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It is well known [1] that endowing a graded module with the structure of an A∞-algebra is equivalent
to endowing the tensor bigraded coalgebra of this module with the structure of a differential bigraded
coalgebra. The bigrading of this tensor coalgebra is usually convolved, i.e., the tensor algebra of the
suspension of the graded module is considered. The equivalence mentioned above is a very useful tool
for investigating the homotopy and category properties of A∞-algebras, because it reduces studying
these properties to examining the corresponding properties of differential free coalgebras.

On the other hand, in [2], the notion of a homotopy unital A∞-algebra was introduced, which is the
homotopy counterpart of the notion of a unital (i.e., having a unit) associative differential algebra. As
well as in [1], there arises the important and interesting question of describing an additional structure on
the tensor bigraded coalgebra of a graded module such that endowing the coalgebra with this structure
is equivalent to endowing the given module with the structure of a homotopy unital A∞-algebra.

This paper is devoted to the development of the homotopy theory of ∞-simplicial coalgebras; in terms
of this theory, an answer to the question posed above is given. The paper consists of three sections. In
the first section, we recall the necessary definitions, constructions, and assertions from [3] related to
the notion of a differential ∞-simplicial module, which is the homotopy invariant counterpart of the
notion of a differential simplicial module. In the second section, we describe the construction of a tensor
product of ∞-simplicial modules and introduce the notion of an ∞-simplicial coalgebra. We also prove
the homotopy invariance of the structure of an ∞-simplicial coalgebra under homotopy equivalences
of the type of SDR-data (strong deformation retractions of special form) of differential coalgebras.
In the third section, we introduce the notion of a homotopy unital supplemented A∞-algebra, which
is a homotopy generalization of the notion of an supplemented associative algebra with unit. In
the case of connected graded modules, i.e., nonnegatively graded modules for which the module of
elements of grade zero is the base ring, the notions of a homotopy unital supplemented A∞-algebra
and a homotopy unital A∞-algebra coincide. It is proved that endowing a graded module with the
structure of a homotopy unital supplemented A∞-algebra is equivalent to endowing the tensor bigraded
coalgebra of this module with the structure of an ∞-simplicial coalgebra. This statement, as applied to
connected graded modules, answers the above-posed question about an additional structure on a tensor
bigraded coalgebra. On the basis of this equivalence, we obtain a simplicial method for calculating
structural relations for homotopy unital supplemented A∞-algebras and, in particular, for homotopy
unital A∞-algebras, which is simpler than the method for calculating structural relations proposed in [4].
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We also apply this equivalence to prove the homotopy invariance of the structure of a homotopy unital
supplemented A∞-algebra; in particular, for the case of connected graded modules, we obtain a new, in
comparison with [4], proof of the homotopy invariance of the structure of a homotopy unital A∞-algebra.

All modules and maps of modules considered in this paper are, respectively, K-modules and K-linear
maps of modules, where K is any commutative ring with unit.

1. COLORED ALGEBRAS OF SIMPLICIAL FACES AND DEGENERACIES
AND ∞-SIMPLICIAL MODULES

In what follows, by a colored graded module X we mean any family of graded modules
X = {X(s, t)m}, m ∈ Z, indexed by all pairs of elements (s, t) ∈ I × I, where I is a set of nonnegative
integers. A map f : X → Y of colored graded modules is any family of maps

f = {f(s, t) : X(s, t) → Y (s, t)}s,t∈I
of graded modules.

The tensor product of colored graded modules X and Y is defined as the colored graded module
X ⊗ Y for which

(X ⊗ Y )(s, t)m =
⊕

k∈I

⊕

p+q=m

X(s, k)p ⊗ Y (k, t)q.

A colored graded algebra (A, π) is any colored graded module A endowed with a multiplication
π : A⊗A → A, which is a map of colored graded modules satisfying the associativity condition
π(π ⊗ 1) = π(1⊗ π).

The unit of a colored algebra (A, π) is a family 1∗ = {1k}k∈I of elements 1k ∈ A(k, k)0 such that
π(1s ⊗ a) = a = π(a⊗ 1t) for each element a ∈ A(s, t)m, where s, t ∈ I and m ∈ Z.

In what follows, by KI we denote the graded module defined by the relations KI(s, s)m = K for
m = 0 and s ∈ I, KI(s, s)m = 0 form �= 0 and s ∈ I, and KI(s, t)m = 0 for s �= t and m ∈ Z and colored
by colors from I. It is easy to see that, using multiplication in the ring K, we can consider KI as a colored
graded algebra (KI , π).

The base colored graded algebra in this paper is the colored algebra (S, π) of simplicial faces and de-
generacies considered in [3]. The colored algebra (S, π) is generated by elements ∂n

i ∈ S(n− 1, n)0 with
n− 1 ∈ I and sni ∈ S(n+ 1, n)0 with n ∈ I and i ∈ Z, 0 ≤ i ≤ n, subject to the simplicial commutation
relations

∂n−1
i ∂n

j = ∂n−1
j−1 ∂

n
i , i < j, n− 1 ∈ I, (1.1)

sn+1
i snj = sn+1

j+1 s
n
i , i ≤ j, n ∈ I, (1.2)

∂n+1
i snj =

⎧
⎪⎨

⎪⎩

sn−1
j−1∂

n
i , i < j, n− 1 ∈ I,

1n, i = j, i = j + 1, n ∈ I,

sn−1
j ∂n

i−1, i > j + 1, n− 1 ∈ I,

(1.3)

where 1∗ = {1n}n∈I is the unit of the colored algebra (S, π) and ab = π(a⊗ b), a, b ∈ (S, π).

A colored graded coalgebra (C,∇) is defined as the colored graded module C = {C(s, t)m}s,t∈I ,
m ∈ Z, m ≥ 0, together with a comultiplication ∇ : C → C ⊗ C, which is a map of colored graded
modules satisfying the condition (∇⊗ 1)∇ = (1⊗∇)∇. The notions of a counit ε : C → KI and a
cosupplementation ν : KI → C for a colored graded coalgebra (C,∇) are defined in the standard way.

A curved colored coalgebra (C,∇, ϑ) or, briefly, a colored ϑ-coalgebra is a graded colored
coalgebra (C,∇) together with a map ϑ : C• → (KI)•−2 of colored graded modules which has degree
(−2) and satisfies the condition

ϑ(c′2)c
′′
n−2 = c′n−2ϑ(c

′′
2)
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for all cn ∈ C(s, t)n with n ≥ 2 and s, t ∈ I; here the elements c′2 ∈ C(s, s)2, c′′n−2 ∈ C(s, t)n−2,
c′n−2 ∈ C(s, t)n−2, and c′′2 ∈ C(t, t)2 are determined from cn by the relation

∇(cn) = · · · + c′2 ⊗ c′′n−2 + · · ·+ c′n−2 ⊗ c′′2 + · · · ∈ (C ⊗ C)(s, t)n.

The map ϑ is called the curvature of the colored coalgebra (C,∇).
In what follows, by the counit and the cosupplementation of a colored ϑ-coalgebra (C,∇, ϑ) we

understand those of the graded color coalgebra (C,∇).

The base colored ϑ-coalgebra in this paper is the colored ϑ-coalgebra (S!,∇, ϑ) considered in [3],
which is Koszul dual to the quadratic-scalar colored algebra (S, π).

Let us describe (S!,∇, ϑ). First, we recall that the suspension of a colored graded module X is the
colored graded module SX defined by (SX)(s, t)m+1 = X(s, t)m for any s, t ∈ I. The elements of SX
are traditionally denoted by [x], where x ∈ X.

Let M denote the colored graded module of the generators of the colored algebra (S, π). Thus, M is
determined by the following conditions:

(1) M(s, t)m = 0 for s, t ∈ I and m > 0;

(2) M(s, t)0 = 0 for (s, t) �= (n− 1, n), n− 1 ∈ I, and (s, t) �= (n+ 1, n), n ∈ I;

(3) M(n− 1, n)0 is the free K-module with generators ∂n
i , where n− 1 ∈ I and 0 ≤ i ≤ n;

(4) M(n+ 1, n)0 is the free K-module with generators sni , where n ∈ I and 0 ≤ i ≤ n.

For this module M and its suspension SM , consider the rearrangement map

T : SM ⊗ SM → SM ⊗ SM

of colored graded modules defined at the generators of the colored graded module SM ⊗ SM by

T ([∂n−1
i ]⊗ [∂n

j ]) =

{
[∂n−1

j−1 ]⊗ [∂n
i ], i < j, n− 2 ∈ I,

[∂n−1
j ]⊗ [∂n

i+1], i ≥ j, n− 2 ∈ I,

T ([sn+1
i ]⊗ [snj ]) =

{
[sn+1

j+1 ]⊗ [sni ], i ≤ j, n ∈ I,

[sn+1
j ]⊗ [sni−1], i > j, n ∈ I,

T ([∂n+1
i ]⊗ [snj ]) =

{
[sn−1

j−1 ]⊗ [∂n
i ], i < j, n− 1 ∈ I,

[sn−1
j ]⊗ [∂n

i−1], i > j + 1, n− 1 ∈ I,

T ([∂n+1
i+1 ]⊗ [sni ]) = [∂n+1

i+1 ]⊗ [sni ], i ≥ 0, n ∈ I,

T ([∂n+1
i ]⊗ [sni ]) = [∂n+1

i ]⊗ [sni ], i ≥ 0, n ∈ I,

T ([sn−1
i ]⊗ [∂n

j ]) =

{
[∂n+1

j+1 ]⊗ [sni ], i < j, n− 1 ∈ I,

[∂n+1
j ]⊗ [sni+1], i ≥ j, n− 1 ∈ I.

It is easy to see that the map T satisfies the condition T 2 = id.
Let Σn be the symmetric group of permutations on 1, 2, . . . , n. We define the action of each

transposition τk = (k + 1, k) ∈ Σn, 1 ≤ k ≤ n− 1, on the colored graded module (SM)⊗n by

τk([a1]⊗ · · · ⊗ [an]) = [a1]⊗ · · · ⊗ T ([ak]⊗ [ak+1])⊗ · · · ⊗ [an],

where [a1], . . . , [an] are any generators of SM . A straightforward calculation by the formulas for the
rearrangement map T shows that the actions of the transpositions τk on (SM)⊗n satisfy the relations

τ2k = id, 1 ≤ k ≤ n, τkτk+1τk = τk+1τkτk+1, 1 ≤ k ≤ n− 2,

τkτm = τmτk, 1 ≤ k ≤ n− 1, 1 ≤ m ≤ n− 1, |k −m| ≥ 2.
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It follows that the standard procedure for decomposing any permutation σ ∈ Σn into a product
τkq · · · τk1 of transpositions of neighboring numbers determines a left action

ν : Σn × (SM)⊗n → (SM)⊗n

of the group Σn on the colored graded module (SM)⊗n by the rule

ν(σ, [a1]⊗ · · · ⊗ [an]) = τkq(· · · (τk1([a1]⊗ · · · ⊗ [an])) · · · ).
The above relations for the actions of τk imply that the action ν does not depend on the choice of
the decomposition of σ into a product of transpositions of neighboring numbers. It is easy to see
that (SM)⊗n contains elements whose isotropy groups with respect to this action of Σn on (SM)⊗n

are not trivial. Given any element [a1]⊗ · · · ⊗ [an] ∈ (SM)⊗n, let

O([a1]⊗ · · · ⊗ [an]) ⊂ (SM)⊗n

denote its orbit under the action of Σn on (SM)⊗n specified above.
It follows from the definition of the rearrangement map T that the orbit O([a1]⊗ · · · ⊗ [ak]) of any

element [a1]⊗ · · · ⊗ [ak] ∈ (SM)⊗k(m,n), m,n ∈ I, contains precisely one element of the form

[∂n+q−p+1
i1

]⊗ · · · ⊗ [∂n+q
ip

]⊗ [sn+q−1
jq

]⊗ · · · ⊗ [snj1 ],

where p ≥ 0, q ≥ 0, p+ q = k ≥ 1, m = n+ q − p, i1 < · · · < ip, and jq > · · · > j1. In what follows, we
refer to elements of (SM)⊗k , k ≥ 1, of this form as ordered elements.

Recall the description of the colored ϑ-coalgebra (S!,∇, ϑ) given in [3]. The colored graded moduleS!

is defined by the conditions

(1) (S!)(k)(m,n)l = 0 for l �= k, k ≥ 1, and n,m ∈ I;

(2) (S!)(k)(m,n)k with k ≥ 1 and n,m ∈ I is the free K-module with generators

[∂n+q−p+1
i1

] ∧̂ · · · ∧̂ [∂n+q
ip

] ∧̂ [sn+q−1
jq

] ∧̂ · · · ∧̂ [snj1 ] =
∑

O(α)

(−1)ε[a1]⊗ · · · ⊗ [ap+q], (1.4)

where α = [∂n+q−p+1
i1

]⊗ · · · ⊗ [∂n+q
ip

]⊗ [sn+q−1
jq

]⊗ · · · ⊗ [snj1 ] is any ordered element, k = p+ q,
m = n+ q− p, and O(α) = {[a1]⊗ · · · ⊗ [ap+q]} is the orbit ofα; the exponent ε in (1.4) is defined
by

ε = sign([a1]⊗ · · · ⊗ [ap+q]) = i1 + · · ·+ ip + j1 + · · · + jq + l1 + · · ·+ lp+q,

where the numbers l1, . . . , lp+q are determined by the relation

[a1]⊗ · · · ⊗ [ap+q] = [νk1l1 ]⊗ · · · ⊗ [ν
kp+q

lp+q
]

in which νkili is ∂ki
li

or skili for 1 ≤ i ≤ p+ q, kp+q = n, and νk1l1 is ∂m+1
l1

or sm−1
l1

.

For example, it follows from (1.4) that

[∂n
1 ] ∧̂ [∂n+1

2 ] ∧̂ [sn2 ] = [∂n
1 ]⊗ [∂n+1

2 ]⊗ [sn2 ]− [∂n
1 ]⊗ [∂n+1

1 ]⊗ [sn2 ] + [∂n
1 ]⊗ [sn−1

1 ]⊗ [∂n
1 ],

[∂n+1
i+1 ] ∧̂ [sni ] = [∂n+1

i+1 ]⊗ [sni ], [∂n+1
i ] ∧̂ [sni ] = [∂n+1

i ]⊗ [sni ], i ≥ 0.

Consider the comultiplication of the colored graded coalgebra (S!,∇). Let

α = [∂n+q−p+1
i1

]⊗ · · · ⊗ [∂n+q
ip

]⊗ [sn+q−1
jq

]⊗ · · · ⊗ [snj1 ]

be any ordered element. For each element γ = [a1]⊗ · · · ⊗ [ap+q] ∈ O(α), by P (γ) we denote the set of
all representations of γ in the form

γ = ([a1]⊗ · · · ⊗ [az])⊗ ([az+1]⊗ · · · ⊗ [ap+q]), 1 ≤ z ≤ p+ q − 1,
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where [a1]⊗ · · · ⊗ [az] and [az+1]⊗ · · · ⊗ [ap+q] are ordered elements. The values of the comultiplica-
tion ∇ of the coalgebra S! at the generators β = [∂n+q−p+1

i1
] ∧̂ · · · ∧̂ [∂n+q

ip
] ∧̂ [sn+q−1

jq
] ∧̂ · · · ∧̂ [snj1 ] of the

module (S!)(k)(m,n)k, where m,n ∈ I, k ≥ 1, p ≥ 0, q ≥ 0, p+ q = k, and m = n+ q − p, are

∇(β) = 1n+q−p ⊗ β

+
∑

P (γ∈O(α))

(−1)sign(γ)([a1] ∧̂ · · · ∧̂ [az])⊗ ([az+1] ∧̂ · · · ∧̂ [ap+q]) + β ⊗ 1n,

where α = [∂n+q−p+1
i1

]⊗ · · · ⊗ [∂n+q
ip

]⊗ [sn+q−1
jq

]⊗ · · · ⊗ [snj1 ] and γ = [a1]⊗ · · · ⊗ [ap+q].

The curvature ϑ : S!
• → (KI)•−2 of the colored graded coalgebra (S!,∇) is defined at the generators

of S! specified above by

ϑ([∂n+q−p+1
i1

] ∧̂ · · · ∧̂ [∂n+q
ip

] ∧̂ [sn+q−1
jq

] ∧̂ · · · ∧̂ [snj1 ]) = 0, (p, q) �= (1, 1),

ϑ([∂n+1
i ] ∧̂ [snj ]) =

{
1, i = j, i = j + 1,

0 otherwise.

We proceed to the necessary constructions and facts related to the notion of an ∞-simplicial
module [3].

In what follows, by a differential bigraded module we mean any differential bigraded module (X, d)
of the form X = {Xn,m}, where n,m ∈ Z, n ≥ 0, and d : X∗,• → X∗,•−1.

The tensor product of a colored graded module X and a differential bigraded module (Y, d) is defined
as the differential bigraded module (X ⊗ Y, d), where

(X ⊗ Y )n,m =
⊕

s∈I

⊕

p+q=m

X(n, s)p ⊗ Ys,q, n ∈ I, m ∈ Z,

and the value of the differential at each element x⊗ y ∈ X(n, s)p ⊗ Ys,q equals

d(x⊗ y) = (−1)n−s+px⊗ d(y).

Given any differential bigraded modules (X, d) and (Y, d), consider the differential bigraded module
(Hom(X;Y ), d). The elements of each module Hom(X;Y )n,m are arbitrary maps f : X∗,• → Y∗+n,•+m

of bigraded modules which have bidegree (n,m); at the elements f ∈ Hom(X;Y )n,m, the differential is
given by

d(f) = df + (−1)n+m+1fd : X∗,• → Y∗+n,•+m−1.

Given the colored graded coalgebra (S!,∇) and any differential bigraded modules (X, d), (Y, d),
and (Z, d), we define a map

∪ : (Hom(S! ⊗ Y ;Z)⊗Hom(S! ⊗X;Y ))∗,• → Hom(S! ⊗X;Z)∗,•

of bigraded modules by setting

g ∪ f = g(1 ⊗ f)(∇⊗ 1) for g ∈ Hom(S! ⊗ Y ;Z) and f ∈ Hom(S! ⊗X;Y ).

It is easy to show that ∪ is a map of differential bigraded modules which has the associativity property,
i.e.,

d(g ∪ f) = d(g) ∪ f + (−1)n+mg ∪ d(f), (g ∪ f) ∪ l = g ∪ (f ∪ l),

where g ∈ Hom(S! ⊗ Y,Z)n,m.

In what follows, given any f ∈ Hom(X;Y )n,m, by f̂ we denote the map f̂ ∈ Hom(S! ⊗X;Y )n,m
defined by

f̂ = (ε⊗ f) : S! ⊗X → KI ⊗ Y = Y,

where ε : S! → KI is the counit of the colored graded coalgebra (S!,∇).
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Now let us consider the notion of differential ∞-simplicial module [3], which is the homotopy
invariant counterpart of the notion of a differential simplicial module.

A differential ∞-simplicial module, or, briefly, an ∞-simplicial module, is any differential
bigraded module (X, d) together with a map ψ : (S! ⊗X)∗,• → X∗,•−1 of bigraded modules which has
bidegree (0,−1) and satisfies the conditions

(1) ψ(ν ⊗ 1) = d : (KI ⊗X)∗,• = X∗,• → X∗,•−1, where ν : KI → S! is the cosupplementation of the
colored ϑ-coalgebra (S!,∇, ϑ);

(2) ψ ∪ ψ = −ϑ̃, where the map ϑ̃ : (S! ⊗X)∗,• → X∗,•−2 is defined by

ϑ̃ = ϑ⊗ 1: (S! ⊗X)∗,• → (KI ⊗X)∗,•−2 = X∗,•−2.

Representing the structure map ψ : (S! ⊗X)∗,• → X∗,•−1 of any ∞-simplicial module (X, d, ψ) in
the form ψ = d̂+ ψ′, where d̂ is defined as f̂ (see above) for f = d ∈ Hom(X;X)0,−1, we see that the
map ψ′ = ψ − d̂ : (S! ⊗X)∗,• → X∗,•−1 satisfies the condition ψ′(ν ⊗ 1) = 0, and ψ ∪ ψ = −ϑ̃ if and
only if

d̂ ∪ d̂ = 0, d(ψ′) + ψ′ ∪ ψ′ + ϑ̃ = 0.

Since the condition d̂ ∪ d̂ = 0 is equivalent to d2 = 0, it follows that specifying an ∞-simplicial module
(X, d, ψ) is equivalent to specifying a triple (X, d, ψ′), where ψ′ is a map satisfying the conditions
ψ′(ν ⊗ 1) = 0 and d(ψ′) + ψ′ ∪ ψ′ + ϑ̃ = 0.

By a morphism f : (X, d, ψ) → (Y, d, ψ) of ∞-simplicial modules we mean a map

f : (S! ⊗X)∗,• → Y∗,•

of bigraded modules which has degree (0, 0) and satisfies the condition ψ ∪ f = f ∪ ψ.
It follows from ψ ∪ f = f ∪ ψ that the map fν = f(ν ⊗ 1): (KI ⊗X)∗,• = X∗,• → Y∗,• of bigraded

modules satisfies the condition dfν = fνd, i.e., is a map of differential bigraded modules. Representing
a morphism f : (X, d, ψ) → (Y, d, ψ) of ∞-simplicial modules in the form f = f̂ν + f ′, we see that the
map f ′ = f − f̂ν : (S

! ⊗X)∗,• → Y∗,• satisfies the condition f ′(ν ⊗ 1) = 0, and ψ ∪ f = f ∪ ψ if and
only if

d̂ ∪ f̂ν = f̂ν ∪ d̂, d(f ′)− f ′ ∪ ψ′ + ψ′ ∪ f ′ − f̂ν ∪ ψ′ + ψ′ ∪ f̂ν = 0.

Moreover, it is clear that ψ ∪ f = f ∪ ψ implies ϑ̃ ∪ f = f ∪ ϑ̃.
The composition g ◦ f of morphisms f : (X, d, ψ) → (Y, d, ψ) and g : (Y, d, ψ) → (Z, d, ψ) of

∞-simplicial modules is defined as the morphism g ∪ f : (X, d, ψ) → (Z, d, ψ) of ∞-simplicial modules.
Clearly, the operation of taking the composition of morphisms is associative; moreover, for each
∞-simplicial module (X, d, ψ), the identity morphism 1̂X : (X, d, ψ) → (X, d, ψ) is defined, where 1X is
the identity map of the module X. Thus, ∞-simplicial modules and their morphisms form a category.

A homotopy h : (X, d, ψ) → (Y, d, ψ) between morphisms

f : (X, d, ψ) → (Y, d, ψ) and g : (X, d, ψ) → (Y, d, ψ)

of ∞-simplicial modules is defined as a map h : (S! ⊗X)∗,• → Y∗,•+1 satisfying the condition
ψ ∪ h+ h ∪ ψ = f − g.

Since ψ ∪ h+ h ∪ ψ = f − g, it follows that the map

hν = h(ν ⊗ 1): (KI ⊗X)∗,• = X∗,• → Y∗,•+1

of bigraded modules satisfies the condition dhν + hνd = fν − gν , i.e., is a homotopy between the
maps fν and gν of differential bigraded modules. Representing any homotopy h between morphisms
f, g : (X, d, ψ) → (Y, d, ψ) of ∞-simplicial modules in the form h = ĥν + h′, we see that the map
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h′ = h− ĥν : (S
! ⊗X)∗,• → Y∗,•+1 satisfies the condition h′(ν ⊗ 1) = 0, and ψ ∪ h+ h ∪ ψ = f − g if

and only if

d̂ ∪ ĥν + ĥν ∪ d̂ = f̂ν − ĝν , d(h′) + h′ ∪ ψ′ + ψ′ ∪ h′ + ĥν ∪ ψ′ + ψ′ ∪ ĥν = f ′ − g′.

Moreover, it is clear that ψ ∪ h+ h ∪ ψ = f − g implies ϑ̃ ∪ h = h ∪ ϑ̃.
Let η : (X, d, ψ) � (Y, d, ψ) : ξ be any morphisms of ∞-simplicial modules such that η ∪ ξ = 1̂Y ,

and let h : (X, d, ψ) → (X, d, ψ) be any homotopy between the morphisms ξ ∪ η and 1̂X of ∞-simplicial
modules which satisfies the conditions η ∪ h = 0, h ∪ ξ = 0, and h ∪ h = 0. Any such triple
(η : (X, d, ψ) � (Y, d, ψ) : ξ, h) is called SDR-data for ∞-simplicial modules.

Consider the homotopy properties of ∞-simplicial modules. Recall that SDR-data for differential
bigraded modules is any triple (η : (X, d) � (Y, d) : ξ, h), where η : X∗,• � Y∗,• : ξ is a map of differen-
tial bigraded modules and h : X∗,• → X∗,•+1 is a homotopy between ξη and 1X satisfying the conditions
ηh = 0, hξ = 0, and hh = 0.

It is worth mentioning that the conditions ηh = 0, hξ = 0, and hh = 0, which must hold for
SDR-data (η : (X, d) � (Y, d) : ξ, h), are not restrictive. Indeed, as shown in [5], if these conditions
do not hold, then, defining the new homotopy h′ = h′′dh′′, where h′′ = (ξη − 1X)h(ξη − 1X), we obtain
SDR-data (η : (X, d) � (Y, d) : ξ, h′).

The following theorem asserts the homotopy invariance of the structure of an ∞-simplicial mod-
ule [3].

Theorem 1.1. Suppose given any ∞-simplicial module (X, d, ψ) with ψ = d̂+ ψ′ and any
SDR-data (η : (X, d) � (Y, d) : ξ, h) for differential bigraded modules. Then there is an∞-simpli-
cial module structure (Y, d, ψ ) on (Y, d) for which the map ψ = d̂+ ψ

′
is defined by

ψ
′
=

∑

n≥0

η̂ ∪ ψ′ ∪ (ĥ ∪ ψ′) ∪ · · · ∪ (ĥ ∪ ψ′)︸ ︷︷ ︸
n

∪ξ̂. (1.5)

Moreover, the maps ξ = ξ̂ + ξ
′
, η = η̂ + η ′, and h = ĥ+ h

′
defined by

ξ
′
=

∑

n≥0

ĥ ∪ ψ′ ∪ (ĥ ∪ ψ′) ∪ · · · ∪ (ĥ ∪ ψ′)︸ ︷︷ ︸
n

∪ξ̂, (1.6)

η ′ =
∑

n≥0

η̂ ∪ ψ′ ∪ (ĥ ∪ ψ′) ∪ · · · ∪ (ĥ ∪ ψ′)︸ ︷︷ ︸
n

∪ĥ, (1.7)

h
′
=

∑

n≥0

ĥ ∪ ψ′ ∪ (ĥ ∪ ψ′) ∪ · · · ∪ (ĥ ∪ ψ′)︸ ︷︷ ︸
n

∪ĥ (1.8)

determine the SDR-data (η : (X, d, ψ) � (Y, d, ψ ) : ξ, h ) for ∞-simplicial modules.

Differential ∞-simplicial modules, as well as differential simplicial modules, can be considered from
the functional point of view. Indeed, for any ∞-simplicial module (X, d, ψ) with ψ = d̂+ ψ′, we can
define the family of maps

(̃∂s) = {(∂s)(i1,...,ip|jq,...,j1) : Xn,• → Xn−p+q,•+p+q−1}, p ≥ 0, q ≥ 0, p+ q ≥ 1,

0 ≤ i1 < · · · < ip ≤ n+ q, n+ q − 1 ≥ jq > · · · > j1 ≥ 0,

(∂s)(i1,...,ip|jq,...,j1)(x) = ψ′(([∂n+q−p+1
i1

] ∧̂ · · · ∧̂ [∂n+q
ip

] ∧̂ [sn+q−1
jq

] ∧̂ · · · ∧̂ [snj1 ])⊗ x).

We denote the maps (∂s)(i1,...,ip|jq,...,j1) with q = 0 in the family (̃∂s) by ∂(i1,...,ip) and the maps

(∂s)(i1,...,ip|jq,...,j1) with p = 0 by s(jq,...,j1). Since d(ψ′) + ψ′ ∪ ψ′ + ϑ̃ = 0, it follows that the maps in

the family (̃∂s) satisfy the relations
d((∂s)(i1,...,ip|jq,...,j1))

=
∑

P (γ∈O(α))

(−1)sign(γ)+1(∂s)(l1,...,lt|m1,...,mk)(∂s)(x1,...,xc|y1,...,yd), (p, q) �= (1, 1), (1.9)
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d((∂s)(i|j)) =

⎧
⎪⎨

⎪⎩

s(j−1)∂(i) − ∂(i)s(j), i < j,

1− ∂(i)s(j), i = j, i = j + 1,

s(j)∂(i−1) − ∂(i)s(j), i > j + 1,

(1.10)

where the set P (γ ∈ O(α)) is the same as in the above expression for the comultiplication ∇ of the
coalgebra (S!,∇), t+ c = p, k + d = q, γ = [a1]⊗ · · · [ap+q],

([a1]⊗ · · · ⊗ [az])⊗ ([az+1]⊗ · · · ⊗ [ap+q]) ∈ P (γ ∈ O(α)), 1 ≤ z ≤ p+ q − 1,

and

(∂s)(l1,...,lt|m1,...,mk)(g) = ψ′(([a1] ∧̂ · · · ∧̂ [az ])⊗ g), z = t+ k,

(∂s)(x1,...,xc|y1,...,yd)(r) = ψ′(([at+k+1] ∧̂ · · · ∧̂ [ap+q])⊗ r), p+ q − z = c+ d.

For example, (1.9) implies the relations

d((∂s)(2|2,1)) = −∂(2)s(2,1) − (∂s)(2|2)s(1) + (∂s)(2|1)s(1),

d((∂s)(1,2|2)) = −∂(1)(∂s)(2|2) − ∂(1,2)s(2) + ∂(1)(∂s)(1|2) − (∂s)(1|1)∂(1).

It is easy to see that it follows from the above formulas defining the maps (∂s)(i1,...,ip|jq,...,j1) that these

maps completely determine the structure map ψ = d̂+ ψ′. Thus, the following lemma is valid.

Lemma 1.1. Specifying an ∞-simplicial module (X, d, ψ) is equivalent to specifying a triple

(X, d, (̃∂s)) defined above and satisfying relations (1.9) and (1.10).

In what follows, we identify the triples (X, d, ψ) and (X, d, (̃∂s)) corresponding to each other and use
the same term “∞-simplicial module” for both of them.

Note that a special case of (1.9) is given by the relations

d(∂(i)) = 0, i ≥ 0, d(∂(i,j)) = ∂(j−1)∂(i) − ∂(i)∂(j), i < j,

d(s(i)) = 0, i ≥ 0, d(s(i,j)) = s(j)s(i−1) − s(i)s(j), i > j.

These relations, together with (1.10), say that, for any ∞-simplicial module (X, d, (̃∂s)), the maps
∂(i) : Xn,• → Xn−1,• and s(j) : Xn,• → Xn+1,• of differential modules satisfy the simplicial commutation
relations (1.1)–(1.3) up to homotopy. In other words, the quadruple (X, d, ∂(i), s(j)) is a differential
simplicial module up to homotopy.

2. TENSOR PRODUCT OF ∞-SIMPLICIAL MODULES
AND ∞-SIMPLICIAL COALGEBRAS

For a colored ϑ-coalgebra (S!,∇, ϑ) and any differential bigraded modules (X, d) and (Y, d), consider
the map

L : ((S! ⊗ S!)⊗ (X ⊗ Y ))∗,• → ((S! ⊗X)⊗ (S! ⊗ Y ))∗,•

of bigraded modules whose values at the generators of the colored module S! ⊗ S! and any elements
x⊗ y ∈ Xk,m ⊗ Yl,t ⊂ (X ⊗ Y )k+l,m+t are defined by

(1) L((1k+l ⊗ 1k+l)⊗ (x⊗ y)) = (1k ⊗ x)⊗ (1l ⊗ y);

(2) L(((∂s)k+l
(i1 ,...,ip|jq,...,j1) ⊗ 1k+l))⊗ (x⊗ y))

=

{
((∂s)k(i1,...,ip|jq,...,j1) ⊗ x)⊗ (1l ⊗ y) if jq ≤ k + q − 1, ip ≤ k + q,

0 otherwise;

(3) L((1k+l+q−p ⊗ (∂s)k+l
(i1,...,ip|jq,...,j1))⊗ (x⊗ y))
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=

⎧
⎪⎨

⎪⎩

(−1)(p+q)k(1k ⊗ x)⊗ ((∂s)l(i1−k,...,ip−k|jq−k,...,j1−k) ⊗ y)

if j1 > k, i1 > k,

0 otherwise;

(4) L(((∂s)k+l+b−a
(i1 ,...,ip|jq,...,j1) ⊗ (∂s)k+l

(μ1,...,μa|νb,...,ν1))⊗ (x⊗ y))

=

⎧
⎪⎨

⎪⎩

(−1)(a+b)k((∂s)k(i1,...,ip|jq,...,j1) ⊗ x)⊗ ((∂s)l(μ1−k,...,μa−k|νb−k,...,ν1−k) ⊗ y),

if jq ≤ k + q − 1, ip ≤ k + q, ν1 > k, μ1 > k,

0 otherwise.

Using the map L, we define a map

⊗ : (Hom(S! ⊗X1;Y1)⊗Hom(S! ⊗X2;Y2))∗,• → Hom(S! ⊗ (X1 ⊗X2);Y1 ⊗ Y2)∗,•

of bigraded modules at any f ∈ Hom(S! ⊗X1;Y1) and g ∈ Hom(S! ⊗X2;Y2)) by

f ⊗ g = (f ⊗ g)L(∇⊗ 1X1⊗X2) : S
! ⊗ (X1 ⊗X2) → Y1 ⊗ Y2.

It is easy to see that the map f ⊗ g = ̂(f ⊗ g)ν + (f ⊗ g)′ satisfies the relations

(f ⊗ g)ν = fν ⊗ gν , ̂(f ⊗ g)ν = f̂ν ⊗ ĝν , (f ⊗ g)′ = f ′ ⊗ g′ + f̂ν ⊗ g′ + f ′ ⊗ ĝν .

Moreover, a direct calculation shows that the maps ∪ and ⊗ considered above are related to each other
by the “sign permutation rule,” i.e.,

(f1 ⊗ g1) ∪ (f2 ⊗ g2) = (−1)(n+m)(s+t)(f1 ∪ f2)⊗ (g1 ∪ g2), (2.1)

provided that the bidegrees of the maps g1 and f2 are (n,m) and (s, t), respectively.

Definition 2.1. The tensor product of differential ∞-simplicial modules (X, d, ψ) and (Y, d, ψ) is
the ∞-simplicial module (X ⊗ Y, d, ψ), where (X ⊗ Y, d) is the tensor product of the corresponding
differential bigraded modules and the map ψ : (S! ⊗ (X ⊗ Y ))∗,• → (X ⊗ Y )∗,•−1 is defined by

ψ = ψ ⊗ 1̂Y + 1̂X ⊗ ψ. (2.2)

It is easy to see that the tensor product of any ∞-simplicial modules is an ∞-simplicial module.
Indeed, we have ϑ̃X⊗Y = ϑ̃X ⊗ 1̂Y + 1̂X ⊗ ϑ̃Y ; thus, applying (2.1), we obtain

ψ ∪ ψ = (ψ ⊗ 1̂ + 1̂⊗ ψ) ∪ (ψ ⊗ 1̂ + 1̂⊗ ψ)

= (ψ ⊗ 1̂) ∪ (ψ ⊗ 1̂) + (ψ ⊗ 1̂) ∪ (1̂⊗ ψ) + (1̂⊗ ψ) ∪ (ψ ⊗ 1̂) + (1̂⊗ ψ) ∪ (1̂⊗ ψ)

= (ψ ∪ ψ)⊗ (1̂ ∪ 1̂) + (ψ ∪ 1̂)⊗ (1̂ ∪ ψ) + (−1)(−1)(−1)(1̂ ∪ ψ)⊗ (ψ ∪ 1̂)

+ (1̂ ∪ 1̂)⊗ (ψ ∪ ψ) = −(ϑ̃⊗ 1̂ + 1̂⊗ ϑ̃) = −ϑ̃.

Now let us consider the tensor product of ∞-simplicial modules from the functional point of view.

Let (X ⊗ Y, d, (̃∂s)) be the tensor product of any ∞-simplicial modules (X, d, (̃∂s)) and (Y, d, (̃∂s)).
It follows from relation (2.2) and the definition of the map ⊗ that, for the ∞-simplicial module

(X ⊗ Y, d, (̃∂s)), the family of maps

(̃∂s) = {(∂s)(i1,...,ip|jq,...,j1) : (X ⊗ Y )n, • → (X ⊗ Y )n−p+q, •+p+q−1}

is defined at each x⊗ y ∈ Xk,m ⊗ Yl,t by the rule

(∂s)(i1,...,ip|jq,...,j1)(x⊗ y)
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=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∂s)(i1,...,ip|jq,...,j1)(x)⊗ y if jq ≤ k + q − 1,

ip ≤ k + q,

(−1)(p+q−1)k+mx⊗ (∂s)(i1−k,...,ip−k|jq−k,...,j1−k)(y) if j1 > k, i1 > k,

0 otherwise.

(2.3)

It is easy to see that if ∞-simplicial modules (X, d, (̃∂s)) and (Y, d, (̃∂s)) are differential simplicial
modules (X, d, ∂i, sj) and (Y, d, ∂i, sj), respectively, then relation (2.3) defines the differential simplicial
module (X ⊗ Y, d, ∂i, sj) for which the ∂i and sj take the following values at each x⊗ y ∈ Xk,m ⊗ Yl,t:

∂i(x⊗ y) =

{
∂i(x)⊗ y, 0 ≤ i ≤ k,

(−1)mx⊗ ∂i−k(y), k < i ≤ k + l,

sj(x⊗ y) =

{
sj(x)⊗ y, 0 ≤ j ≤ k,

(−1)mx⊗ si−k(y), k < j ≤ k + l.

It is worth mentioning that the usual construction of the diagonal tensor product of differential
simplicial modules is related to the new construction of the tensor product of differential simplicial
modules described above by the Alexander–Whitney and Eilenberg–MacLane maps, which are maps of
differential simplicial modules rather than only maps of the corresponding chain bicomplexes in the case
under consideration.

Definition 2.2. A differential ∞-simplicial coalgebra or, briefly, an ∞-simplicial coalgebra
(X, d, ψ,∇), is an ∞-simplicial module (X, d, ψ) together with an associative comultiplication
∇ : X → X ⊗X for which the map ∇̂ : S! ⊗X → X ⊗X is a morphism ∇̂ : (X, d, ψ) → (X ⊗X, d, ψ)
of ∞-simplicial modules, i.e., satisfies the condition

∇̂ ∪ ψ = (1̂X ⊗ ψ + ψ ⊗ 1̂X) ∪ ∇̂. (2.4)

Clearly, for a map ψ represented in the form ψ = d̂+ψ′, condition (2.4) is equivalent to the conditions

∇̂ ∪ d̂ = (1̂X ⊗ d̂+ d̂⊗ 1̂X) ∪ ∇̂, ∇̂ ∪ ψ′ = (1̂X ⊗ ψ′ + ψ′ ⊗ 1̂X) ∪ ∇̂.

The former is equivalent to ∇d = (1⊗ d+ d⊗ 1)∇; therefore, for any ∞-simplicial coalgebra
(X, d, ψ,∇), the triple (X, d,∇) is a differential coalgebra.

Definition 2.3. A morphism f : (X, d, ψ,∇) → (Y, d, ψ,∇) of differential ∞-simplicial coalgebras
is a morphism f : (X, d, ψ) → (Y, d, ψ) of ∞-simplicial modules which satisfies the condition

∇̂ ∪ f = (f ⊗ f) ∪ ∇̂. (2.5)

Clearly, for a map f represented in the form f = f̂ν + f ′, condition (2.5) is equivalent to

∇̂ ∪ f̂ν = (f̂ν ⊗ f̂ν) ∪ ∇̂, ∇̂ ∪ f ′ = (f ′ ⊗ f ′ + f̂ν ⊗ f ′ + f ′ ⊗ f̂ν) ∪ ∇̂.

The former condition is equivalent to fν∇ = (fν ⊗ fν)∇; therefore, for any morphism

f : (X, d, ψ) → (Y, d, ψ)

of ∞-simplicial coalgebras, the map fν : (X, d) → (Y, d) of differential modules is a map

fν : (X, d,∇) → (Y, d,∇)

of differential coalgebras.

Definition 2.4. A homotopy h : (X, d, ψ,∇) → (Y, d, ψ,∇) between morphisms

f, g : (X, d, ψ,∇) → (Y, d, ψ,∇)

of ∞-simplicial coalgebras is a homotopy h : (X, d, ψ) → (Y, d, ψ) between morphisms

f, g : (X, d, ψ) → (Y, d, ψ)

of ∞-simplicial modules that satisfies the condition

∇̂ ∪ h = (h⊗ f + g ⊗ h) ∪ ∇̂. (2.6)
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It is easy to see that, for a map h represented in the form h = ĥν + h′, condition (2.6) is equivalent to

∇̂ ∪ ĥν = (ĥν ⊗ f̂ν + ĝν ⊗ ĥν) ∪ ∇̂,

∇̂ ∪ h′ = (h′ ⊗ f ′ + h′ ⊗ f̂ν + ĥν ⊗ f ′ + g′ ⊗ h′ + g′ ⊗ ĥν + ĝν ⊗ h′) ∪ ∇̂.

The former condition is equivalent to ∇hν = (hν ⊗ fν + gν ⊗ hν)∇; therefore, for any homotopy
h : (X, d, ψ,∇) → (Y, d, ψ,∇) between morphisms f, g : (X, d, ψ,∇) → (Y, d, ψ,∇) of ∞-simplicial
coalgebras, a homotopy hν : X → Y between maps fν , gν : (X, d) → (Y, d) of differential modules is
a homotopy between the maps fν , gν : (X, d,∇) → (Y, d,∇) of differential coalgebras. Note that the
notion of a homotopy between maps of differential coalgebras which we use here has become widely
accepted at present.

Suppose given any morphisms η : (X, d, ψ,∇) � (Y, d, ψ,∇) : ξ of differential ∞-simplicial coalge-
bras such that η ∪ ξ = 1̂Y , and let h : (X, d, ψ,∇) → (X, d, ψ,∇) be any homotopy between the mor-
phisms ξ ∪ η and 1̂X of ∞-simplicial coalgebras which satisfies the conditions η ∪ h = 0, h∪ ξ = 0, and
h ∪ h = 0. Any such triple (η : (X, d, ψ,∇) � (Y, d, ψ,∇) : ξ, h) is called SDR-data for ∞-simplicial
coalgebras.

It is easy to show that, given any SDR-data (η : (X, d, ψ,∇) � (Y, d, ψ,∇) : ξ, h) for ∞-simplicial
coalgebras, SDR-data (ην : (X, d,∇) � (Y, d,∇) : ξν , hν) for differential coalgebras are defined. We
say that SDR-data (η : (X, d, ψ,∇) � (Y, d, ψ,∇) : ξ, h) for ∞-simplicial coalgebras extend the
SDR-data (η : (X, d,∇) � (Y, d,∇) : ξ, h) for differential coalgebras if η = ην , ξ = ξν , and h = hν .

Now, let us prove the homotopy invariance of the structure of an ∞-simplicial coalgebra under
homotopy equivalences of the type of SDR-data for differential coalgebras.

Theorem 2.1. Suppose given any ∞-simplicial coalgebra (X, d, ψ,∇) and SDR-data

(η : (X, d,∇) � (Y, d,∇) : ξ, h)

for differential coalgebras. Then relations (1.5)–(1.8) define the structure of an ∞-simplicial
coalgebra (Y, d, ψ,∇) on (Y, d,∇) and, in addition, determine SDR-data

(η : (X, d, ψ,∇) � (Y, d, ψ,∇) : ξ, h )

for ∞-simplicial coalgebras which extend SDR-data (η : (X, d,∇) � (Y, d,∇) : ξ, h) for differen-
tial coalgebras.

Proof. To any SDR-data (η : (X, d,∇) � (Y, d,∇) : ξ, h) for differential coalgebras there correspond
SDR-data (η̂ : (X, d, d̂,∇) � (Y, d, d̂,∇) : ξ̂, ĥ) for ∞-simplicial coalgebras; in particular, the following
conditions hold:

∇̂ ∪ η̂ = (η̂ ⊗ η̂) ∪ ∇̂, ∇̂ ∪ ξ̂ = (ξ̂ ⊗ ξ̂) ∪ ∇̂, ∇̂ ∪ ĥ = (ĥ⊗ (ξ̂ ∪ η̂) + 1̂⊗ ĥ) ∪ ∇̂.

Using these conditions and relation (2.1), we obtain the following chain of equalities for each summand
η̂ ∪ ψ′ ∪ (ĥ ∪ ψ′)∪n ∪ ξ̂ in (1.5):

∇̂ ∪ (η̂ ∪ ψ′ ∪ (ĥ ∪ ψ′)∪n ∪ ξ̂) = (η̂ ⊗ η̂) ∪ ∇̂ ∪ ψ′ ∪ (ĥ ∪ ψ′)∪n ∪ ξ̂

= (η̂ ⊗ η̂) ∪ (1̂⊗ ψ′ + ψ′ ⊗ 1̂) ∪ ∇̂ ∪ (ĥ ∪ ψ′)∪n ∪ ξ̂

= (η̂ ⊗ (η̂ ∪ ψ′) + (η̂ ∪ ψ′)⊗ η̂) ∪ (ĥ⊗ (ξ̂ ∪ η̂) + 1̂⊗ ĥ) ∪ ∇̂ ∪ ψ′ ∪ (ĥ ∪ ψ′)∪(n−1) ∪ ξ̂

= (η̂ ⊗ (η̂ ∪ ψ′ ∪ ĥ) + (η̂ ∪ ψ′ ∪ ĥ)⊗ η̂) ∪ ∇̂ ∪ ψ′ ∪ (ĥ ∪ ψ′)∪(n−1) ∪ ξ̂ = · · ·
= (1̂⊗ (η̂ ∪ ψ′ ∪ (ĥ ∪ ψ′)∪n ∪ ξ̂) + (η̂ ∪ ψ′ ∪ (ĥ ∪ ψ′)∪n ∪ ξ̂)⊗ 1̂) ∪ ∇̂.

It follows that the map ψ = d̂+ ψ
′

defined by (1.5) satisfies condition (2.4). In a similar way, it can be
shown that the morphisms ξ = ξ̂+ ξ

′
and η = η̂+ η ′ of∞-simplicial modules satisfy condition (2.5) and

the homotopy h = ĥ+ h
′

between these morphisms of ∞-simplicial modules satisfies condition (2.6).
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3. HOMOTOPY UNITAL SUPPLEMENTED A∞-ALGEBRAS
AND TENSOR ∞-SIMPLICIAL COALGEBRAS

First, we recall the necessary definitions and constructions related to the notions of (asymmetric)
operad and of algebra over an operad in the category of differential modules (see, e.g., [6]).

By a differential family, or, briefly, a family E = {E (j)}j≥0 we mean any family of differential
modules (E (j), d), j ≥ 0. We define a morphism f : E ′ → E ′′ of families to be any family of maps
α = {α(j) : (E ′(j), d) → (E ′′(j), d)}j≥0 of differential modules. Given any families E ′ and E ′′, we define
the family E ′ × E ′′ by

(E ′ × E ′′)(j) =
⊕

j1+···+jk=j

E ′(k)⊗ E ′′(j1)⊗ · · · ⊗ E ′′(jk), j ≥ 0.

Clearly, the ×-product of families thus defined is associative; i.e., for any families E , E ′, and E ′′, we have
the isomorphism of families E × (E ′ × E ′′) ≈ (E × E ′)× E ′′.

An (asymmetric) operad (E , γ) is any family E together with a family morphism γ : E × E → E
satisfying the condition γ(γ × 1) = γ(1× γ). Moreover, there is an element 1 ∈ E (1)0 such that, for
each ej ∈ E (j), j ≥ 0, we have γ(1⊗ ej) = ej and, for each ej ∈ E (j), j ≥ 1, we have

γ(ej ⊗ 1⊗ · · · ⊗ 1) = ej .

In what follows, we write elements of the form γ(ek ⊗ ej1 ⊗ · · · ⊗ ejk) as ek(ej1 ⊗ · · · ⊗ ejk). An operad
morphism f(E ′, γ) → (E ′′, γ) is defined as a family morphism f : E ′ → E ′′ satisfying the condition
fγ = γ(f × f).

A canonical example of an operad is the operad (EX , γ) which is defined for any differential mod-
ule (X, d) by

(EX(j), d) = (Hom(X⊗j ;X), d), γ(fk ⊗ fj1 ⊗ · · · ⊗ fjk) = fk(fj1 ⊗ · · · ⊗ fjk).

An algebra over an operad (E , γ), or, briefly, an E -algebra (X, d, α), is any differential mod-
ule (X, d) together with a fixed operad morphism α : E → EX . A morphism f : (X, d, α) → (Y, d, α) of
E -algebras is any map f : (X, d) → (Y, d) of differential modules for which f∗α = f∗α : E → E(X,Y ),
where the family E(X,Y ) is defined by (E(X,Y )(j), d) = (Hom(X⊗j ;Y ), d), and f∗ :EX → E(X,Y ) and
f∗ : EY → E(X,Y ) are the family morphisms induced by f .

An important example of an operad is the Stasheff operad (A∞, γ). As a graded operad, (A∞, γ) is
free with generators πn ∈ A∞(n+ 2)n, n ≥ 0, and at the generators πn+1, n ≥ −1, the differential takes
the values

d(πn+1) =

n+1∑

m=1

m+1∑

t=1

(−1)t(n−m)+n+1πm−1(1⊗ · · · ⊗ 1︸ ︷︷ ︸
t−1

⊗πn−m+1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
m−t+1

). (3.1)

For example, in the case of n = −1; 0; 1, relations (3.1) have the form

d(π0) = 0, d(π1) = π0(π0 ⊗ 1)− π0(1⊗ π0),

d(π2) = π0(π1 ⊗ 1 + 1⊗ π1)− π1(π0 ⊗ 1⊗ 1− 1⊗ π0 ⊗ 1 + 1⊗ 1⊗ π0).

It is easy to see that endowing a differential module (A, d), where A = {An}, n ∈ Z, n ≥ 0, and
d : A• → A•−1, with the structure (A, d, α) of an A∞-algebra is equivalent to specifying a family of
maps {πn = α(πn) : (A

⊗(n+2))• → A•+n | n ∈ Z, n ≥ 0} satisfying relations (3.1) for (A, d).
Recall that a unital differential algebra (A, d, π, ν) is defined as the differential algebra (A, d, π),

where A = {An}, n ∈ Z, n ≥ 0, and d : A• → A•−1, with associative multiplication π : A⊗A → A
together with a map ν : K → A of graded K-modules, where K0 = K and Ki = 0 for i �= 0, which
is called the unit of the differential algebra (A, d, π) and satisfies the conditions

π(ν ⊗ 1) = 1: A = K ⊗A → A, π(1 ⊗ ν) = 1: A = A⊗K → A. (3.2)

Clearly, the unit ν : K → A is completely determined by the element ν(1) ∈ A0, 1 ∈ K, which is called
the unit of the differential algebra (A, d, π) and denoted by 1 ∈ A0.
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Following [4], we now recall the notion of a homotopy unital A∞-algebra [2]. Consider the
operad (Asu

∞〈u, h〉, γ) introduced in [4]. As a graded operad, (Asu
∞〈u, h〉, γ) is an operad with

generators πn ∈ (Asu
∞〈u, h〉)(n + 2)n, where n ≥ 0, 1su ∈ (Asu

∞〈u, h〉)(0)0 , u ∈ (Asu
∞〈u, h〉)(0)0, and

h ∈ (Asu
∞〈u, h〉)(0)1, satisfying the relations

π0(1
su ⊗ 1) = 1, π0(1⊗ 1su) = 1, πn(1

⊗k ⊗ 1su ⊗ 1⊗(n−k+1)) = 0, n > 0, (3.3)

where 0 ≤ k ≤ n+ 1; the differential is defined at the generators specified above by relations (3.1), and

d(1su) = 0, d(u) = 0, d(h) = 1su − u. (3.4)

In the operad (Asu
∞〈u, h〉, γ), consider the suboperad (Ahu

∞ , γ) with generators

τ00 = u ∈ (Asu
∞〈u, h〉)(0)0 , τ∅n = πn−1 ∈ (Asu

∞〈u, h〉)(n + 1)n−1, n ≥ 1,

τ
jq,...,j1
n = πn−1(

j2︷ ︸︸ ︷
1⊗n1

︸︷︷︸
j1

⊗ h⊗ 1⊗n2 ⊗ h⊗ 1⊗n3 · · · ⊗ 1nk ⊗ h⊗ 1⊗nk+1 ⊗ · · · ⊗ 1⊗nq

︸ ︷︷ ︸
jq

⊗ h⊗ 1⊗nq+1)

∈ (Asu
∞〈u, h〉)(n − q + 1)n+q−1, n ≥ 1, q ≥ 1, n ≥ jq > · · · > j1 ≥ 0, ns ≥ 0,

1 ≤ s ≤ q + 1, n1 + · · ·+ nq+1 = n− q + 1, jk = n1 + · · ·+ nk + k − 1, 1 ≤ k ≤ q.

It is worth mentioning for clarity that each jk, 1 ≤ k ≤ q, is the number of all tensor multipliers on the
left of the kth occurence of h counting from the origin of the tensor battery to the right. For example,
using this rule, we readily obtain

τ3,14 = π3(1⊗ h⊗ 1⊗ h⊗ 1), τ3,23 = π2(1⊗ 1⊗ h⊗ h),

τ5,1,05 = π4(h⊗ h⊗ 1⊗ 1⊗ 1⊗ h).

In [4], the element τ jq,...,j1n is denoted by mn1,n2,...,nq+1 , where the numbers n1, . . . , nq+1 are the same

as in the above expression for τ jq,...,j1n . The values of the differential at the generators τ
jq,...,j1
n , where

n ≥ 0, q ≥ 0, n+ q ≥ 1, and τ
jq,...,j1
n = τ∅n = πn−1 for q = 0 and n ≥ 1, are completely determined

by (3.1), (3.4) and (3.3). It is easy to check that

d(τ00 ) = 0, d(τ∅1 ) = 0, d(τ01 ) = 1− π0(τ
0
0 ⊗ 1),

d(τ11 ) = 1− π0(1⊗ τ00 ), d(τ1,01 ) = τ01 τ
0
0 − τ11 τ

0
0 .

(3.5)

Moreover, a straightforward calculation shows that, for any n ≥ 0 and q ≥ 0, we have

d(τ
jq ,...,j1
n+2 ) =

n+1∑

m=1

m+1∑

t=1

(−1)λτ
jq−(n−m+2),...,jk−(n−m+2),jl,...,j1
m

× (1⊗ · · · ⊗ 1︸ ︷︷ ︸
t−1−l

⊗τ
jk−1−(t−1),...,jl+1−(t−1)
n−m+2 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

m−t−q+k

)

+

q∑

i=1

(−1)n+iτ
jq,...,ji+1,ji−1,...,j1
n+2 (1⊗ · · · ⊗ 1︸ ︷︷ ︸

ji−(i−1)

⊗τ00 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−ji−q+i+2

), (3.6)

where λ = t(n−m) + n+ 1 + (n−m)(q − k + l + 1) + q(k − l) + kl and the summation in the first
term on the right-hand side is over all numbers k ≥ 1 and l ≥ 0 such that, for each fixed t,

0 ≤ j1 < · · · < jl ≤ t− 2 < jl+1 < · · · < jl+(k−l−1)

= jk−1 < t+ n−m+ 2 ≤ jk < · · · < jq ≤ n+ 2.

Obviously, for q = 0, k = 1, and l = 0, relation (3.6) transforms into (3.1).
The algebras (A, d, α) over the operad (Ahu

∞ , γ), i.e., the Ahu
∞ -algebras, are called homotopy unital

A∞-algebras.
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It is easy to see that endowing a differential module (A, d), where A = {An}, n ∈ Z, n ≥ 0, and
d : A• → A•−1, with the structure of an Ahu

∞ -algebra (A, d, α) is equivalent to specifying a family of
maps

{τ jq ,...,j1n = α(τ
jq ,...,j1
n ) : (A⊗(n−q+1))• → A•+n+q−1 | n ∈ Z, n ≥ 0, q ≥ 0, n+ q ≥ 1},

n− q + 1 ≥ 0, jq, . . . , j1 ∈ Z, n ≥ jq > · · · > j1 ≥ 0,

satisfying relations (3.5) and (3.6) for (A, d). The left-hand sides of relations (3.5) and (3.6) for the maps
τ
jq,...,j1
n : (A⊗(n−q+1))• → A•+n+q−1 are calculated by the usual formula

d(τ
jq ,...,j1
n ) = dτ

jq,...,j1
n + (−1)n+qτ

jq,...,j1
n d.

In [4], it was shown that relations (3.5) and (3.6) are equivalent to the structural relations for homotopy
unital A∞-algebras given in [2].

Note that the third and fourth equalities in (3.5) say that the map τ00 : K → A satisfies (3.2) up to
homotopy; i.e., up to homotopy, the map τ00 is the unit of the differential homotopy associative algebra
(A, d, π0).

Of course, relations (3.6) are very cumbersome. However, later on (after the proof of Theorem 3.1),
we describe a simple simplicial method for calculating these relations.

Definition 3.1. A homotopy unital supplemented A∞-algebra or, briefly, an supplemented
Ahu

∞ -algebra, is defined as any Ahu
∞ -algebra (A, d, τ

jq ,...,j1
n ) together with maps ε1, ε2 : A → K of graded

modules satisfying the relations

εid = 0, εiτ
0
0 = 1, εiπ0 = π(εi ⊗ εi), i = 1, 2, (3.7)

where π0 = τ∅1 and π is multiplication in the base ring K.

Note that the notion of an supplemented Ahu
∞ -algebra generalizes the notion of an supplemented

associative differential algebra with unit, i.e., an associative differential algebra with unit on which a
map of differential algebras to the base ring K is defined. Indeed, if an supplemented Ahu

∞ -algebra
(A, d, εi, τ

jq ,...,j1
n ) is such that ε1 = ε2 = ε, τ00 = ν �= 0, τ∅1 = π0 �= 0, and τ

jq,...,j1
n = 0 for all other n

and jq, . . . , j1, then the quintuple (A, d, π0, ν, ε) is an supplemented associative differential algebra with
unit.

It is easy to see that, for any supplemented Ahu
∞ -algebra (A, d, εi, τ

jq,...,j1
n ), we have εiτ

jq,...,j1
n = 0,

n+ q > 1, from dimensional considerations. It is also easy to see that each connected Ahu
∞ -algebra

(A, d, τ
jq ,...,j1
n ) (“connected” means that A0 = K) is an supplemented Ahu

∞ -algebra (A, d, εi, τ
jq,...,j1
n ),

where ε1 = ε2 : A0 = K → K is the identity map of the base ring K and ε : Am → K is the zero map
for all m > 0.

We proceed to specifying a relationship between supplementedAhu
∞ -algebras and tensor ∞-simplicial

coalgebras. Given an supplemented Ahu
∞ -algebra (A, d, εi, τ

jq ,...,j1
n ), consider the tensor differential

bigraded coalgebra (T (A), d,∇), where T (A)n,m = (A⊗n)m, n ≥ 0, m ≥ 0, d : T (A)n,• → T (A)n,•−1

is an ordinary differential in the tensor product, A⊗0 = K is the base ring, and the comultiplication
∇ : T (A)∗,• → (T (A)⊗ T (A))∗,• is defined by

∇(a1 ⊗ · · · ⊗ an) =
n∑

i=0

(−1)ki(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ an),

where ki = i(deg(ai+1) + · · · + deg(an)). On the bigraded module T (A), we define a family of maps

(̃∂s) = {(∂s)n(i1,...,ip|jq,...,j1) : T (A)n,m → T (A)n−p+q,m+p+q−1},

where p ≥ 0, q ≥ 0, p+ q ≥ 1, 0 ≤ i1 < · · · < ip ≤ n+ q, and n+ q − 1 ≥ jq > · · · > j1 ≥ 0, by the
following rules:
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(1) for p ≥ 1 and q = 0, we set

(∂s)n(i1,...,ip|jq,...,j1) = (∂s)n(i1,...,ip|∅) = ∂n
(i1,...,ip)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−1)m−1(ε1 · 1)⊗ 1⊗(n−2) if p = 1, i1 = 0,

(−1)m−11⊗(n−2) ⊗ (1 · ε2) if p = 1, i1 = n,

(−1)p(m−1)1⊗(k−1) ⊗ τ∅p ⊗ 1⊗(n−p−k)

if 1 ≤ k ≤ n− p and (i1, . . . , ip) = (k, k + 1, . . . , k + p− 1),

0 otherwise,

(3.8)

where (ε1 · 1)(a1 ⊗ a2) = ε1(a1)a2, and (1 · ε2)(a1 ⊗ a2) = a1ε2(a2);

(2) for p = 0 and q ≥ 1, we set

(∂s)n(i1,...,ip|jq,...,j1) = (∂s)n(∅|jq,...,j1) = sn(jq,...,j1)

=

{
(−1)m1⊗j1 ⊗ τ00 ⊗ 1⊗(n−j1) if q = 1,

0 if q > 1;
(3.9)

(3) for p ≥ 1 and q ≥ 1, we set

(∂s)n(i1,...,ip|jq,...,j1)

=

⎧
⎪⎨

⎪⎩

(−1)(p+q)(m+q−1)1⊗(k−1) ⊗ τ
jq−(k−1),...,j1−(k−1)
p ⊗ 1⊗(n−p+q−k)

if 1 ≤ k ≤ n− p+ q, (i1, . . . , ip) = (k, k + 1, . . . , k + p− 1), j1 ≥ k − 1,

0 otherwise.

(3.10)

Theorem 3.1. For any supplemented Ahu
∞ -algebra (A, d, εi, τ

jq,...,j1
n ), the quadruple (specified

above) (T (A), d,∇, (̃∂s)) is an ∞-simplicial coalgebra.

Proof. First, we show that the triple (T (A), d, (̃∂s)) is an ∞-simplicial module. We must check
relations (1.9) and (1.10) for the family of maps

{(∂s)n(i1,...,ip|jq,...,j1) : T (A)n,m → T (A)n−p+q,m+p+q−1}

defined by (3.8)–(3.10). For the maps

(∂s)p−q+1
(i1,...,ip|jq,...,j1) : (A

⊗(p−q+1))c → Ac+p+q−1, 0 ≤ p ≤ 1, p ≥ jq > · · · > j1 ≥ 0,

relations (1.9) and (1.10) follow in an obvious way from (3.5), (3.7), and (3.1) with n = −1, 0. Now, let
us check (1.9) for the maps

(∂s)n+3−q
(1,2,...,n+2|jq,...,j1) = (−1)(n+2+q)(c+q−1)τ

jq,...,j1
n+2 : (A⊗(n+3−q))c → Ac+n+q+1,

n ≥ 0, q ≥ 0, n+ 2 ≥ jq > · · · > j1 ≥ 0.

It follows from (3.8)–(3.10) that, in the case under consideration, relation (1.9) can be written in the
form

d((∂s)n+3−q
(1,2,...,n+2|jq,...,j1)) =

n+1∑

m=1

m+1∑

t=1

(−1)sign(σm,t,k,l)+1(∂s)m−q+k−l
(1,2,...,m|jq−(n−m+2),...,jk−(n−m+2),jl,...,j1)

× (∂s)n+3−q
(t−l,t−l+1...,t−l+n−m+1|jk−1−l,...,jl+1−l)

+

q∑

i=1

(−1)sign(σi)+1(∂s)n+4−q
(1,2,...,n+2|jq,...,ji+1,ji−1,...,j1)

sn+3−q
(ji−(i−1)),

(3.11)
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where

d((∂s)n+3−q
(1,2,...,n+2|jq,...,j1)) = d(∂s)n+3−q

(1,2,...,n+2|jq,...,j1) + (∂s)n+3−q
(1,2,...,n+2|jq,...,j1)d

and the summation in the first term on the right-hand side is over all numbers k ≥ 1 and l ≥ 0 satisfying,
for each fixed t, the inequalities

0 ≤ j1 < · · · < jl ≤ t− 2 < jl+1 < · · · < jk−1 < t+ n−m+ 2 ≤ jk < · · · < jq ≤ n+ 2.

Each permutation σi ∈ Σn+2+q in the second term on the right-hand side of (3.11) breaks every element
a1 ⊗ · · · ⊗ an+2 ⊗ bq ⊗ · · · ⊗ b1 ∈ (SM)n+2+q into three blocks as

(a1 ⊗ · · · ⊗ an+2 ⊗ bq ⊗ · · · ⊗ bi+1)⊗ (bi)⊗ (bi−1 ⊗ · · · ⊗ b1)

and transposes (in the sense of the action of Σn+2+q on (SM)n+2+q) the second and the third block.
Each permutation σm,t,k,l ∈ Σn+2+q in the first term on the right-hand side of (3.11) is the product of
the permutations (νm,k,l)(�m,k)(σm,t) acting on (SM)n+2+q by the following rules:

(1) σm,t ∈ Σn+2+q breaks each element a1 ⊗ · · · ⊗ an+2 ⊗ bq ⊗ · · · ⊗ b1 into four blocks as

(a1 ⊗ · · · ⊗ at−1)⊗ (at ⊗ · · · ⊗ at+n−m+1)⊗ (at+n−m+2 ⊗ · · · ⊗ an+2)⊗ (bq ⊗ · · · ⊗ b1)

and transposes (in the sense of the action of Σn+2+q on (SM)n+2+q) the second and the third
block;

(2) �m,k ∈ Σn+2+q breaks each element a1 ⊗ · · · ⊗ an+2 ⊗ bq ⊗ · · · ⊗ b1 into four blocks as

(a1 ⊗ · · · ⊗ am)⊗ (am+1 ⊗ · · · ⊗ an+2)⊗ (bq ⊗ · · · ⊗ bk)⊗ (bk−1 ⊗ · · · ⊗ b1)

and transposes (in the sense of the action of Σn+2+q on (SM)n+2+q) the second and the third
block;

(3) νm,k,l ∈ Σn+2+q breaks each element a1 ⊗ · · · ⊗ an+q−k+3 ⊗ bk−1 ⊗ b1 into three blocks as

(a1 ⊗ · · · ⊗ am+q−k+1)⊗ (am+q−k+2 ⊗ · · · ⊗ an+q−k+3 ⊗ bk−1 ⊗ · · · ⊗ bl+1)⊗ (bl ⊗ · · · ⊗ b1)

and transposes (in the sense of the action of Σn+2+q on (SM)n+2+q) the second and the third
block.

It is easy to check that the result of the action of each permutation σi on any ordered element of the
form α = [∂1]⊗ [∂2]⊗ · · · ⊗ [∂n+2]⊗ [sjq ]⊗ · · · ⊗ [sj1 ] is the element

β = [∂1]⊗ [∂2]⊗ · · · ⊗ [∂n+2]⊗ [sjq ]⊗ · · · ⊗ [sji+1 ]⊗ [sji−1 ]⊗ · · · ⊗ [sj1 ]⊗ [sj1−(i−1)].

Clearly, sign(β) = i− 1 ≡ sign(σi) (mod 2). Direct calculations show also that the result of the action
of each permutation σm,t,k,l on any ordered element of the form

α = [∂1]⊗ [∂2]⊗ · · · ⊗ [∂n+2]⊗ [sjq ]⊗ · · · ⊗ [sj1 ]

for which jk−1 < t+ n−m+ 2 ≤ jk and jl ≤ t− 2 < jl+1 is the element

γ = [∂1]⊗ [∂2]⊗ · · · ⊗ [∂m]⊗ [sjq−(n−m+2)]⊗ · · · ⊗ [sjk−(n−m+2)]⊗ [sjl ]⊗ · · · ⊗ [sj1 ]

⊗ [∂t−l]⊗ [∂t−l+1]⊗ · · · ⊗ [∂t−l+n−m+1]⊗ [sjk−1−l]⊗ · · · ⊗ [sjl+1−l].

It is easy to show that, for γ, we have

sign(γ) ≡ t(n−m) + n+ (n−m)(q − k + l + 1) + nm+ kl ≡ sign(σm,t,k,l) (mod 2).

Multiplying both sides of (3.6) by (−1)(n+2+q)(c+q−1), taking into account the last congruence, and
using (3.8)–(3.10), we obtain (3.11). Thus, we have checked (1.9) for the maps (∂s)n+3−q

(1,2,...,n+2|jq,...,j1)
with n ≥ 0 and n+ 2 ≥ jq > · · · > j1 ≥ 0. In a similar way, relations (1.9) are verified for the
maps (∂s)n(i1,...,ip|jq,...,j1) with p ≥ 2 in the general case. Thus, for each supplemented Ahu

∞ -algebra
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(A, d, εi, τ
jq ,...,j1
n ), the triple (T (A), d, (̃∂s)) is an ∞-simplicial module. Let us endow this ∞-simplicial

module with the comultiplication ∇ : T (A)∗,• → (T (A)⊗ T (A))∗,• specified above. A straightforward

calculation using (2.3) and (3.8)–(3.10) shows that, for each map (∂s)n(i1,...,ip|jq,...,j1) ∈ (̃∂s), we have

∇(∂s)n(i1,...,ip|jq,...,j1) = (∂s)n(i1,...,ip|jq,...,j1)∇.

Since (T (A), d,∇) is a differential coalgebra, it follows that

∇(∂s)n(i1,...,ip|jq,...,j1) = (∂s)n(i1,...,ip|jq,...,j1)∇

if and only if condition (2.4) holds; therefore, the quadruple (T (A), d,∇, (̃∂s)) is an ∞-simplicial
coalgebra.

The proof of Theorem 3.1 given above provides a convenient simplicial method for calculating (3.6).
Indeed, as seen from this proof, d(τ jq,...,j1n+2 ) with n ≥ 0 and q ≥ 0 is calculated as follows.

(1) Write the simplicial expression ∂1∂2 . . . ∂n+2sjq . . . sj1 from τ
jq,...,j1
n+2 .

(2) Write out the element ∂1∂2 . . . ∂n+2sjq . . . sj1 and all elements obtained from it by using the
simplicial relations between faces and degeneracies, except those of the forms ∂isi = 1 and ∂i+1si = 1.

(3) For each element γ = a1 · · · an+q+2 obtained in (2), find all partitions (if they exist) of γ into two
blocks (a1 · · · az) | (az+1 · · · an+q+2) of the forms ∂1∂2 · · · ∂mskμ · · · sk1 , where m ≥ kμ > · · · > k1 ≥ 0,
m ≥ 1, and μ ≥ 0, and ∂t∂t+1 · · · ∂t+p−1slλ · · · sl1 , where p+ t− 1 ≥ lλ > · · · > l1 ≥ t− 1, t ≥ 1, p ≥ 1,
and λ ≥ 0, respectively.

(4) For each partition (∂1∂2 · · · ∂mskμ · · · sk1) | (∂t∂t+1 · · · ∂t+p−1slλ · · · sl1) of γ = a1 · · · an+q+2

found in (3), write the corresponding element

(−1)sign(γ)+1+qμ+nmτ
kμ,...,k1
m (1⊗ · · · ⊗ 1︸ ︷︷ ︸

t−1

⊗τ lλ−(t−1),...,l1−(t−1)
p ⊗ 1⊗ · · · ⊗ 1),

where sign(γ) = sign([a1]⊗ · · · ⊗ [an+q+2]). Summing all such elements over all partitions obtained in
(3) for all elements obtained in (2), calculate the first sum on the right-hand side of (3.6).

(5) For each element γ = a1 · · · an+q+2 obtained in (2), find a partition (if it exists) of this element into
two blocks (a1 · · · an+q+1) | (an+q+2), where the first block has the form (∂1∂2 · · · ∂n+2skq−1 · · · sk1) with
n+ 2 ≥ kq−1 > · · · > k1 ≥ 0 and the second block has the form (si) with i ≥ 0.

(6) For each partition (∂1∂2 · · · ∂n+2skq−1 · · · sk1)|(si) found in (5) for γ = a1 · · · an+q+2, write the
corresponding element

(−1)sign(γ)+1+nτ
kq−1,...,k1
n+2 (1⊗ · · · ⊗ 1︸ ︷︷ ︸

i

⊗τ00 ⊗ 1⊗ · · · ⊗ 1),

where sign(γ) = sign([a1]⊗ · · · ⊗ [an+q+2]). Summing all such elements over all partitions obtained in
(5) for all elements obtained in (2), calculate the second sum on the right-hand side of (3.6).

For example, using the simplicial method for writing relations (3.6) described above, we readily obtain

d(τ02 ) = τ01π0 + π0(τ
0
1 ⊗ 1)− π1(τ

0
0 ⊗ 1⊗ 1),

d(τ2,02 ) = −τ11 τ
0
1 − τ01 τ

1
1 − τ22 (τ

0
0 ⊗ 1) + τ02 (1⊗ τ00 ).

Now let us consider the situation opposite to that considered above, where the tensor differential
coalgebra (T (A), d,∇) of any differential module (A, d) is endowed with the structure of an ∞-simplicial

coalgebra (T (A), d,∇, (̃∂s)). It follows from (2.4) that all maps (∂s)n(i1,...,ip|jq,...,j1) ∈ (̃∂s) satisfy the
condition

∇(∂s)n(i1,...,ip|jq,...,j1) = (∂s)n(i1,...,ip|jq,...,j1)∇.

This condition and (2.3) imply that, to specify a family of maps (̃∂s), it suffices to specify only maps

∂1
(i) : T (A)1,• = A• → K• = T (A)0,•, 0 ≤ i ≤ 1,
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s0(0) : T (A)0,• = K• → A• = T (A)1,•,

(∂s)p−q+1
(1,...,p|jq,...,j1) : T (A)p−q+1,• = (A⊗(p−q+1))• → A•+p+q−1 = T (A)1,•+p+q−1,

p ≥ 1, q ≥ 0, p ≥ jq > · · · > j1 ≥ 0,

because the remaining maps (∂s)n(i1,...,ip|jq,...,j1) : T (A)n,m → T (A)n−p+q,m+p+q−1 in the family (∂s) are
uniquely determined by (3.8)–(3.10), provided that

εi = (−1)m−1∂1
(i), τ00 = s0(0), τ

jq,...,j1
p = (−1)(p+q)(m+q−1)(∂s)p−q+1

(1,...,p|jq,...,j1). (3.12)

Let us show that the quadruple (A, d, εi, τ
jq ,...,j1
p ), where εi and τ

jq,...,j1
p are specified by (3.12), is an

supplemented Ahu
∞ -algebra. It is required to check (3.5)–(3.7). Relations (3.5) are obtained from

τ∅1 = (−1)m−1∂2
(1), τ01 = (∂s)1(1|0), τ11 = (∂s)1(1|1), τ1,01 = (∂s)0(1|1,0)

by using (1.9), (1.10), and (3.8)–(3.10). Relations (3.6) are obtained from (3.11) and (3.8)–(3.10)
by using an argument similar to that in the proof of Theorem 3.1. Let us prove (3.7). Obviously,
d(∂1

(0)) = 0 and d(∂1
(1)) = 0. Since (∂s)0(0|0) = (∂s)0(1|0) = 0, it follows that ∂1

(0)s
0
(0) = ∂1

(1)s
0
(0) = 1, and

since ∂2
(0,1) = ∂2

(1,2) = 0, it follows that ∂1
(0)∂

2
(1) = ∂1

(0)∂
2
(0) and ∂1

(1)∂
2
(2) = ∂1

(1)∂
2
(1). These relations and

(3.8)–(3.10) imply (3.7). Thus, the quadruple (A, d, εi, τ
jq,...,j1
p ) under consideration is an supplemented

Ahu
∞ -algebra. Applying Theorem 3.1, we obtain the following result.

Theorem 3.2. Endowing a differential module (A, d) with the structure of an supplemented
Ahu

∞ -algebra (A, d, εi, τ
jq,...,j1
p ) is equivalent to endowing the corresponding tensor differential

coalgebra (T (A), d,∇) with the structure of an ∞-simplicial coalgebra (T (A), d, ψ,∇).

In what follows, by a connected differential module (A, d) we understand any nonnegatively graded
differential module satisfying the condition A0 = K, where K is the base ring.

Corollary 3.1. Endowing a connected differential module (A, d) with the structure of an
Ahu

∞ -algebra (A, d, τ
jq ,...,j1
p ) is equivalent to endowing the corresponding tensor differential

coalgebra (T (A), d,∇) with the structure of an ∞-simplicial coalgebra (T (A), d, ψ,∇).

Definition 3.2. By a morphism f : (X, d, εi, τ
jq ,...,j1
n ) → (Y, d, εi, τ

jq,...,j1
n ) of supplementedAhu

∞ -alge-
bras we mean a morphism of the corresponding ∞-simplicial coalgebras

f : (T (X), d, ψ,∇) → (T (Y ), d, ψ,∇).

Definition 3.3. By a homotopy h : (X, d, εi, τ
jq ,...,j1
n ) → (Y, d, εi, τ

jq,...,j1
n ) between morphisms

f, g : (X, d, εi, τ
jq,...,j1
n ) → (Y, d, εi, τ

jq,...,j1
n ) of supplemented Ahu

∞ -algebras we mean a homotopy
h : (T (X), d, ψ,∇) → (T (Y ), d, ψ,∇) between the corresponding morphisms

f, g : (T (X), d, ψ,∇) → (T (Y ), d, ψ,∇)

of ∞-simplicial coalgebras. SDR-data for supplemented Ahu
∞ -algebras are the corresponding

SDR-data for ∞-simplicial coalgebras.

The following theorem, which is a corollary of Theorems 2.1 and 3.2, asserts the homotopy invariance
of the structure of an supplemented Ahu

∞ -algebra under homotopy equivalences of the type of SDR-data
for differential modules.

Theorem 3.3. Suppose given an supplemented Ahu
∞ -algebra (X, d, εi, τ

jq ,...,j1
n ), SDR-data

(η : (X, d) � (Y, d) : ξ, h)

for differential modules, and the SDR-data

(T (η) : (T (X), d,∇) � (T (Y ), d,∇) :T (ξ), T (h))
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for tensor differential coalgebras corresponding to the SDR-data (η : (X, d) � (Y, d) : ξ, h)
for differential modules. Then relations (1.5)–(1.8) define the structure of an supplemented
Ahu

∞ -algebra (Y, d, εi, τ
jq,...,j1
n ) on (Y, d) and SDR-data

(T (η) : (X, d, εi, τ
jq,...,j1
n ) � (X, d, εi, τ

jq,...,j1
n )) :T (ξ), T (h) )

for supplemented Ahu
∞ -algebras which extend the SDR-data for tensor differential coalgebras

specified above.

Understanding morphisms, homotopies, and SDR-data for connected Ahu
∞ -algebras as the cor-

responding morphisms, homotopies, and SDR-data for supplemented Ahu
∞ -algebras, we obtain the

following obvious corollary of Theorem 3.3.

Corollary 3.2. Suppose given a connected Ahu
∞ -algebra (X, d, , τ

jq ,...,j1
n ), SDR-data

(η : (X, d) � (Y, d) : ξ, h)

for connected differential modules, and the SDR-data

(T (η) : (T (X), d,∇) � (T (Y ), d,∇) :T (ξ), T (h))

for tensor differential coalgebras corresponding to the given SDR-data (η : (X, d) � (Y, d) : ξ, h)

for differential modules. Then relations (1.5)–(1.8) define the structure of an Ahu
∞ -algebra

(Y, d, τ
jq,...,j1
n ) on (Y, d) and SDR-data

(T (η) : (X, d, τ
jq ,...,j1
n ) � (X, d, τ

jq,...,j1
n )) :T (ξ), T (h) )

for Ahu
∞ -algebras extending the SDR-data for tensor differential coalgebras specified above.

It is worth mentioning that Corollary 3.2, unlike the corresponding assertion in [4], provides
SDR-data for Ahu

∞ -algebras rather than only the quasi-isomorphism of Ahu
∞ -algebras.

In conclusion, we mention that Corollary 3.2 can be proved without the connectedness assumption
on the differential modules. To this end, it suffices to consider the colored algebra (S′, π) obtained from
the colored algebra (S, π) of faces and degeneracies by “forgetting” the generators ∂n

0 and ∂n
n with n ≥ 0

and all relations containing them. Replacing the colored algebra (S, π) by the colored algebra (S′, π) in
all of the above considerations, we obtain a proof of Corollary 3.2 without the connectedness assumption
on the differential modules.
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