆ τ

0

( ∞∑
j=n

|f̃j(t)|2
)p/2

dt

}1/p

≥
{ ∞∑

j=n

(ˆ τ

0
|f̃j(t)|p dt

)2/p}1/2

.

Setting f̃j := fjϕ
1/p, where j = n, n+ 1, . . . , we obtain

{ˆ τ

0

( ∞∑
j=n

|fj(t)|2
)p/2

ϕ(t)dt

}1/p

≥
{ ∞∑

j=n

(ˆ τ

0
|fj(t)|pϕ(t) dt

)2/p}1/2

. (4.3)

Using formulas (2.10), (4.3), (2.1), and (2.3), for an arbitrary function f ∈ Lr
2, f �≡ const, we can write{ˆ τ

0
Λp
k(f

(r), t)ϕ(t) dt

}1/p

≥
{
2kp/2

ˆ τ

0

( ∞∑
j=n

j2rρ2j(t)ψ
2
j,k(t)

)p/2

ϕ(t) dt

}1/p

≥ 2k/2
{ ∞∑

j=n

(
jrpρpj (f)

ˆ τ

0
ψp
j,k(t)ϕ(t) dt

)2/p}1/2

= 2k/2
{ ∞∑

j=n

ρ2j (f)η
2
j,k,r,p(ϕ, τ)

}1/2

≥ 2k/2En−1(f) inf
n≤j<∞

ηj,k,r,p(ϕ, τ). (4.4)
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Hence we have the upper bound

sup
f∈Lr

2
f �≡const

En−1(f)

{
´ τ
0 Λp

k(f
(r), t)ϕ(t) dt}1/p

≤ 1

2k/2 infn≤j<∞ ηj,k,r,p(ϕ, τ)
. (4.5)

To obtain a lower bound for the extremal characteristic on the left-hand side of equality (4.5), we
consider the function f1(x) := sinnx belonging to the class Lr

2. Using formulas (2.1) and (2.10) for f1,
we obtain

En−1(f1) = 1, Λk(f
r
1 , t) = 2k/2nrψ1,k(nt).

Therefore,

sup
f∈Lr

2
f �≡const

En−1(f)

{
´ τ
0 Λp

k(f
(r), t)ϕ(t) dt}1/p

≥ En−1(f1)

{
´ τ
0 Λp

k(f
(r)
1 , t)ϕ(t) dt}1/p

=
1

2k/2{
´ τ
0 nrpψp

1,k(nt)ϕ(t) dt}1/p
=

1

2k/2ηn,k,r,p(ϕ, τ)
. (4.6)

The double inequality (4.2) follows from relations (4.5), (4.6). This concludes the proof of Theorem 3.

5. COROLLARIES OF THEOREM 3

Let us consider a few corollaries of Theorem 3.

Corollary 1. Suppose that n, r ∈ N, 0 < p ≤ 2, 0 < τ ≤ 3π/(4n), ϕ is a nonnegative summable (on
[0, τ ]) function not equivalent to zero. Then the following equality holds:

sup
f∈Lr

2
f �≡const

nrEn−1(f)

{
´ τ
0 Λp

1(f
(r), t)ϕ(t) dt}1/p

=
1√

2 {
´ τ
0 (1− sincnt)p/2ϕ(t) dt}1/p

. (5.1)

Proof. In view of formula (4.2), to obtain relation (5.1), it suffices to verify the relation

inf
n≤j<∞

ηj,1,r,p(ϕ, τ) = ηn,1,r,p(ϕ, τ) (5.2)

if 0 < τ ≤ 3π/(4n). Using formulas (2.2), (2.3), and (4.1), we can write

ηpj,1,r,p(ϕ, τ) = jrp
ˆ τ

0
(1− sinc jt)p/2ϕ(t) dt. (5.3)

Taking into account the fact that the function sinc y is monotone decreasing on the set (0, 3π/4] and the
relation sinc(3π/4) = sup{sinc y : 3π/4 < y < ∞}, which can be verified by studying the behavior of
the function under consideration, we obtain the inequality sinc y ≥ sincxy, valid for 0 < y ≤ 3π/4 and
1 ≤ x < ∞. Using this inequality, we obtain

xν(1− sincxy)α ≥ (1− sinc y)α, (5.4)

where ν and α are arbitrary positive numbers. Setting x := j/n, where j, n ∈ N and j ≥ n, y := nt
(0 < t ≤ τ ), ν := rp, α := p/2, and using inequality (5.4) we can write

jrp(1− sinc jt)p/2 ≥ nrp(1− sincnt)p/2. (5.5)

Multiplying both sides of inequality (5.5) by the function ϕ(t), then integrating them over the variable t
from 0 to τ , and using formula (5.3), we obtain

ηj,1,r,p(ϕ, τ) ≥ ηn,1,r,p(ϕ, τ)

for any natural number j ≥ n. Thus, relation (5.2) holds, and Corollary 1 is proved.
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Corollary 2. Suppose that n, r, k ∈ N, 1/r ≤ p ≤ 2, τ ∈ (0, 2π/n] is an arbitrary number, and
ϕ ≡ 1. Then the following equality holds:

sup
f∈Lr

2
f �≡const

En−1(f)

{
´ τ
0 Λp

k(f
(r), t) dt}1/p

=
1

2k/2ηn,k,r,p(1, τ)
. (5.6)

Proof. In view of the form of the quantity ηj,k,r,p(1, τ) (see formula (4.1)), to prove the equality

inf
n≤j<∞

ηj,k,r,p(1, τ) = ηn,k,r,p(1, τ), (5.7)

it suffices to show that the function

γ(x) := xrp
ˆ τ

0
ψp
1,k(xt) dt

is nondecreasing for x ≥ n. To do this, let us calculate its first derivative

γ′(x) := rpxrp−1

ˆ τ

0
ψp
1,k(xt) dt+ xrp

ˆ τ

0

∂

∂x
(ψp

1,k(xt)) dt. (5.8)

Using formulas (2.2), (2.3), we can readily verify the equality

∂

∂x
(ψp

1,k(xt)) =
t

x

∂

∂t
(ψp

1,k(xt)) (5.9)

where t, x are nonzero numbers. From formula (5.8), with relation (5.9) taken into account, we see that

γ′(x) := xrp−1

{
rp

ˆ τ

0
ψp
1,k(xt) dt+

ˆ τ

0
t
∂

∂t
(ψp

1,k(xt)) dt

}
. (5.10)

Integrating by parts the second integral on the right-hand side of relation (5.10), we obtain

γ′(x) := xrp−1

{
τψp

1,k(xτ) + (rp− 1)

ˆ τ

0
ψp
1,k(xt) dt

}
. (5.11)

Since, in view of formulas (2.2), (2.3), the function ψ1,k is positive on the set (0,∞) and also p ∈ [1/r, 2],
it follows from relation (5.11) that γ′(x) ≥ 0. Therefore,

inf{γ1/p(x) : n ≤ x < ∞} = γ1/p(n),

which implies that relation (5.7) holds. From Theorem 3 and formula (5.7), we obtain the required
equality (5.6). This concludes the proof of Corollary 2.

Let τ∗ := β/n, where β ∈ (0, 2π] is an arbitrary number, and let ϕ∗(t) := g(nt). Then, for any j ≥ n,
we can write

ηj,k,r,p(ϕ∗, τ∗) =

{
jrp

ˆ β/n

0
ψp
1,k(jt)g(nt) dt

}1/p

= nr−1/p

{(
j

n

)rp ˆ β

0
ψp
1,k(jt/n)g(t) dt

}1/p

.

(5.12)
Hence we have

inf
n≤j<∞

ηj,k,r,p

(
ϕ∗,

β

n

)
≥ nr−1/p inf

1≤x<∞
xrp

ˆ β

0
ψp
1,k(xt)g(t) dt. (5.13)

Using formulas (5.12), (5.13), and Theorem 3, we obtain the following corollary.

Corollary 3. Suppose that n, r, k ∈ N, 0 < p ≤ 2, β ∈ (0, 2π] is an arbitrary number and g is a
nonnegative summable (on [0, β]) function not equivalent to zero. Then the following inequalities
hold:

1

2k/2{μk,r,p(β, g, 1)}1/p
≤ sup

f∈Lr
2

f �≡const

nrEn−1(f)

{
´ β
0 Λp

k(f
(r), t/n)g(t) dt}1/p

≤ 1

2k/2{inf1≤x<∞ μk,r,p(β, g, x)}1/p
,
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where

μk,r,p(β, g, x) := xrp
ˆ β

0
ψp
1,k(xt)g(t) dt. (5.14)

If the function g satisfies the condition

inf
1≤x<∞

μk,r,p(β, g, x) = μk,r,p(β, g, 1), (5.15)

then the following relation holds:

sup
f∈Lr

2
f �≡const

nrEn−1(f)

{
´ β
0 Λp

k(f
(r), t/n)g(t) dt}1/p

=
1

2k/2{μk,r,p(β, g, 1)}1/p
. (5.16)

Further, let us find in what cases condition (5.15) holds.

Corollary 4. Suppose that n, r, k ∈ N, 0 < p ≤ 2, β ∈ (0, 2π], g(t) := trp−1g1(t), where g1 is a
nonincreasing nonnegative summable (on [0, β]) function not equivalent to zero. Then, for the
function g, condition (5.15) holds and equality (5.16) is valid.

Proof. To obtain the required result, we shall need the auxiliary function

g2(t) :=

{
g1(t) if 0 ≤ t ≤ β,

g1(β) if β ≤ t < ∞.

For any values of x ∈ [1,∞), in view of formula (5.14), we have

μk,r,p(β, t
rp−1g1(t), x) = xrp

ˆ β

0
ψp
1,k(xt)t

rp−1g1(t) dt =

ˆ βx

0
ψp
1,k(t)t

rp−1g2

(
t

x

)
dt

≥
ˆ βx

0
ψp
1,k(t)t

rp−1g2(t) dt ≥
ˆ β

0
ψp
1,k(t)t

rp−1g1(t) dt = μk,r,p(β, t
rp−1g1(t), 1),

i.e., condition (5.15) holds, and hence the following relation is valid:

sup
f∈Lr

2
f �≡const

nrEn−1(f)

{
´ β
0 Λp

k(f
(r), t/n)trp−1g1(t) dt}1/p

=
1

2k/2{μk,r,p(β, trp−1g1(t), 1)}1/p
.

Corollary 4 is proved.

Corollary 5. Suppose that n, k ∈ N, β ∈ (0, 2π], g is a function differentiable at each point of the
interval (0, β), nonnegative, and summable on [0, β], and not equivalent to zero, satisfying the
condition

(r̃ p̃− 1)g(t) ≥ g′(t)t (5.17)

for some r̃ ∈ N and 0 < p̃ ≤ 2 and for any t ∈ (0, β) such that limt→0+0 g(t)t = 0. Then, for the
given values of r̃, p̃, and the function g relation (5.15) holds, and hence also so does relation (5.16).

Proof. Let us consider the function

F (x) := μk,r̃,p̃(β, g, x), where 1 ≤ x < ∞,

and, taking into account formula (5.14), study the behavior of its first derivative

dF

dx
= r̃ p̃xr̃p̃−1

ˆ β

0
ψp̃
1,k(xt)g(t) dt + xr̃ p̃

ˆ β

0
g(t)

∂

∂x
(ψp̃

1,k(xt)) dt. (5.18)

Using formula (5.9), from relation (5.18) we obtain

dF

dx
= xr̃ p̃−1

{
r̃ p̃

ˆ β

0
ψp̃
1,k(xt)g(t) dt +

ˆ β

0
g(t)t

∂

∂t
(ψp̃

1,k(xt)) dt

}
. (5.19)
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In view of formulas (2.2), (2.3), we have limt→0+0 ψ1,k(xt) = 0. It follows from the conditions for
Corollary 5 that limt→0+0 g(t)t = 0; hence, obviously, we have

lim
t→0+0

g(t)tψp̃
1,k(xt) = 0.

In view of this relation, after integrating by parts the second integral on the right-hand side of (5.19), we
obtain

dF

dx
= xr̃ p̃−1

{
ψp̃
1,k(βx)g(β)β +

ˆ β

0
ψp̃
1,k(xt)((r̃ p̃− 1)g(t) − g′(t)t) dt

}
.

It follows from inequality (5.17) and the fact that the functions ψ1,k and g are nonnegative that
dF/dx ≥ 0, i.e., the function F is nondecreasing on the set 1 ≤ x < ∞ for the values of r̃, p̃, and g
indicated above. This implies that condition (5.15) holds and formula (5.16) is valid. Corollary 5 is
proved.

Let us show how this result can be used. Let 0 < β ≤ π/n. For the weight function, we consider
the function g∗(t) := sin(nt/2) + 0.5 sin nt, used by Chernykh (see, for example, [14]). Set r, k ∈ N,
2/r ≤ p ≤ 2, and l(x) := sincx− cos x, where 0 < x ≤ π. It is easy to show that, for any x ∈ [0, π], the
inequality l(x) ≥ 0 holds. Then, for an arbitrary value of t ∈ [0, β], we can write

(rp− 1)g∗(t)− g′∗(t)t = (rp− 1)

(
sin

nt

2
+

1

2
sinnt

)
− nt

2

(
cos

nt

2
+ cosnt

)

≥ nt

2

(
l

(
nt

2

)
+ l(nt)

)
≥ 0.

Since the function g∗ satisfies condition (5.17) for r ∈ N and 2/r ≤ p ≤ 2 and for any t ∈ (0, β), where
0 < β ≤ π/n, n ∈ N, it follows from formula (5.16) that

sup
f∈Lr

2
f �≡const

nrEn−1(f)

{
´ β
0 Λp

k(f
(r), t/n)(sin(nt/2) + (1/2) sin nt) dt}1/p

=
1

2k/2{
´ β
0 ψp

1,k(t)(sin(nt/2) + (1/2) sin nt) dt}1/p
.

6. EXACT VALUES OF THE n-WIDTHS OF THE CLASSES
OF FUNCTIONS W (Λ1,Φ) FROM L2

Before stating other results, let us recall some necessary notions and definitions. Let B be the unit ball
in L2, let M be a convex centrally symmetric set from L2, let Ln ⊂ L2 be an n-dimensional subspace,
let Ln ⊂ L2 be a subspace of codimension n, let V : L2 → Ln be a continuous linear operator, and let
V ⊥ : L2 → Ln be a continuous linear projection operator. The quantities

bn(M;L2) = sup{sup{ε > 0 : εB ∩ Ln+1 ⊂ M} : Ln+1 ⊂ L2},
dn(M;L2) = inf

{
sup{inf{‖f − ϕ‖ : ϕ ∈ Ln} : f ∈ M} : Ln ⊂ L2

}
,

δn(M;L2) = inf
{
inf{sup{‖f − V f‖ : f ∈ M} : V L2 ⊂ Ln} : Ln ⊂ L2

}
,

dn(M;L2) = inf{sup{‖f‖ : f ∈ M∩ Ln} : Ln ⊂ L2},
Πn(M;L2) = inf

{
inf{sup{‖f − V ⊥f‖ : f ∈ M} : V ⊥L2 ⊂ Ln} : Ln ⊂ L2

}
are called, respectively, the Bernstein, Kolmogorov, linear, Gelfand, and projection n-widths of M
in L2. Since L2 is a Hilbert space, it follows that the following relations between these n-widths hold:

bn(M;L2) ≤ dn(M;L2) ≤ dn(M;L2) = δn(M;L2) = Πn(M;L2). (6.1)

Recall that, in the space L2, the exact values of the n-widths of the classes of differentiable
2π-periodic functions defined by their moduli of continuity and other smoothness characteristics
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were calculated in the papers of Taikov [22], Shalaev [23], Esmaganbetov [24], and others (see, for
example, [6]–[8], [11]–[13]).

Using the definition of the smoothness characteristic (1.1), we consider the following class of
functions. Let Φ(τ), where 0 ≤ τ ≤ 2π, be a continuous increasing function such that Φ(0) = 0. In
what follows, it will be called a majorant. By the symbol W (Λ1,Φ) we denote the class of functions
f ∈ L2 for which the inequality Λ1(f, τ) ≤ Φ(τ) holds for any 0 < τ ≤ 2π.

Let t∗ denote the value of the argument of the function sinc τ for which it attains its minimum on the
set (0, 2π]. Obviously, t∗ is the least positive root of the equation τ = tan τ (4.49 < t∗ < 4.51) (see, for
example, [7], [13]).

Set [7], [8]

(1− sinc τ)∗ :=

{
1− sinc τ if 0 ≤ τ ≤ t∗,

1− sinc t∗ if t∗ ≤ τ < ∞.

For a set M ⊂ L2, we denote En−1(M) := sup{En−1(f) : f ∈ M}. The following theorem is valid.

Theorem 4. Suppose that, for all numbers 0 < τ ≤ 2π and n ∈ N, the majorant Φ satisfies the
condition

Φ(τ)

Φ(π/(2n))
≥

{
π(1− sincnτ)∗

π − 2

}1/2

. (6.2)

Then the following relations hold:

q2n−1(W (Λ1,Φ);L2) = q2n(W (Λ1,Φ);L2) = En−1(W (Λ1,Φ)) =

√
π

2(π − 2)
Φ

(
π

2n

)
, (6.3)

where qn( · ) is any one of the n-widths indicated above and the set of majorants Φ satisfying
inequality (6.2), is nonempty.

Proof. Using relation (2.4) in which we put t := π/2, we obtain the following upper bound for the value
of the best polynomial approximation of an arbitrary function f ∈ L2:

En−1(f) ≤
√

π

2(π − 2)
Λ1

(
f,

π

2n

)
.

In view of the definition of the class of functions W (Λ1,Φ), using the last inequality and formula (6.1),
we obtain the upper bounds

q2n(W (Λ1,Φ);L2) ≤ q2n−1(W (Λ1,Φ);L2) ≤ d2n−1(W (Λ1,Φ);L2)

≤ En−1(W (Λ1,Φ)) ≤
√

π

2(π − 2)
Φ

(
π

2n

)
. (6.4)

By relation (6.1), in order to obtain lower bounds for the n-widths of the class W (Λ1,Φ), it suffices to
find a lower bound for its Bernstein n-width. To do this, in the subspace of trigonometric polynomials Tn
of degree n, we consider the ball

B2n+1 :=

{
Tn ∈ Tn : ‖Tn‖ ≤

√
π

2(π − 2)
Φ

(
π

2n

)}
.

Using formula (2.5), for an arbitrary polynomial Tn ∈ Tn, we obtain

Λ1(Tn, τ) =

{
2

∞∑
j=1

ρ2j(Tn)(1− sinc jτ)

}1/2

≤
{
2(1− sincnτ)∗

}1/2

‖Tn‖. (6.5)

Using inequalities (6.5) and conditions (6.2), for an arbitrary polynomial Tn ∈ B2n+1, for any τ ∈ (0, 2π],
we can write

Λ1(Tn, τ) ≤
{
π(1− sincnτ)∗

π − 2

}1/2

Φ

(
π

2n

)
≤ Φ(τ).
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Thus, the inclusion B2n+1 ⊂ W (Λ1,Φ) holds. Using the definition of the Bernstein n-width and
relation (6.1), we obtain

q2n(W (Λ1,Φ);L2) ≥ b2n(W (Λ1,Φ);L2) ≥ b2n(B2n+1;L2) ≥
√

π

2(π − 2)
Φ

(
π

2n

)
. (6.6)

The required equalities (6.3) are derived by comparing the upper bounds (6.4) with the lower
bounds (6.6).

Let us show that the set of majorants satisfying condition (6.2), is nonempty. To do this, we consider,
for example, the function Φ∗(τ) = τα/2 and specify a value of the constant α for which inequality (6.2)
will hold for Φ∗. Substituting into formula (6.2) the value of Φ∗ instead of Φ, we obtain the inequality

(τn)α ≥ π1+α

2α(π − 2)
(1− sincnτ)∗, (6.7)

where τ ∈ (0, 2π]. In the authors’ paper [25], it was shown in the proof of the main theorem that in-
equality (6.7) holds for α := 2/(π − 2). Therefore, the function Φ∗(τ) = τ1/(π−2) satisfies relation (6.2).
Theorem 4 is proved.

7. EXACT VALUES OF THE n-WIDTHS OF THE CLASSES
OF FUNCTIONS W r(Λk,Φ), r, k ∈ N, IN L2

Let r, k ∈ N, and let Φ be an arbitrary majorant. By the symbol W r(Λk,Φ) we denote the class of
functions f ∈ Lr

2 whose rth derivatives satisfy the condition Λk(f
(r), τ) ≤ Φ(τ), where 0 < τ ≤ 2π.

Theorem 5. Suppose that n, k, r ∈ N, the function ψ1,k is defined by formulas (2.2), (2.3), and
qn( · ) is any one of the n-widths considered in Sec. 6. If, for an arbitrary 0 < τ ≤ 2π and n ∈ N,
the majorant Φ satisfies the condition

Φ(τ)

Φ(π/n)
≥

√
2k

Ck
2k

ψ1,k(nτ), (7.1)

then the following relations hold:

q2n−1(W
r(Λk,Φ);L2) = q2n(W

r(Λk,Φ);L2) = En−1(W
r(Λk,Φ)) =

1√
Ck
2kn

r
Φ

(
π

n

)
. (7.2)

Here the set of majorants satisfying inequality (7.1), is nonempty.

Proof. For an arbitrary function f ∈ Lr
2 and for t := π, using formula (2.9), we can write

En−1(f) ≤
1

nr2k/2ψ1,k(π)
Λk

(
f (r),

π

n

)
=

1√
Ck
2kn

r
Λk

(
f (r),

π

n

)
.

Using the definition of the class W r(Λk,Φ) and formula (6.1), we obtain the upper bounds

q2n(W
r(Λk,Φ);L2) ≤ q2n−1(W

r(Λk,Φ);L2) ≤ d2n−1(W
r(Λk,Φ);L2)

≤ En−1(W
r(Λk,Φ)) ≤

1√
Ck
2kn

r
Φ

(
π

n

)
. (7.3)

To derive the lower bounds for the same n-widths of the class W r(Λk,Φ), it suffices, by virtue of
formula (6.1), to find the lower bound for its Bernstein n-width. To do this, in the space Tn, consider
the ball

B
∗
2n+1 :=

{
Tn ∈ Tn : ‖Tn‖ ≤ 1√

Ck
2kn

r
Φ

(
π

n

)}
.
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Let Tn be an arbitrary polynomial belonging to Tn. Using formulas (2.10), (2.11), we obtain

Λk(T
(r)
n , τ) =

{
2k

n∑
j=1

j2rρ2j(f)ψ
2
1,k(jτ)

}1/2

=

{
2k

n∑
j=1

ρ2j(f)Fτ (j)

}1/2

,

where the function Fτ is defined by formula (2.11). Taking into account the fact that Fτ is an increasing
function of its argument, we can write

Λk(T
(r)
n , τ) ≤ 2k/2F 1/2

τ (n)‖Tn‖ = 2k/2nrψ1,k(nτ)‖Tn‖. (7.4)

For an arbitrary polynomial Tn ∈ B
∗
2n+1, from formula (7.4) and condition (7.1), we obtain the inequality

Λk(T
(r)
n , τ) ≤ 2k/2√

Ck
2k

ψ1,k(nτ)Φ

(
π

n

)
≤ Φ(τ),

where 0 < τ ≤ 2π. Therefore, the ball B∗
2n+1 belongs to the class W r(Λk,Φ). Using relation (6.1) and

the definition of the Bernstein n-width, we obtain the lower bounds

q2n(W
r(Λk,Φ);L2) ≥ b2n(W

r(Λk,Φ);L2) ≥ b2n(B
∗
2n+1;L2) ≥

1√
Ck
2kn

r
Φ

(
π

n

)
. (7.5)

Comparing inequalities (7.3) and (7.5), we obtain the required equalities (7.2).
Further, let us show that the set of majorants satisfying condition (7.1), is nonempty. To do this,

consider, for example, the function Φ̃(τ) := τβ/2, where

β :=
22k

Ck
2k

− 1. (7.6)

It is known that, for a fixed n and k ≤ [n/2] (where [a] is the integer part of a number a ∈ R), the
quantity Ck

n increases and, for k ≥ [n/2], decreases and 2n =
∑n

j=0C
j
n. Setting n = 2k and using this

formula from combinatorics, in view of (7.6), we can write

β =
2k∑
j=0

Cj
2k

Ck
2k

− 1 = 2
k−1∑
j=0

Cj
2k

Ck
2k

< 2k,

i.e.,

0 < β < 2k, (7.7)

In view of formulas (2.2), (2.3), condition (7.1) for the function Φ̃ takes the following form:

(nτ)β+1 ≥ πβ 2k

Ck
2k

ˆ nτ

0
(1− cos h)k dh.

Setting t := nτ , we obtain the inequality

tβ+1 ≥ πβ 2k

Ck
2k

ˆ t

0
(1− cos h)k dh, (7.8)

where 0 ≤ t < ∞. Let us prove that relation (7.8) holds; to do this, we introduce the auxiliary function

H(t) := tβ+1 − πβ

Ck
2k

ˆ t

0

(
2 sin

h

2

)2k

dh. (7.9)

As t → 0 + 0, from formula (7.9), we obtain

H(t) := tβ+1

(
1− πβ

Ck
2k(2k + 1)

t2k−β

)
. (7.10)
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In view of inequality (7.7), it follows from relation (7.10) that, in an infinitely small neighborhood of zero
(0, ε), the function H takes positive values. Let us show that, on the whole interval (0,∞), it will be
function of constant sign.

Let 0 ≤ t ≤ π. Arguing by contradiction, we assume that there exists a point ξ ∈ (0, π) at which the
function H changes sign. Since, in view of formulas (3.8), (7.6), and (7.9), we have H(0) = H(π) = 0,
it follows that, by Rolle’s theorem, the first derivative

H ′(t) = (β + 1)tβ − πβ

Ck
2k

(
2 sin

t

2

)2k

must have at least two different zeros on the interval (0, π). In view of formulas (7.6), we can write

H ′(t) =
22k

Ck
2k

πβ

{(
t

π

)β

−
(
sin

t

2

)2k}
=

22k

Ck
2k

πβG(t).

Obviously, the function

G(t) :=

(
t

π

)β

−
(
sin

t

2

)2k

vanishes on the interval (0, π) at the same points as the derivative H ′. It is readily verified that this also
applies to the functions

G∗(t) :=

(
t

π

)β/(2k)

− sin
t

2
,

i.e., G∗ must have at least two different zeros on the interval (0, π). Since G∗(0) = G∗(π) = 0, it follows
that, by Rolle’s theorem, the first derivative

G′
∗(t) =

β

2kπβ/(2k)
tβ/(2k)−1 − 1

2
cos

t

2
(7.11)

must vanish at at least three different points on (0, π). However, in view of formulas (7.7) and (7.11), G′
∗

is the difference of a convex (downward) monotone decreasing function and a monotone decreasing
convex (upward) function. It follows from geometric considerations that, on the interval (0, π), the
function G∗ has at most two different zeros. The resulting contradiction proves that, for any t ∈ (0, π),
the function H(t) takes positive values.

Now let π ≤ t ≤ 2π. It follows from formula (7.11) that, on the closed interval [π, 2π], the derivative
G′

∗(t) is positive. Hence, for π ≤ t ≤ 2π, the function G∗ is monotone increasing. Hence, in view of the
equality G∗(π) = 0, we have

G∗(t) > 0 if t ∈ (π, 2π].

It follows from the above that the derivative H ′ will also be nonnegative on the set [π, 2π], i.e., H is a
nondecreasing function. Using the equality H(π) = 0, we obtain the inequality H(t) ≥ 0, which is valid
for any t ∈ [π, 2π].

Further, let 2π ≤ t < ∞. Taking into account the form of the derivative H ′, we can conclude that, on
this set, it takes only positive values, i.e., H(t) will be a monotone increasing function for 2π ≤ t < ∞.
Taking into account relation (3.8), from formula (7.9) we obtain

H(2π) := (2π)β+1 − πβ

Ck
2k

ˆ 2π

0

(
Ck
2k − 2

k∑
j=1

(−1)j+1Ck−j
2k cos jh

)
dh = 2πβ+1(2β − 1) > 0,

i.e., H(t) > 0 for any t ∈ [2π,∞). Summarizing the obtained results, we see that

H(t) ≥ 0 for 0 ≤ t < ∞,

which implies that condition (7.1) for the majorant Φ̃ holds. Theorem 5 is proved.
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8. EXACT VALUES OF THE n-WIDTHS OF THE CLASSES
OF FUNCTIONS W̃ r

p (Λ1,Φ), r ∈ N, 0 < p ≤ 2, FROM L2

Let the symbol W̃ r
p (Λ1,Φ), where r ∈ N, 0 < p ≤ 2, and Φ is a majorant, denote the class of functions

f ∈ Lr
2 whose rth derivatives f (r) satisfy the conditionˆ τ

0
Λp
1(f

(r), t) dt ≤ Φp(τ) for any 0 < τ ≤ 2π.

Theorem 6. Let r ∈ N; 1/r ≤ p ≤ 2; qn( · ) be any n-width considered in Sec. 6. If the majorant Φ
satisfies the condition

Φp(τ)

Φp(π/n)
≥

´ nτ
0 (1− sinc t)p/2 dt´ π
0 (1− sinc t)p/2 dt

(8.1)

for all values of τ ∈ (0, 2π] and n ∈ N, then the following equalities hold:

q2n(W̃
r
p (Λ1,Φ);L2) = q2n−1(W̃

r
p (Λ1,Φ);L2) = En−1(W̃

r
p (Λ1,Φ))

=
n1/p−r

√
2

{ˆ π

0
(1− sinc t)p/2 dt

}−1/p

Φ

(
π

n

)
. (8.2)

Here the set of majorants Φ satisfying inequality (8.1), is nonempty.

Proof. Setting τ := π/n in formula (5.6) and using relations (4.1) and (2.2), (2.3), for an arbitrary
function f ∈ Lr

2, we obtain the following upper bounds for the value of its best polynomial approximation:

En−1(f) ≤
n1/p−r

√
2

{ˆ π

0
(1− sinc t)p/2 dt

}−1/p{ˆ π/n

0
Λp
1(f

(r), t) dt

}1/p

.

By the definition of the class W̃ r(Λ1,Φ) and formula (6.1), we then have

q2n(W̃
r
p (Λ1,Φ);L2) ≤ q2n−1(W̃

r
p (Λ1,Φ);L2) ≤ En−1(W̃

r
p (Λ1,Φ))

≤ n1/p−r

√
2

{ˆ π

0
(1− sinc t)p/2 dt

}−1/p

Φ

(
π

n

)
. (8.3)

To obtain lower bounds for the same n-widths in the subspace of trigonometric polynomials Tn, we
consider the ball

B̃2n+1 :=

{
Tn ∈ Tn : ‖Tn‖ ≤ n1/p−r

√
2

(ˆ π

0
(1− sinc t)p/2 dt

)−1/p

Φ

(
π

n

)}
;

let us show the validity of the inclusion B̃2n+1 ⊂ W̃ r
p (Λ1,Φ). Using formula (7.4), for an arbitrary

polynomial Tn ∈ Tn and for any τ ∈ (0, 2π], we obtainˆ τ

0
Λp
1(T

(r)
n , t) dt ≤ 2p/2nrp

ˆ τ

0
(1− sincnt)p/2 dt‖Tn‖p.

Then, for an arbitrary polynomial Tn ∈ B̃2n+1, using conditions (8.1), we can write
ˆ τ

0
Λp
1(T

(r)
n , t) dt ≤

´ nτ
0 (1− sinc t)p/2 dt´ π
0 (1 − sinc t)p/2 dt

Φp

(
π

n

)
≤ Φp(τ),

where 0 < τ ≤ 2π. Therefore, the ball B̃2n+1 belongs to the class W̃ r
p (Λ1,Φ). Using formula (6.1)

and the definition of the Bernstein n-width, we obtain the following lower bounds for the extremal
characteristics (under consideration) of the class W̃ r

p (Λ1,Φ):

q2n(W̃
r
p (Λ1,Φ);L2) ≥ b2n(W̃

r
p (Λ1,Φ);L2) ≥ b2n(B̃2n+1;L2)
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≥ n1/p−r

√
2

{ˆ π

0
(1− sinc t)p/2 dt

}−1/p

Φ

(
π

n

)
. (8.4)

Comparing the upper bounds (8.3) with the lower bounds (8.4), we obtain the required equalities (8.2).
Further, let us show that the set of majorants satisfying condition (8.1), is nonempty. To do this, let

us consider, for example, the function Φ̃(τ) := τγ/p, where

γ :=
π´ π

0 (1− sinc t)p/2 dt
. (8.5)

For it, condition (8.1) takes the following form:(
τn

π

)γ

≥
´ nτ
0 (1− sinc t)p/2 dt´ π
0 (1− sinc t)p/2 dt

.

Setting v := τn, where 0 ≤ v < ∞, and using formula (8.5), we obtain the inequality

vγ ≥ γπγ−1

ˆ v

0
(1− sinc t)p/2 dt, (8.6)

which we must prove. As a preliminary let us calculate upper and lower bounds for γ. To derive an upper
bound, we need the inequality

1− sinc t >

(
t

π

)2

, where t ∈ (0, π).

To establish this inequality, we set

θ(t) := 1− sinc t−
(
t

π

)2

=
t− sin t− t3/π2

t
=:

θ1(t)

t
.

As t → 0 + 0, we have

θ1(t) = t3
(
1

3!
− 1

π2
+O(t2)

)
,

i.e., θ1 is a positive function in an infinitely small neighborhood on the right of zero. Let us show that
θ1 is a function of constant sign on the interval (0, π). To do this, arguing by contradiction, we assume
that, on the interval (0, π), there exists a point at which θ1 changes sign. Since θ1(0) = θ1(π) = 0, it
follows that, by Rolle’s theorem, the first derivative

θ′1(t) = 1− cos t− 3t2

π2

must have at least two different zeros on (0, π). Taking into account the equality θ′1(0) = 0 and using a
similar considerations, we see that the second derivative

θ′′1(t) = sin t− 6t

π2

must also have at least two different zeros on the interval (0, π). However, from geometric considera-
tions, it is obvious that θ′′1 has only one zero on (0, π). The resulting contradiction proves the validity of
the desired inequality, using which, together with formula (8.5), we obtain

γ <
π´ π

0 (t/π)
p dt

= 1 + p. (8.7)

It follows from geometric considerations that, for any t ∈ (0, π), the inequality sinc t > 1− t/π holds. In
this connection, from relation (8.5), we obtain

γ >
π´ π

0 (t/π)
p/2 dt

= 1 +
p

2
. (8.8)
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Taking into account formula (8.6), let us consider the auxiliary function

Q(v) := vγ − γπγ−1

ˆ v

0
(1− sinc t)p/2 dt (8.9)

and show that it is nonnegative on the set 0 ≤ v < ∞. The arguments are carried out in three stages,
depending on the values of the variable v:

a) 0 ≤ v ≤ π;

b) π ≤ v ≤ 2π;

c) 2π ≤ v < ∞.

a) Let 0 ≤ v ≤ π. For 0 ≤ t ≤ π, the inequality sin t ≥ t− t3/6 holds; hence, from relation (8.9), we
obtain

Q(v) ≥ vγ
(
1− γπγ−1

6p/2(1 + p)
vp+1−γ

)
. (8.10)

It follows from formulas (8.7) and (8.10) that, as v → 0+ 0, the functionQ takes only positive values. Let
us show that Q is a function of constant sign on the interval (0, π). To do this, we argue by contradiction,
assuming that there exists a point ξ ∈ (0, π) such that the function Q changes sign as its argument v
passes through it. Using formula (8.5), from relation (8.9), we obtain Q(0) = Q(π) = 0. Hence, in view
of Rolle’s theorem, we see that the first derivative

Q′(v) = γπγ−1

((
v

π

)γ−1

− (1− sinc v)p/2
)

(8.11)

must have at least two different zeros on the interval (0, π). It follows from formula (8.11) that the
function

Q∗(v) :=

(
v

π

)(γ−1)2/p

− 1 + sinc v (8.12)

must have a similar number of different zeros at of the same points on (0, π). Using formula (8.12), we
obtain Q∗(0) = Q∗(π) = 0. Hence the function Q∗ must have at least four different zeros on the closed
interval [0, π]. Taking into account the expression

Q∗(v) =
Q̃∗(v)

v
, (8.13)

where

Q̃∗(v) := π(1−γ)2/pv1+(γ−1)2/p − v + sin v, (8.14)

we see that, in view of expression (8.14), the function Q̃∗ must also have at least four different zeros on
the closed interval [0, π]. Using Rolle’s theorem, we see that the first derivative

Q̃′
∗(v) = π(1−γ)2/p

(
1 +

2

p
(γ − 1)

)
v(γ−1)2/p − 1 + cos v, (8.15)

must vanish at at least three different points on the interval (0, π). Since Q̃′
∗(0) = 0, using similar

considerations, we see that the second derivative

Q̃′′
∗(v) = π(1−γ)2/p

(
1 +

2

p
(γ − 1)

)
(γ − 1)

2

p
v(γ−1)2/p−1 − sin v (8.16)

must have at least three different zeros on (0, π). Taking into account inequality (8.8), from rela-
tion (8.16), we obtain Q̃′′

∗(0) = 0. Hence the third derivative

Q̃′′′
∗ (v) = π(1−γ)2/p

(
1 +

2

p
(γ − 1)

)
(γ − 1)

2

p

(
(γ − 1)

2

p
− 1

)
v(γ−1)2/p−2 − cos v (8.17)
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must vanish at at least three different points on the interval (0, π). Using inequalities (8.7), we see that
the function v(γ−1)2/p−2 is positive convex (downward) and monotone decreasing on (0, π). Taking into
account the behavior of the function cos v on (0, π), we conclude that, in view of formula (8.17), the
function Q̃′′′

∗ must have at most two different zeros on the interval (0, π). The resulting contradiction
proves the validity of inequality (8.6) in case a).

Further, consider case b). It follows from formula (8.16) that the function Q̃′′
∗ takes positive values

on the closed interval [π, 2π], i.e., Q̃′
∗ is a monotone increasing function on [π, 2π]. Using formula (8.8),

from relation (8.15), we obtain

Q̃′
∗(π) =

2

p
(γ − 1)− 1 > 0.

Therefore, Q̃′
∗(v) > 0 for any v ∈ [π, 2π], which means that the function Q̃∗ is monotone increasing on

this point set. Since Q̃∗(π) = 0, it follows that, for π < v ≤ 2π, the inequality Q̃∗(v) > 0 holds. In view
of formulas (8.11)–(8.13), we see that the inequality Q′(v) > 0 holds for π < v ≤ 2π. Since Q(π) = 0, it
follows that Q is a positive monotone increasing function on the set (π, 2π] and, in view of relation (8.9),
this means that, in case b), inequality (8.6) holds.

Let us pass to the study of case c). Analyzing the function (8.15) and taking into account
inequality (8.8), for any 2π ≤ v < ∞, we obtain the following lower bound of the derivative Q̃′

∗:

Q̃′
∗(v) ≥ π(1−γ)2/p

(
1 +

2

p
(γ − 1)

)
min

2π≤v<∞
v(γ−1)2/p − 1 + min

2π≤v<∞
cos v

= 2

{
2(γ−1)2/p−1

(
1 +

2

p
(γ − 1)

)
− 1

}
> 2.

This means that Q̃′
∗ takes positive values on [2π,∞), i.e., the function Q̃∗ is monotone increasing. It

follows from formulas (8.8) and (8.14) that

Q̃∗(2π) = 2π(2(γ−1)2/p − 1) > 0;

hence we see that, in view of formulas (8.11)–(8.13), the derivative Q′ takes only positive values on the
set [2π,∞), i.e., the function Q is monotone increasing. It follows from case b) that Q(2π) > 0, i.e.,
Q(v) > 0 for an arbitrary v, 2π ≤ v < ∞, and inequality (8.6) also holds in case c). Theorem 6 is proved.

For the classes of functions considered above, the calculation of the exact values of the Fourier cosine
and sine coefficients is also of significant interest. Without loss of generality, we shall obtain one of such
results following from Theorem 6, because the corresponding results following from Theorems 4 and 5
can be stated and proved in a similar way.

Corollary 6. Let all the assumptions of Theorem 6 hold. Then, for an arbitrary n ∈ N, the
following equalities hold:

sup
f∈˜W r

p (Λ1,Φ)

|an(f)| = sup
f∈˜W r

p (Λ1,Φ)

|bn(f)| =
n1/p−r

√
2

{ˆ π

0
(1− sinc t)p/2 dt

}−1/p

Φ

(
π

n

)
, (8.18)

where an( · ) and bn( · ) are the Fourier cosine and sine coefficients, respectively.

Proof. Without loss of generality, we obtain the required result for the Fourier cosine coefficient an( · ).
Since

an(f) =
1

π

ˆ 2π

0
(f(t)− Sn−1(t)) cos(nt) dt,
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where Sn−1(f) is a partial sum of the Fourier series of the function f ∈ W̃ r
p (Λ1,Φ), using the

Cauchy–Bunyakovskii inequality and formula (2.1), we can write

|an(f)| ≤ ‖f − Sn−1(f)‖ = En−1(f).

Hence, using relation (8.2), we obtain

sup
f∈˜W r

p (Λ1,Φ)

|an(f)| ≤ En−1(W̃
r
p (Λ1,Φ)) =

n1/p−r

√
2

{ˆ π

0
(1− sinc t)p/2 dt

}−1/p

Φ

(
π

n

)
. (8.19)

To obtain the lower bound, consider the function

f2(x) :=
n1/p−r

√
2

{ˆ π

0
(1− sinc t)p/2 dt

}−1/p

Φ

(
π

n

)
cosnx,

which, as is readily verified, belongs to the ball B̃2n+1, which was introduced in the proof of Theorem 6.
Since B̃2n+1 ⊂ W̃ r

p (Λ1,Φ), it follows that f2 is an element of the class W̃ r
p (Λ1,Φ). Then

sup
f∈˜W r

p (Λ1,Φ)

|an(f)| ≥ |an(f2)| =
n1/p−r

√
2

{ˆ π

0
(1− sinc t)p/2 dt

}−1/p

Φ

(
π

n

)
. (8.20)

The required equality (8.18) is obtained from relations (8.19), (8.20). This concludes the proof of
Corollary 6.
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