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[t is well known [1] that endowing a graded module with the structure of an A, -algebra is equivalent
to endowing the tensor bigraded coalgebra of this module with the structure of a differential bigraded
coalgebra. The bigrading of this tensor coalgebra is usually convolved, i.e., the tensor algebra of the
suspension of the graded module is considered. The equivalence mentioned above is a very useful tool
for investigating the homotopy and category properties of Ay, -algebras, because it reduces studying
these properties to examining the corresponding properties of differential free coalgebras.

On the other hand, in [2], the notion of a homotopy unital A, -algebra was introduced, which is the
homotopy counterpart of the notion of a unital (i.e., having a unit) associative differential algebra. As
well as in [1], there arises the important and interesting question of describing an additional structure on
the tensor bigraded coalgebra of a graded module such that endowing the coalgebra with this structure
is equivalent to endowing the given module with the structure of a homotopy unital A.-algebra.

This paper is devoted to the development of the homotopy theory of co-simplicial coalgebras; in terms
of this theory, an answer to the question posed above is given. The paper consists of three sections. In
the first section, we recall the necessary definitions, constructions, and assertions from [3] related to
the notion of a differential co-simplicial module, which is the homotopy invariant counterpart of the
notion of a differential simplicial module. In the second section, we describe the construction of a tensor
product of co-simplicial modules and introduce the notion of an co-simplicial coalgebra. We also prove
the homotopy invariance of the structure of an co-simplicial coalgebra under homotopy equivalences
of the type of SDR-data (strong deformation retractions of special form) of differential coalgebras.
In the third section, we introduce the notion of a homotopy unital supplemented A,,-algebra, which
is a homotopy generalization of the notion of an supplemented associative algebra with unit. In
the case of connected graded modules, i.e., nonnegatively graded modules for which the module of
elements of grade zero is the base ring, the notions of a homotopy unital supplemented A.,-algebra
and a homotopy unital Ay.-algebra coincide. It is proved that endowing a graded module with the
structure of a homotopy unital supplemented A, -algebra is equivalent to endowing the tensor bigraded
coalgebra of this module with the structure of an co-simplicial coalgebra. This statement, as applied to
connected graded modules, answers the above-posed question about an additional structure on a tensor
bigraded coalgebra. On the basis of this equivalence, we obtain a simplicial method for calculating
structural relations for homotopy unital supplemented A,,-algebras and, in particular, for homotopy
unital Ao -algebras, which is simpler than the method for calculating structural relations proposed in[4].
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We also apply this equivalence to prove the homotopy invariance of the structure of a homotopy unital
supplemented A, -algebra; in particular, for the case of connected graded modules, we obtain a new, in
comparison with [4], proof of the homotopy invariance of the structure of a homotopy unital A, -algebra.

All modules and maps of modules considered in this paper are, respectively, K -modules and K -linear
maps of modules, where K is any commutative ring with unit.

1. COLORED ALGEBRAS OF SIMPLICIAL FACES AND DEGENERACIES
AND oco-SIMPLICIAL MODULES

In what follows, by a colored graded module X we mean any family of graded modules
X ={X(s,t)m}, m € Z, indexed by all pairs of elements (s,t) € I x I, where I is a set of nonnegative
integers. A map f: X — Y of colored graded modules is any family of maps

f={f(s,t) : X(s,t) = Y(s,t)}ster

of graded modules.

The tensor product of colored graded modules X and Y is defined as the colored graded module
X ® Y for which

XeY)(s,hn=E P X(s.k)p @Y (k,t),.

kel pt+g=m

A colored graded algebra (A, ) is any colored graded module A endowed with a multiplication
m: A®A— A, which is a map of colored graded modules satisfying the associativity condition
T(r®1l)=r(1®mr).

The unit of a colored algebra (A, ) is a family 1, = {1y }xer of elements 1 € A(k, k)¢ such that
m(ly ®a) = a=m(a® 1;) for each element a € A(s, t),,, where s,t € I and m € Z.

In what follows, by K; we denote the graded module defined by the relations Kj(s,s),, = K for
m=0ands € I, Ki(s,s), =0form # 0and s € I,and K;(s,t),, = 0fors # t and m € Z and colored
by colors from I. [t is easy to see that, using multiplication in the ring K, we can consider K7 as a colored
graded algebra (K, 7).

The base colored graded algebra in this paper is the colored algebra (S, 7) of simplicial faces and de-
generacies considered in [3]. The colored algebra (.S, ) is generated by elements 9] € S(n — 1,n)p with
n—1lelands} € S(n+1,n)owithn € Iandi € Z,0 < i < n, subject to the simplicial commutation
relations

oplon =ontlop,  i<j, m—1€l, (1.1)
silst = smHLsn, i<j, nel, (1.2)

stTiop,  i<j, m—1e€l,
st =91, i=j, i=j+1, mnel, (1.3)

sty i>j+1, n—1€l,

where 1, = {1, }ner is the unit of the colored algebra (S, ) and ab = 7(a ® b), a,b € (S, 7).

A colored graded coalgebra (C,V) is defined as the colored graded module C = {C(s,t)m}s ter,
m € Z, m > 0, together with a comultiplication V: C' = C' ® C, which is a map of colored graded
modules satisfying the condition (V ® 1)V = (1 ® V)V. The notions of a counit e: C' — Ky and a
cosupplementation v: K; — C for a colored graded coalgebra (C, V) are defined in the standard way.

A curved colored coalgebra (C,V,¥) or, briefly, a colored 9-coalgebra is a graded colored
coalgebra (C, V) together with a map ¥: Co — (K7)e—2 of colored graded modules which has degree
(—2) and satisfies the condition

19(0/2)024—2 = C;m—zﬁ(clz/)
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HOMOTOPY PROPERTIES OF oco-SIMPLICIAL COALGEBRAS 65

for all ¢, € C(s,t), with n>2 and s,t € I, here the elements ¢, € C(s,s)2, c_5 € C(s,t)n—2,
ch_o € C(s,t)n—2,and cj € C(t, 1)z are determined from ¢, by the relation

Vien) =+ ch@cp ot -+ o@ch+--€(CC)(s,t).
The map 9 is called the curvature of the colored coalgebra (C, V).

In what follows, by the counit and the cosupplementation of a colored ¥-coalgebra (C,V,9) we
understand those of the graded color coalgebra (C, V).

The base colored ¥-coalgebra in this paper is the colored ¥-coalgebra (S', V, %) considered in [3],
which is Koszul dual to the quadratic-scalar colored algebra (S, ).

Let us describe (S', V, ). First, we recall that the suspension of a colored graded module X is the
colored graded module SX defined by (SX)(s,t)m+1 = X(s,t)m forany s, € I. The elements of SX
are traditionally denoted by [z], where z € X.

Let M denote the colored graded module of the generators of the colored algebra (S, 7). Thus, M is
determined by the following conditions:

(1) M(s,t)y, =0fors,t € I andm > 0;

(2) M(s,t)o =0for(s,t) #(n—1,n),n—1¢€ I,and (s,t) # (n+1,n),n € I;

(3) M(n —1,n)o is the free K-module with generators 9, wheren —1 € I and 0 <i < n;
(4) M(n+ 1,n)p is the free K-module with generators s}', where n € I and 0 < i < n.

For this module M and its suspension SM, consider the rearrangement map
T: SM®SM — SM ® SM
of colored graded modules defined at the generators of the colored graded module SM ® SM by

ot arl, P < 4, —-2€l,
T®¢w®@b={gf®[ﬁ A
@ [of], i>4, n-2€l,

®

®[sp], i<j nel,
®[stq], i>7, mnel,
®l[or], i<j, nmn—1€l,
@], i>j+1, n—-1el,

T(opes) =brels], 20, nel,

T(op @ [sf) =07 @ [sf], >0, nel,

T([S?_l] ® [851]) — [8]—:_11] ® [Sz ]7 Z < .7'7 n €1,
@ [sh, i24 n—lel.

It is easy to see that the map T satisfies the condition T2 = id.

Let ¥,, be the symmetric group of permutations on 1,2,...,n. We define the action of each
transposition 7, = (k + 1,k) € ¥,,1 < k < n — 1, on the colored graded module (SM)®" by

Tk([aa] @ -~ @ an]) =[] ® - @ T([ax] © [ag1]) © - - @ [an],

where [a1], ..., [ay] are any generators of SM. A straightforward calculation by the formulas for the
rearrangement map T shows that the actions of the transpositions 7, on (SM)®" satisfy the relations

T,?zid, 1<k <n, TeTh+1Tk = Tht1TkTh+1, 1<k <n—2,
TeTm = TmTk, 1<k<n-1, 1<m<n-1, |k—m|>2.
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[t follows that the standard procedure for decomposing any permutation o € ¥,, into a product
Tk, Thy Of transpositions of neighboring numbers determines a left action
v: B, x (SM)®" — (SM)®"
of the group ¥, on the colored graded module (SM)®™ by the rule
v(o,[a] @ @ [an]) = 7i, (- (T ([a1] @ -~ @ [an])) - --).

The above relations for the actions of 7, imply that the action v does not depend on the choice of
the decomposition of ¢ into a product of transpositions of neighboring numbers. It is easy to see
that (SM)®" contains elements whose isotropy groups with respect to this action of ¥,, on (SM)®"
are not trivial. Given any element [a;] ® - -+ ® [a,] € (SM)®", let

O] ® -+ @ [an]) € (SM)*"

denote its orbit under the action of 3,, on (SM)®™ specified above.
It follows from the definition of the rearrangement map 7" that the orbit O([a1] ® --- ® [ax]) of any
element [a1] ® - - @ [ax] € (SM)®*(m,n), m,n € I, contains precisely one element of the form

[8inl+q—p+l] R ® [8Z+q] ® [S;jbq-l-q—l] Q- ® [8?1]7

wherep >0,¢>0,p+q=k>1,m=n+q—p,i1 <--- <ip andj, > --- > ji. In what follows, we
refer to elements of (SM)®*  k > 1, of this form as ordered elements.

Recall the description of the colored 9-coalgebra (S', V,#9) given in[3]. The colored graded module S'
is defined by the conditions

(1) (SH®) (m,n); =0forl # k, k> 1,and n,m € I;

(2) (SH®) (m,n);, with k > 1 and n,m € I is the free K-module with generators

LT AR R SR R ] = S (-1 o] @ @ apagls (14)
O(a)
where o = [/ P @ . @ [82)”] ® [syjq_l] ®--- @ |[s} ] is any ordered element, k = p + ¢,
m=n+q—p,and O(a) = {{a1] ® - - - @ [ap4]} is the orbit of a; the exponent e in (1.4)is defined
by

e = sign([ar] ® -~ @ [apaq]) =61+ Fip+ i1+ FJgF U+ + g,

where the numbers [y, ..., l,14 are determined by the relation

k k
(] ® - @ lapsg) = '] @ - @ [ 1]

in which I/l,ji is 8{? or sZi forl1 <i<p+gq, kprqg =n,and ylkll is 81"1”1 or sl"f_l.
For example, it follows from (1.4) that
[P A 051 A [s5] = [0F] @ [0 @ [s5] - [07] @ [0 @ [s5] + [07] @ [s7 '] @ [OF),
PEIA L] = @57, [Or A =0 @57, i

Consider the comultiplication of the colored graded coalgebra (S, V). Let

o= [8inl+q—p+1] Q- ® [OZ;HI] ® [S?jq_l] R ® [5?1]

be any ordered element. For each element v = [a1] ® - - - ® [ap44] € O(a), by P(y) we denote the set of
all representations of «y in the form

T=(m]®--®a]) @ (laza] @+ @lapig)),  1<z<pt+qg-1,
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where [a1] ® - -+ ® [a;] and [a.41] ® - - - ® [a,44] are ordered elements. The values of the comultiplica-
tion V of the coalgebra S' at the generators 8 = [0/ "7 '] A ... A [6Z+q] A [s?jq_l] A---A[sh]of the
module (SY)*) (m, n), wherem,ne I,k>1,p>0,¢>0,p+q =k, andm = n+ q— p, are
V(,B) = 1n+q —p & /6
+ Y (@] A Aae]) @ ([asa] A A [apag)) + 8@ Ln,
P(y€0(a))

where o = [8inl+q_p+l] ® - ® [8Z;+q] ® [S?qﬂ_l] ®-- @] ]andy =[a1] @ -+ @ [ap4q).

The curvature 9: S, — (K)e_2 of the colored graded coalgebra (S', V) is defined at the generators
of §' specified above by

IO TR R R[S R A =00 (pog) # (1,D),

Ja J1

n N 17 2 = j7 Z = ] + 17
I[P A [s7]) =
AR J]) {0 otherwise.

We proceed to the necessary constructions and facts related to the notion of an oo-simplicial
module [3].

In what follows, by a differential bigraded module we mean any differential bigraded module (X, d)
of the form X = {X,, .}, wheren,m € Z,n > 0,and d: X, o = X, e_1.

The tensor product of a colored graded module X and a differential bigraded module (Y, d) is defined
as the differential bigraded module (X ® Y, d), where

XeY)um=P P X Ye g5 nel, meZ,
s€l pt+g=m
and the value of the differential at each element z ® y € X (n, s), ® Y; 4 equals
dz@y) = (-1)"""zady).

Given any differential bigraded modules (X, d) and (Y, d), consider the differential bigraded module
(Hom(X;Y'),d). The elements of each module Hom(X;Y),, ,, are arbitrary maps f: Xy e = Yiin etm
of bigraded modules which have bidegree (n,m); at the elements f € Hom(X;Y'),, , the differential is
given by

d(f) =df + (_1)n+m+1fd: X*,o — Y*+n,-+m—1'

Given the colored graded coalgebra (S', V) and any differential bigraded modules (X, d), (Y,d),
and (Z,d), we define a map

U: (Hom(S' ® Y; Z) @ Hom(S' ® X;Y))se — Hom(S' @ X; 7).
of bigraded modules by setting
gUf=g(1® f)(V®1l) for geHom(S'®Y;2) and  feHom(S'® X;Y).

[t is easy to show that U is a map of differential bigraded modules which has the associativity property,
ie.,

dgu f) =d(g)U f+ (-1)""gud(f), (gUf)ul=gU(fUI),
where g € Hom(S' ® Y, Z).m.

In what follows, given any f € Hom(X;Y ), m, by fwe denote the map fe Hom(S! ® XY )nm
defined by

f=E2f):SeX KoY =Y,
where e: §' — K7 is the counit of the colored graded coalgebra (S', V).
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Now let us consider the notion of differential oco-simplicial module [3], which is the homotopy
invariant counterpart of the notion of a differential simplicial module.

A differential oo-simplicial module, or, briefly, an oo-simplicial module, is any differential
bigraded module (X, d) together with a map : (S' ® X). o — X, e_1 of bigraded modules which has
bidegree (0, —1) and satisfies the conditions

(1) v(rvel)=d: (Ki®X)se =Xio— Xio_1,Wherev: K; — S'is the cosupplementation of the
colored ¥-coalgebra (S*, V,9);

(2) 1 Uy = —0, where the map 9: (8'® X)io — Xio_ois defined by
5: 19 () 1: (S' & X)*,. — (KI & X)*,.—Q - X*,.—Q'

Representing the structure map 1: (S' ® X).o — Xue_1 of any co-simplicial module (X, d, ) in
the form ¢ = d + ¢, where d is defined as f (see above) for f = d € Hom(X; X ) _1, we see that the
map ¢/ = — d: (S'® X)so — X o1 satisfies the condition ¢'(v ® 1) = 0, and 1 U+ = —4 if and
only if

dud=0, d@)+¢' Uy +9=0.
Since the condition dUd = 0 is equivalent to d? = 0, it follows that specifying an co-simplicial module
(X,d,) is equivalent to specifying a triple (X,d,v’), where v’ is a map satisfying the conditions
Y (v®@1l)=0andd(®) +¢' Uy +9 =0.
By a morphism f: (X,d,v¥) — (Y, d, ) of co-simplicial modules we mean a map

fﬁ (S' ®X)*,o — Y:k,c

of bigraded modules which has degree (0, 0) and satisfies the condition ¢ U f = f U .

It follows from ¢y U f = f U that themap f, = f(r ®1): (K1 ® X)«o = Xs o — Yi o 0f bigraded
modules satisfies the condition df, = f,d, i.e., is a map of differential bigraded modules. Representing
a morphism f: (X, d,v) — (Y, d,v) of co-simplicial modules in the form f = f,, + f/, we see that the
map f'=f— % (§'® X)so — Yie satisfies the condition f/(v® 1) =0, and » U f = f U if and
only if

dUf,=f,ud,  df)— U+ UF - F U+ Uf =0
Moreover, it is clear that ¢y U f = f U« implies JU f=fu V.
The composition go f of morphisms f: (X,d,v) — (Y,d,v) and g: (Y,d,v) — (Z,d,) of

oo-simplicial modules is defined as the morphism g U f: (X, d,v) — (Z,d, ) of co-simplicial modules.
Clearly, the operation of taking the composition of morphisms is associative; moreover, for each
oco-simplicial module (X, d, ), the identity morphism 1x : (X, d, v) — (X, d, ) is defined, where 1 is
the identity map of the module X. Thus, co-simplicial modules and their morphisms form a category.

A homotopy h: (X, d, ) — (Y, d, 1) between morphisms

fo(X,d, ) = (Yid,g)  and  g: (X, d,¢) = (Y, d, )

of oo-simplicial modules is defined as a map h: (S'® X )« = Yy o1 satislying the condition
YUh+hUyYp=f—g.
Sinceyp Uh+ hUy = f — g, it follows that the map
h, = h(l/ & 1): (K[ & X)*’. = X*’. — Y;7.+1

of bigraded modules satisfies the condition dh, + h,d = f, — g,, i.e., is a homotopy between the
maps f, and g, of differential bigraded modules. Representing any homotopy h between morphisms

frg: (X, d, ) — (Y,d, %) of oco-simplicial modules in the form h = hy + K, we see that the map
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W=h-h,: (S X)so = Y o41 satisfies the condition (v ® 1) =0, and py Uh+hUy¢ = f —gif
and only if

dUhy +hyUd=f,— Gy,  dR)+ R U+ UR +h, U +' Uh, = f' — 4.
Moreover, it is clearthat Uh + hU Y = f — gimpliesd Uh = h U 4.

Let n: (X,d, ) = (Y,d, ) : € be any morphisms of co-simplicial modules such that n U ¢ = 1y,
and let h: (X, d, 1) — (X, d, 1) be any homotopy between the morphisms & U7 and Tx of co-simplicial
modules which satisfies the conditions nUh =0, hU£=0, and hUh=0. Any such triple
(n: (X,d,) = (Y,d, ) : & h) is called SDR-data for oo-simplicial modules.

Consider the homotopy properties of co-simplicial modules. Recall that SDR-data for differential
bigraded modules is any triple (n: (X,d) = (Y,d) : &, h), wheren: X, o = Y, o : £ is amap of differen-
tial bigraded modules and h : X, o = X, o+1 is @ homotopy between £n and 1x satisfying the conditions
nh =0, h =0,and hh = 0.

[t is worth mentioning that the conditions nh =0, h{ =0, and hh =0, which must hold for
SDR-data (n: (X,d) = (Y,d) : £, h), are not restrictive. Indeed, as shown in [5], if these conditions
do not hold, then, defining the new homotopy " = h”’d h”, where b = (£én — 1x)h(En — 1x), we obtain
SDR-data (n: (X,d) =2 (Y,d) : &, 1).

The following theorem asserts the homotopy invariance of the structure of an oco-simplicial mod-
ule[3].

Theorem 1.1. Suppose given any oo-simplicial module (X,d, ) with =d+ ' and any
SDR-data (n: (X,d) = (Y,d) :&, h) for differential bigraded modules. Then there is an oo-simpli-

cial module structure (Y,d,1 ) on (Y, d) for which the map ¢ = d+ 1/1, is defined by

z//:Zﬁuw’u@uw’)u-.-u(ﬁuw’lug (1.5)

n>0 D
Moreover, the maps £ = £A—|—£/, n=n+n',and h :ﬁ+h/deﬁned by

g’:Zﬁmp/u@uwu---u(ﬁuwgua (1.6)
n>0 >

n’:Zﬁuw’u@uw’)u---u(ﬁuw’luﬁ, (1.7)
n>0 >

h/:Zﬁuw’u@uw’)U---u(ﬁuw’luﬁ (1.8)
n>0 ~

determine the SDR-data (n: (X,d,v) = (Y,d,v) : &, h) for co-simplicial modules.

Differential co-simplicial modules, as well as differential simplicial modules, can be considered from

the functional point of view. Indeed, for any oo-simplicial module (X, d, ) with ¢ = d+ 1/, we can
define the family of maps

(88) = {(88)(i1,...,ip‘jq,...,jl) : Xn,o — Xn—p-i—q,'-i—p-i—q—l}a p 2 07 q 2 07 p + q 2 17

0<i; < - <ip <n+yq, nt+q—1=>j;>-->j1 20,
+g—p+ly ~ =~ +q 7ot~ o
(08)(ir sipljar-in) (@) = V(O A A0 AT A AlsT]) @ @).

We denote the maps (88)(1'1,...,ip|jq,...,j1) with ¢ =0 in the family S(‘)s) by 8(1-1,__.,2-13)
(9s) y with p =0 by s(;,.... ;). Since d(¢') + " Uy + 9 = 0, it follows that the maps in
the family (0s) satisfy the relations

d((08) (i1 ...sipljgseonit))

= Z (_1)Sign(’y>+l(88)@1,...,lt\ml,...,mk)(88)(961,...,xc|y1,...,yd)7 (p7 Q) 7é (17 1)7 (19)
P(veO(a))

and the maps

i17~~~7ip|jq7---7j1
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sG-09%0) — sy, 1<,
d((9s) 1)) = 41— 0w sy i=j, i=j+1, (1.10)
s(HO-1) ~ dwsiy 1>+
where the set P(y € O(«)) is the same as in the above expression for the comultiplication V of the
coalgebra (S', V), t +c=p, k+d=q,7=[a1] @ [api4,
(] @ @la:]) @ (laz41] @ - @ [apig]) € P(y € O(a)),  1<z<p+q-1,

and

~

(05) (@1 oielynreoya) (1) = V' (([a1h41] Ao Alaprg) ©7),  pHg—z=c+d.
For example, (1.9) implies the relations
d((9s)(212,1)) = —02)8(2,1) — (08)(212)8(1) + (95)(2)1)8(1)>
d((9s)(1,212)) = —91)(98)(212) — O1,2)5(2) + 91)(98)(1)2) — (98)(111)01)-

(08) 1y tefmr,me) (@) = ' ((Ja] A+~ Aaz]) ®g),  z=t+k,
N

[tis easy to see that it follows from the above formulas defining the maps (9s);, ,....i,|j,.....j1) that these

maps completely determine the structure map ¢ = d+ 1)’ Thus, the following lemma is valid.

Lemma 1.1. Specifying an oo-simplicial module (X,d, ) is equivalent to specifying a triple
(X,d, (0s)) defined above and satisfying relations (1.9) and (1.10).

In what follows, we identify the triples (X, d, ) and (X, d, (0s)) corresponding to each other and use
the same term “oco-simplicial module” for both of them.

Note that a special case of (1.9) is given by the relations
d(0) =0, 20, d@u;) =519 = Iy, i<,
d(s(z)) =0, 120, d(S(iJ)) = S(j)S(i—1) — S(5)S(5)> 1> 7.

These relations, together with (1.10), say that, for any co-simplicial module (X,d, (9s)), the maps
iy Xne = Xn—1,eand sgj): Xp e = Xpy1,e of differential modules satisfy the simplicial commutation
relations (1.1)=(1.3) up to homotopy. In other words, the quadruple (X, d,d;), s(;)) is a differential
simplicial module up to homotopy.

2. TENSOR PRODUCT OF oco-SIMPLICIAL MODULES
AND o0o-SIMPLICIAL COALGEBRAS

For a colored 1¥-coalgebra (S', V, ) and any differential bigraded modules (X, d) and (Y, d), consider
the map

L:((S'®8)®@(X@Y))e = (S ®X) @ (5'@Y))se

of bigraded modules whose values at the generators of the colored module S' ® S' and any elements
r®Y € Xipm @Yt C (X @Y )py1mt are defined by

(1) Lkt @ Lpyt) @ (2@ y)) = (L @ 2) @ (1, @ y);

(2) L(((83)?;7[,“@|jq7.,,,j1) ® 1k+l)) X (x @ y))
_ ((65)]&17,.,7Z'p|jq7.,.,j1) ®z)® (L ey) ifjo <k+q—1,ip <k+gq,
0 otherwise;
(3) L((lk—i-l-i-q—p ® (88)1&—1_5”,%‘jq,,,,7j1)) Y (ZL‘ & y))
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(—1)P+Ok(1, ® 7) ® ((85)(21 ookl ja—ter i —kt) @ Y)
= ifj1>k,i1>k,
0 otherwise;

(4) L) ® (9s)! o) @ (@ ®y))

(21,+8pldgs-- ,Jl) (W10 ta |V

(=D, ipliarin) @) @ (O8N, k. piaib, - n k) B V)
= ifjg<k+q—1,1, <k+q, 11>k, p1 >k,
0 otherwise.

Using the map L, we define a map

®: (Hom(S' ® X1;Y1) ® Hom(S' ® X2;Y2))se — Hom(S' @ (X1 ® X2); Y1 @ Ya)sa
of bigraded modules at any f € Hom(S' ® X;Y7) and g € Hom(S' ® X»;Y3)) by
fog=(fR9LValxex,): S'® (X1 ® X)) = Y@ Y.
[t is easy to see that the map f ® g = (@)V + (f ® g)’ satisfies the relations

Fo="Ff @ Fog,=hoG. (g =Ffod+hod+f o0

Moreover, a direct calculation shows that the maps U and ® considered above are related to each other
by the “sign permutation rule,” i.e

(i@ g) U (fa®ga) = (1) T™E (U fr) @ (91U go), (2.1)
provided that the bidegrees of the maps g; and f» are (n,m) and (s, t), respectively.
Definition 2.1. The fensor product of differential co-simplicial modules (X,d, 1)) and (Y, d, 1) is

the oo-simplicial module (X ® Y, d, ), where (X ® Y,d) is the tensor product of the corresponding
differential bigraded modules and the map 1: (S' ® (X ® Y))sxe = (X ® V)4 e_1 is defined by

b=9®ly +1x @ . (2.2)

[t is easy to see that the tensor product of any oco-simplicial modules is an oco-simplicial module.
Indeed, we have 19X®y = 19X RTy +1x ® 19y, thus, applying (2.1), we obtain

YUY =R1+1ey) U@ el+1oyp)
=@Wehu@e)+@ehu(ley)+ (1)U @@ el)+(
— (U)o QU+ @uh)eduy)+ (-1)VED AU
+AuDe@uy) =-(Fel+ied) =7

Now let us consider the tensor product of co-simplicial modules from the functional point of view.

Let (X ®Y,d, (8Ns)) be the tensor product of any co-simplicial modules (X, d, (8Ns)) and (Y, d, (8Ns)).
[t follows from relation (2.2) and the definition of the map ® that, for the co-simplicial module

(X ®Y,d, (6/\5/)), the family of maps

(0s) = {(83)(“, Sipldgrndl) | (X® Y)n o« — (X ® Y)n—p+q, '+p+q—1}
is defined at each z ® y € X}, ;,, ® Y74 by the rule

(05) (i1,..rsipljgrrit) (T @ Y)

MATHEMATICALNOTES Vol.99 No.l 2016



72 LAPIN

(05) (i1,..vsipljgseenin) (T) @y ifjy<k+q—1,
_ Z';m <k+gq, (2 3)
_1)(pte—1k+m . , . . i 4 ; '
(-1) T ® (08) (i —k,...ip—kljg—k,.jr—k)(Y)  iTJ1 >k, i1 >k,
0 otherwise.

[t is easy to see that if co-simplicial modules (X, d, (9s)) and (Y, d, (0s)) are differential simplicial
modules (X, d, 0, s;) and (Y, d, 0;, s;), respectively, then relation (2.3) defines the differential simplicial
module (X ® Y, d, 0;, s;) for which the 0; and s; take the following values at each z ® y € X, ® ¥} 1

Bz ®y) = 0i(z) ® vy, 0<i<Ek,
' (=) ® 8;_i(y), k<i<k+l,

(—)mx®si-k(y), k<j<k+l

[t is worth mentioning that the usual construction of the diagonal tensor product of differential
simplicial modules is related to the new construction of the tensor product of differential simplicial
modules described above by the Alexander—Whitney and Eilenberg—MaclLane maps, which are maps of
differential simplicial modules rather than only maps of the corresponding chain bicomplexes in the case
under consideration.

: <7<
sj(:c®y) _ {8](1')@2/, 0<j <Kk,

Definition 2.2. A differential oco-simplicial coalgebra or, briefly, an oo-simplicial coalgebra
(X,d,,V), is an oo-simplicial module (X,d,v) together with an associative comultiplication

V: X — X®Xforwhichthemap§: S'® X — X ® X is a morphism v: (X,d, ) = (X ® X,d, )
of co-simplicial modules, i.e., satisfies the condition

Vuy=(1x®v+ve1x)UV. (2.4)
Clearly, for a map 1 represented in the form ¢ = d+ ', condition (2.4) is equivalent to the conditions
Vud=(1x®d+d®1x)UV, VU =(10x®¢ +¢' @1x)UV.
The former is equivalent to Vd=(1®d+d® 1)V; therefore, for any oo-simplicial coalgebra
(X,d,, V), the triple (X, d, V) is a differential coalgebra.
Definition 2.3. A morphism f: (X,d,¥,V) — (Y,d,, V) of differential co-simplicial coalgebras
is a morphism f: (X, d,v) — (Y, d, ) of co-simplicial modules which satisfies the condition
VUf=(f®f)uV. (2.5)
Clearly, for a map f represented in the form f = ﬁ, + f’, condition (2.5) is equivalent to
Vufi=(hef)uV, Vuf=Fef+hef+/ef)uv.
The former condition is equivalent to £,V = (f, ® f,)V; therefore, for any morphism
[ (X, d ) = (Y, d,¥)
of co-simplicial coalgebras, the map f,: (X,d) — (Y, d) of differential modules is a map
fvi (X,d, V) = (V,d, V)
of differential coalgebras.
Definition 2.4. A homotopy h: (X,d,¥,V) — (Y,d, 1, V) between morphisms
fr90 (X,d, v, V) = (Y,d, ¥, V)
of co-simplicial coalgebras is a homotopy h: (X, d, 1) — (Y, d, ) between morphisms
fr90 (X, d,v) = (Y,d, )
of co-simplicial modules that satisfies the condition

VUh=(h®f+g@h)UV. (2.6)
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[t is easy to see that, for a map h represented in the form h = hy, + K, condition (2.6) is equivalent to
§U/HV = (/Hl/ ®ﬁ/ +./g\u ®ﬁu) U§7
VU =(W@f +N@f+h@f +¢d @K +¢ @h, +5, @R)UV.
The former condition is equivalent to Vh, = (h, ® f, + g, ® h,)V; therefore, for any homotopy
h: (X,d,¥,V) = (Y,d,,V) between morphisms f,g: (X,d,¥,V) — (Y,d,,V) of co-simplicial
coalgebras, a homotopy h,: X — Y between maps f,,g,: (X,d) — (Y,d) of differential modules is
a homotopy between the maps f,,¢g,: (X,d, V) — (Y,d, V) of differential coalgebras. Note that the

notion of a homotopy between maps of differential coalgebras which we use here has become widely
accepted at present.

Suppose given any morphisms n: (X, d, 1, V) = (Y, d, ¥, V) : £ of differential co-simplicial coalge-
bras such that nU ¢ = Ty, and let h: (X,d, 9, V) = (X,d,, V) be any homotopy between the mor-
phisms € Un and Tx of co-simplicial coalgebras which satisfies the conditions n Uk = 0, hU £ = 0, and
hUh = 0. Any such triple (n: (X, d, v, V) 2 (Y,d,, V) : £, h) is called SDR-data for co-simplicial
coalgebras.

[t is easy to show that, given any SDR-data (n: (X,d,vy, V) 2 (Y,d, ¢, V) :£, h) for co-simplicial
coalgebras, SDR-data (n,: (X,d,V) = (Y,d, V) :£,, h,) for differential coalgebras are defined. We
say that SDR-data (n: (X,d,v,V) = (Y,d,9,V) :&,h) for co-simplicial coalgebras extend the
SDR-data (n: (X,d,V) = (Y,d, V) :&, h) for differential coalgebras ifn =n,, £ =&,,and h = h,,.

Now, let us prove the homotopy invariance of the structure of an oco-simplicial coalgebra under
homotopy equivalences of the type of SDR-data for differential coalgebras.

Theorem 2.1. Suppose given any co-simplicial coalgebra (X,d, v, V) and SDR-data
(n: (X,d, V) = (Y,d,V) :&, h)

for differential coalgebras. Then relations (1.5)—(1.8) define the structure of an oco-simplicial
coalgebra (Y,d,,V)on (Y,d,V) and, in addition, determine SDR-data

(n: (X, d, 9, V) = (Y, d, 9, V) : £, h)
for co-simplicial coalgebras which extend SDR-data (n: (X,d,V) = (Y,d,V) :£, h) for differen-

tial coalgebras.

Proof. To any SDR-data (n: (X,d,V) = (Y,d, V) : &, h) for differential coalgebras there correspond

SDR-data (7: (X,d,d,V) = (Y,d,d, V) :&, h) for co-simplicial coalgebras; in particular, the following
conditions hold:

Vui=@enuy, Vui=(EoduV, VUh=hoEUun+1h)uV.
Using theie conditionsAand relation (2.1), we obtain the following chain of equalities for each summand
nuUY UhUY)mUEin(1.5)

VU@UY'URUE)TUE = @en)uV Uy uGUE)TUE

—HoNuley +¢ @)UV URUY)"UE
=@e@UY)+@UE)eNUGe U +1eh)UVUY URUY) UL
=@®@UY U+ U UR)@RHUVUY URUY)DUE=. .
=T @HUY URUY)MUE) +[HUY URUY)mUEeT)UV.
[t follows that the map ¢ = d+ zp/ defined by (1.5) satisfies condition (2.4). In a similar way, it can be

shown that the morphisms £ = §+ f/ and g = 7+ n' of co-simplicial modules satisfy condition (2.5) and
the homotopy h = h + h' between these morphisms of co-simplicial modules satisfies condition (2.6).
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3. HOMOTOPY UNITAL SUPPLEMENTED A, -ALGEBRAS
AND TENSOR oo-SIMPLICIAL COALGEBRAS

First, we recall the necessary definitions and constructions related to the notions of (asymmetric)
operad and of algebra over an operad in the category of differential modules (see, e.g., [6]).

By a differential family, or, briefly, a family & = {&(j)};>0 we mean any family of differential
modules (£(j),d), j > 0. We define a morphism f: & — &" of families to be any family of maps
a={a(j): (&'(j),d) = (&"(j),d)};>o of differential modules. Given any families &” and &”, we define
the family &’ x &” by

(& xENG) = P EFreeGye--2 ),  j=0.
Jitetik=j
Clearly, the x-product of families thus defined is associative; i.e., for any families &, &’, and &”, we have
the isomorphism of families & x (&' x &) ~ (& x &) x &".
An (asymmetric) operad (&,~) is any family & together with a family morphism v: & x & — &
satisfying the condition (v x 1) = (1 x 7). Moreover, there is an element 1 € &(1)y such that, for
eache; € £(j),j > 0, we have y(1 ® e;) = e; and, for each e; € £(j), j > 1, we have

Y(e®1le---®1) =e;.

In what follows, we write elements of the form y(ex ® e, ® --- ® €j, ) as ex(ej; ® - ® ¢;, ). Anoperad
morphism f(&',~v) — (&”,7) is defined as a family morphism f: & — &” satisfying the condition
frv = xf).

A canonical example of an operad is the operad (&x,~) which is defined for any differential mod-
ule (X, d) by

An algebra over an operad (&,7), or, briefly, an &-algebra (X,d, ), is any differential mod-
ule (X, d) together with a fixed operad morphism a.: & — &x. A morphism f: (X,d,a) — (Y,d, ) of
&-algebras is any map f: (X,d) — (Y,d) of differential modules for which fia = f*a: & — & x vy,
where the family & xyy is defined by (& x,y(j),d) = (Hom(X®7;Y),d), and f,:Ex — &x,y) and
"1 &y — & x y) are the lamily morphisms induced by f.

An important example of an operad is the Stasheff operad (A, ). As a graded operad, (As,7) is

free with generators 7, € Ao (n + 2),, n > 0, and at the generators 7,11, n > —1, the differential takes
the values

n+1 m+1
d(mni1) = Y Z it (19 ®1@m 1 ®1® @ 1), (3.1)
m=1 t=1 t—1 m— t+1

For example, in the case of n = —1;0; 1, relations (3.1) have the form
d(mo) =0,  d(m) = mo(mo ® 1) — mo(1 ® m),
d(m) =m(m@1+10m) —m(mR®1R1-10m®1+1®1Qm).

It is easy to see that endowing a differential module (A,d), where A ={A,}, n €Z, n >0, and
d: Ae — Ae_1, With the structure (A, d, a) of an A -algebra is equivalent to specifying a family of
maps {m, = a(m,): (A®"+2)), = A\, | n € Z, n > 0} satisfying relations (3.1) for (A, d).

Recall that a unital differential algebra (A,d,m,v) is defined as the differential algebra (A, d, ),
where A ={A,}, n€Z, n>0, and d: Ay — Ae_1, With associative multiplication 7: A® A — A
together with a map v: K — A of graded K-modules, where Ky = K and K; = 0 for ¢ # 0, which
is called the unit of the differential algebra (A, d, ) and satisfies the conditions

Trel)=1: A=K®A— A, T(lev)=1: A=A K — A. (3.2)
Clearly, the unit v: K — A is completely determined by the element v(1) € Ag, 1 € K, which is called
the unit of the differential algebra (A, d, 7) and denoted by 1 € Ay.
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Following [4], we now recall the notion of a homotopy unital A, -algebra [2]. Consider the
operad (A3Y(u,h),v) introduced in [4]. As a graded operad, (AZY(u,h),v) is an operad with
generators m, € (A3%(u, h))(n + 2),, where n >0, 1% € (A3%(u, h))(0)o, u € (A% (u,h))(0)o, and
h € (As%(u, h))(0);, satisfying the relations

(11 =1, 7wlol™) =1, ©,1% 1120 ky—0 n>0, (3.3)
where 0 < k < n + 1; the differential is defined at the generators specified above by relations (3.1), and
d(1**) =0, d(u) =0, d(h) =1°" — u. (3.4)

In the operad (A%“(u, h),~), consider the suboperad (A", v) with generators
™ =u€ (AL, m)(0), 77 =71 € (AL {w k) (n+ o1, 021,
J2
. . -~ -~
T = (M @1 @h@ 19" @1 @h @ 18 @ @ 197 @ h @ 19MH)
Jt
~ ~ -
Ja
E(Aig(u,h>)(n—q+1)n+q_1, nZl) qu) nZ]q>>]1207 nsZO,
1<s<qg+1, m+-+ngq1=n—q+1, jp=nm+---+np+k-1 1<k<q.

[t is worth mentioning for clarity that each ji, 1 < k < ¢, is the number of all tensor multipliers on the
left of the kth occurence of h counting from the origin of the tensor battery to the right. For example,
using this rule, we readily obtain

3,1 3,2

7, =m3(1®h®1®h®1), 75" =m(1®1®h® h),
2= hohol191®11h).
In [4], the element 7% /* is denoted by My ng,...ngsr» Where the numbers nq, ..., ngyq are the same

]qv 7]1 Jgr--sJ1

as in the above expression for 7 The values of the differential at the generators 73, , Where

n>0,¢>0 n+qg>1, and T,i"’ It 72 =, 1 for ¢ =0 and n > 1, are completely determined
by (3.1),(3.4) and (3.3). It is easy to check that

d(rd) =0, d(t7) =0, dird) =1 —m(rd ® 1),
1 0 1,0 0.0 1.0 (3.5)
d(ry) =1-m(1® ), d(my") =715 — T Ty
Moreover, a straightiorward calculation shows that, for any n > 0 and ¢ > 0, we have
n+1 m+1
1]112 ,]1 Z Z )\ Jq (n=m+2),....j5—(n—m+2),j1,....51
m=1 t=1 . (t=1),.. (t=1)
] bA 7J
><Q®-\-,-®;®rnkn§+2 e Rl®- ®1)
t—1—1 m—t— q+k
+ Z(_l)n—i-zTiié-thh 1y ,]1(1 ®--®1 ®7_0 ® 1 ® - ® L)’ (3.6)
i=1 Ji (z 1) n—ji— q+z+2

where A\=t(n—m)+n+1+(n—m)(¢—k+1+1)+q(k —1)+ kl and the summation in the first
term on the right-hand side is over all numbers k£ > 1 and [ > 0 such that, for each fixed ¢,

0<jii<- - <p<t—=2<jiy1<- <Jipk-1-1
=Jk—1<t+tn-m+2< < <jgg<n+2.
Obviously, forg = 0, k = 1, and [ = 0, relation (3.6) transforms into (3.1).

The algebras (A, d, o) over the operad (A", +), i.e., the A"-algebras, are called homotopy unital
Axo-algebras.
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[t is easy to see that endowing a differential module (A, d), where A ={A,}, n €Z, n>0, and

d: Ag — A._1, with the structure of an A?“-algebra (A,d,«) is equivalent to specifying a family of
maps

{rdeIt = a(rde Ty (ABTID), S Ay R E€Z,n>0,0>0,n+q> 1},
n_Q"i'lZOa qu"'vjleza nZ]q>>]1207

satisfying relations (3.5) and (3.6) for (A, d). The left-hand sides of relations (3.5) and (3.6) for the maps
I (AR(—at ) o Ay, are caleulated by the usual formula

d(ﬂ%q’”"jl) _ dTgm-“vjl + (_1)n+q7.rﬂ;q7---,j1d.

In [4], it was shown that relations (3.5) and (3.6) are equivalent to the structural relations for homotopy
unital Ay, -algebras given in [2].

Note that the third and fourth equalities in (3.5) say that the map 78: K — A satisfies (3.2) up to
homotopy; i.e., up to homotopy, the map 7 is the unit of the differential homotopy associative algebra
(A, d, 7T0).

Of course, relations (3.6) are very cumbersome. However, later on (after the proof of Theorem 3.1),
we describe a simple simplicial method for calculating these relations.

Definition 3.1. A homotopy unital supplemented Ar.-algebra or, briefly, an supplemented

Alu_glgebra, is defined as any A™*-algebra (A, d, qu""’jl) together with maps e1,e9: A — K of graded
modules satisfying the relations

g;d =0, EZ'T(()) =1, ¢gm= 7T(€Z' & EZ'), 1 =1,2, (3.7)

where o = 7 and  is multiplication in the base ring K.

Note that the notion of an supplemented A"*-algebra generalizes the notion of an supplemented
associative differential algebra with unit, i.e., an associative differential algebra with unit on which a

map of differential algebras to the base ring K is defined. Indeed, if an supplemented A"*-algebra
(A d,ei, 7 7") is such that ey = ea = ¢, 70 = v # 0, 77 = 19 # 0, and 77"’* = 0 for all other n
and jg, ..., j1, then the quintuple (A, d, o, v, €) is an supplemented associative differential algebra with

unit.

It is easy to see that, for any supplemented A"“-algebra (A, d,e;, qu""’jl), we have sirgq""’jl =0,

n 4 q > 1, from dimensional considerations. It is also easy to see that each connected A"-algebra
(A, d, 57777") (“connected” means that Ay = K) is an supplemented A"“-algebra (A, d,&;, 7;%7"),
where €1 = e2: Ag = K — K is the identity map of the base ring K and ¢ : A,,, = K is the zero map
for all m > 0.

We proceed to specifying a relationship between supplemented A&L—algebras and tensor co-simplicial

coalgebras. Given an supplemented A™*-algebra (A, d,e;, 5 "), consider the tensor differential

bigraded coalgebra (T'(A),d, V), where T(A)pm = (A% ), n >0, m >0, d: T(A)pe = T(A)ne1
is an ordinary differential in the tensor product, A®? = K is the base ring, and the comultiplication
V:T(A)se = (T(A) @ T(A))+ e is defined by
V(@ ®--®a) =Y ()@@ ©a)® (@ ® - a),
=0
where k; = i(deg(a;+1) + - - - + deg(ay)). On the bigraded module T'(A), we define a family of maps

(83) = {(85)7(12‘1,,,,,ip|jq7,,,,j1)3 T(A)n,m - T(A)n—p-i-q,m-i-p-i-Q—l}y

where p>0,¢>0,p+¢>1,0<i1 <---<ip<n+gqgandn+qg—1>j,>--->j >0, by the
following rules:
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(1) forp > 1and ¢ =0, we set
(9)Gir viplianit) = (O8)G,einle) = i)
()" Yer 1) @120 iip=1, iy =0,
(—)m 1182 @ (1.g9)  ifp=1, i =n,
= ¢ (—1)pm=D186k-1) @ £ g 19(-pk) (3.8)
ifl<k<n-—pand(i1,...,5) = (k,k+1,...,k+p—1),
0 otherwise,

where (g1 - 1)(a1 ® ag) = €1(a1)az, and (1 - e2)(a1 ® az) = ajeaz(as);
(2) forp=~0and ¢ > 1, we set
(88)(“7 7ZP|.7117 7.71) = (88)?9‘].!17'“7].1) = S@Q7"'7j1)
B {(_1)m1®j1 ® 7—8 ® 1®Mn=j1) jf q=1,
0

3.9
it ¢>1,; (3.9)

(3) forp>1andg > 1, we set
(68)(117 7Zp|]q7 7]1)
(—1)(p+q)(m+q_1) 1®(k_1) ® qu_(k_l)v"wjl_(k_l) ® 1®(n—p+q_k)
= ifl1<k<n-—p+gq, (i1,....5) = (k,k+1,....k+p—1), 1 > k-1, (3.10)
0 otherwise.

Theorem 3.1. For any supplemented Al_gigebra (A, d,e;, 707", the quadruple (specified
above) (T'(A),d,V, (83)) is an oo-simplicial coalgebra.

Proof. First, we show that the triple (T'(A),d, (?9;)) is an oo-simplicial module. We must check
relations (1.9) and (1.10) for the family of maps

{(88)(117 Sipligrd1) 7 $T(A)nm = T(A)n—prgmiprg—1}
defined by (3.8)—(3.10). For the maps

@) i AT S A1 0Sp <L, p2jg > > g1 20,

relations (1.9) and (1.10) follow in an obvious way from (3.5), (3.7), and (3.1) with n = —1,0. Now, let
us check (1.9) for the maps

(9s )?1+§ ?n+2|]q7 1) T (_1)(n+2+q)(6+q Y Ji’z - (A®(n+3 q))

- Ac+n+q+17

[t follows from (3.8)—(3.10) that, in the case under consideration, relation (1.9) can be written in the
form

n+1m+l
n+3—q 51gn(a k1)1 m—q+k—I
((68) 127 7n+2] y 7]1 Z Z " (88) 1727 mlj n— m+27 SJk—(n— m+2 3JlseesJ1
q a—
m=1 t=1
n+3—q
x (s )(t Lt Lo bl 1 ) L jig 1 —0)
q
_1)\sign(oy)+1 n+4—q n+3 q
+Z( 1) (88)(1727---7n+2|jq7---7ji+17]'1'717---7.71) (Ji—(i-1))’
=1
(3.11)
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where

n+3— n+3— n+3—
d((as)(1727?n+2|]1177]1)) - d(as)(1727({n+2|]qvﬂl) + (88)(1727({n+2|]q77]1)d

and the summation in the first term on the right-hand side is over all numbers £ > 1 and [ > 0 satisfying,
for each fixed ¢, the inequalities

0<n< - <u<t—2<ji1 < <jpa<t+n-m+2<j < - <jg<n-+2.

Each permutation o; € 3,424 in the second term on the right-hand side of (3.11) breaks every element
A1 ®  ®apt2 @by @ @by € (SM)" 2+ into three blocks as

(a1®~'®an+2®bq®~~~®bi+1)®(bi)®(bi_1®~~~®b1)

and transposes (in the sense of the action of X, 424, on (SM)"™2%4) the second and the third block.
Each permutation oy, 4 11 € Xy4244 in the first term on the right-hand side of (3.11) is the product of
the permutations (Vi k1) (0m.k)(om,t) acting on (SM)"2+4 by the following rules:

(1) om,t € Eyq24q breaks each element a; ® -+ ® ap42 ® by ® - - - ® by into four blocks as

(a1 ® - ®a-1) @ (@ @ @ Grn—m+t1) ® (Gtpn-mi2 @+ @ pg2) ® (bq ® - ®b)

and transposes (in the sense of the action of ¥, 191, on (SM)"2%9) the second and the third
block;

(2) omk € Lynyoyq breaks each elementa; ® -+ ® ap42 ® by ® - - - ® by into four blocks as
(1@ @ am) @ (A1 @ @ any2) @ (by @+ @by) @ (b1 @ -+ @ by)

and transposes (in the sense of the action of ¥, 191, on (SM)"2%9) the second and the third
block;

(3) Vm,k, € Xpyayq breaks each element a; ® -+ - ® apqg—k43 ® br—1 ® by into three blocks as
(al Q- am+q—k+1) ® (am+q—k+2 X Ontg—k+3 @ bp1®--® bl+1) & (bl ®--® bl)
and transposes (in the sense of the action of X, 124, on (SM)"+2%9) the second and the third
block.
[t is easy to check that the result of the action of each permutation ¢; on any ordered element of the
forma = [01] ® [02] ® - ® [Op42] ® [55,] ® --- @ [s5,] is the element
B=101]©[0] @ @ [Ont2] @[5j,] © - @[55, ] O L85, ] @ -+ @ [55] @[55, (i-1)]-

Clearly, sign(8) =i — 1 = sign(o;) (mod 2). Direct calculations show also that the result of the action
of each permutation o,,,+ 1; on any ordered element of the form

a=[0]®[0] ® @ [Opsa] ®[5;,] © - ®[sy]
forwhich jx_ 1 <t+n—m+2 <jpandj; <t —2 < jj;q is the element
T=[]®[0] @ @ [0n] ®[sj,—(n-mr2)] ® O [8),—(n-mir2)] ® [55,] ® - @ [s5,]
® [at—l] ® [at—l—i-l] Q- ® [at—l—i-n—m—i-l] ® [Sjk—l_l] R [Sjl+1—l]’
[t is easy to show that, for v, we have
sign(v) =t(n—m)+n+ (n—m)(¢g—k+1+1)+nm+ kl = sign(om, k) (mod 2).

Multiplying both sides of (3.6) by (—1)(®*2+a)(cte=1) "taking into account the last congruence, and
using (3.8)—(3.10), we obtain (3.11). Thus, we have checked (1.9) for the maps (83)?;23:?””'].%___le)
with n >0 and n+2>j, >--->j; >0. In a similar way, relations (1.9) are verified for the
maps (83)’&17___7%‘].%”'7].1) with p > 2 in the general case. Thus, for each supplemented A"“-algebra
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(A,d, e, T,{q""’jl), the triple (T'(A), d, (/6\3/)) is an oo-simplicial module. Let us endow this co-simplicial
module with the comultiplication V: T(A), ¢ = (T(A) ® T(A))«,e specified above. A straightiorward

calculation using (2.3) and (3.8)—(3.10) shows that, for each map (83)@1 inlianit) € (0s), we have
V(as)?’il7~~~7iP‘jQ7---7jl) - (88)7&17"'77;17‘-7'Q7"'7j1)v'

Since (T'(A),d, V) is a differential coalgebra, it follows that
V(0s){, = (0s)(,

(i17~~~7ip|jq7---7j1) (ilvwip‘qu"vjl)

if and only if condition (2.4) holds; therefore, the quadruple (T'(A),d,V,(ds)) is an oco-simplicial
coalgebra.

The proof of Theorem 3.1 given above provides a convenient simplicial method for calculating (3.6).
Indeed, as seen from this proof, d(TfL‘ié"’]l) withn > 0 and ¢ > 0 is calculated as follows.

(1) Write the simplicial expression 0105 .. . Opy25j, - - . 55, from Ti‘ié"jl.

(2) Write out the element 910> ...0,125j,...5s; and all elements obtained from it by using the
simplicial relations between faces and degeneracies, except those of the forms 0;s; = 1 and 0;41s; = 1.

(3) For each element v = ay - - - ap4q42 obtained in (2), find all partitions (if they exist) of v into two
blocks (a1 ---a;) | (az41- - Gnyqy2) of theforms 0105 - - - Opsy, - - - 5x,, Wherem > k) > -+ > ky >0,
m > 1,and p > 0,and 0y0¢41 - - - Opyp—151, -+ - 81, Wwherep+t —=1> 1> --- >l >t—-1,t > 1,p > 1,
and A > 0, respectively.

(4) For each partition (0102 -+ Omsk, -~ Sky) | (O40p41 -+ Opp—151, -+ 81;) of ¥ =a1-"Anyqi2
found in (3), write the corresponding element

(_1)Sign(v)+1+qu+nm7.ﬁluv~~~’k1(1 ®---®1 ®7—}€A—(t—1)7---711—(t—1) RIQ---®1),
1
where sign(y) = sign([ai] ® - - - ® [an4q¢+2]). Summing all such elements over all partitions obtained in
(3) for all elements obtained in (2), calculate the first sum on the right-hand side of (3.6).

(o) For each element v = ay - - - ay44+2 obtained in (2), find a partition (if it exists) of this element into
two blocks (a1 - - - @nqg11) | (antqr2), where the first block has the form (01092 - - - Oy 28k, - - - sy ) With
n+2>ky1>--- >k >0and the second block has the form (s;) with i > 0.

(6) For each partition (010 - - - On 125k, , - - - Sk, )|(si) found in (5) for v = ay - - - anq¢42, write the
corresponding element

(~1)sien+lingle kg Bl ele--el),
where sign(y) = sign([a1] ® - -+ ® [ap4¢+2]). Summing all such elements over all partitions obtained in
(5) for all elements obtained in (2), calculate the second sum on the right-hand side of (3.6).
For example, using the simplicial method for writing relations (3.6) described above, we readily obtain

d(T20) = 7‘?7T0 + 7T0(7’10 X 1) — 7r1(7-8 R1I® 1),
d(3°) = —rird — 07 — (W @ 1) + (1@ 10).

Now let us consider the situation opposite to that considered above, where the tensor differential
coalgebra (T'(A), d, V) of any differential module (A, d) is endowed with the structure of an co-simplicial

coalgebra (T'(A),d, V,(0s)). It follows from (2.4) that all maps (9s)7, € (0s) satisly the

(i1 5.wvipldgs-rj1)
condition
V(0s)7; = (0s)

n
(ilv"'viP‘jQV--vjl) (ilv"'vip‘qu"'vjl)v'

This condition and (2.3) imply that, to specify a family of maps (9s), it suffices to specify only maps
Oy T(A)1e = Ae = Ko =T(A)ge, 0<i<1,
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8((]0)1 T(A)O,. = K. — A. = T(A)l,oa
(83)(17‘121'][17 1) T(A)p-qg+1,0 = (AP, — Aetprg—1 = T(A)1etptq-1,
p>17 QZ07 pZ]q>>,71207

because the remaining maps (85)(Z1 ol :T(A)nm = T(A)n—ptqm+prq—1 in the family (0s) are
uniquely determined by (3.8)—(3.10), provided that

= ()T, =y, e = (e gt (312)

Let us show that the quadruple (A, d,&;, T, ]‘“ 7]1) where ¢; and T]q’ T are specified by (3.12), is an
supplemented A"“-algebra. It is required to check (3.5)—(3.7). Relations (3.5) are obtained from

T = (_1)m_18(21)7 = (83)%1\0)7 T = (85)%1|1)= 7'11’0 = (85)((]1|1,0)

by using (1.9), (1.10), and (3.8)—(3.10). Relations (3.6) are obtained from (3.11) and (3.8)—(3.10)
by using an argument similar to that in the proof of Theorem 3.1. Let us prove (3.7). Obviously,

d(8(10)) =0 and d(8(1 )) = 0. Since (83)(0|0) (68)(1‘0) = 0, it follows that 8( 0) (0) = 8(11) (o) = 1, and

since 8(2071) = 8( 9 = = 0, it follows that 8( )8(1) 8( )8(0) and 8( )8(2) = 8( )8(1) These relations and

(3.8)—(3.10) imply (3.7). Thus, the quadruple (A, d, g;, 7, ]q’ ’]1) under consideration is an supplemented
Ahu_algebra. Applying Theorem 3.1, we obtain the followmg result.

Theorem 3.2. Endowing a differential module (A,d) with the structure of an supplemented

Alu_algebra (A, d,e;, T, ]q’ ’Jl) is equivalent to endowing the corresponding tensor differential
coalgebra (T'(A),d, V) wzth the structure of an oco-simplicial coalgebra (T'(A),d, ¢, V).

In what follows, by a connected differential module (A, d) we understand any nonnegatively graded
differential module satisfying the condition Ag = K, where K is the base ring.

Corollary 3.1. Endowing a connected differential module (A,d) with the structure of an

Alv_qlgebra (A, d, T,J,q’ ’“) is equivalent to endowing the corresponding tensor differential
coalgebra (T(A),d, V) with the structure of an co-simplicial coalgebra (T'(A),d, ¢, V).

Definition 3.2. By amorphism f: (X,d,e;, 7207") = (Y, d, &1, 75" 7") of supplemented A™*-alge-
bras we mean a morphism of the correspondmg oo-simplicial coalgebras

[ (T(X),d, 4, V) = (T(Y),d, 9, V).

Definition 3.3. By a homotopy h: (X,d,e;, 70" 7") = (Y,d,e;, 7207") between morphisms

frg: (X,d, &, T 7]1) — (Y,d,ei, . 7]1) of supplemented Agg—algebras we mean a homotopy
h: (T(X), d 1, V) (T(Y),d,, V) between the corresponding morphisms

fr9:(T(X),d, 4, V) = (T(Y),d, 9, V)

of oo-simplicial coalgebras. SDR-data for supplemented AM-algebras are the corresponding
SDR-data for co-simplicial coalgebras.

The following theorem, which is a corollary of Theorems 2.1 and 3.2, asserts the homotopy invariance

of the structure of an supplemented A™“-algebra under homotopy equivalences of the type of SDR-data
for differential modules.

Theorem 3.3. Suppose given an supplemented A" -algebra (X,d,e;, T ]q’ ’]1) SDR-data

(n: (X,d) = (Y,d) :&,h)
for differential modules, and the SDR-data

(T(): (T(X),d, V) = (T(Y),d, V) : T(£),T(h))
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for tensor differential coalgebras corresponding to the SDR-data (n: (X,d) = (Y,d):&,h)
for differential modules. Then relations (1.5)—(1.8) define the structure of an supplemented

Alv_algebra (Y,d,e;, T,{"’“'”jl) on (Y,d) and SDR-data
(T(n) : (X7 d7 Eis T£q7”'7j1) = (X7 d7 Eis szq7m7jl)) : T(£)7 T(h) )

for supplemented A -algebras which extend the SDR-data [or tensor differential coalgebras
specified above.

Understanding morphisms, homotopies, and SDR-data for connected A“-algebras as the cor-

responding morphisms, homotopies, and SDR-data for supplemented A"“-algebras, we obtain the
following obvious corollary of Theorem 3.3.

Corollary 3.2. Suppose given a connected A"*-algebra (X,d,, T,{q“'”jl), SDR-data
(n: (X,d) = (Y, d) :¢,h)
for connected differential modules, and the SDR-data
(T(n): (T(X),d, V) = (T(Y),d, V) : T(£),T(h))

for tensor differential coalgebras corresponding to the given SDR-data (n: (X,d) = (Y,d) : &, h)
for differential modules. Then relations (1.5)—(1.8) define the structure of an AM_algebra
(Y,d,737"") on (Y,d) and SDR-data

(T(): (X, d.m™ ) 2 (X, d,mn 7)) T(E), T(h))

for AR_algebras extending the SDR-data for tensor differential coalgebras specified above.

[t is worth mentioning that Corollary 3.2, unlike the corresponding assertion in [4], provides
SDR-data for A"*-algebras rather than only the quasi-isomorphism of A™“-algebras.

In conclusion, we mention that Corollary 3.2 can be proved without the connectedness assumption
on the differential modules. To this end, it suffices to consider the colored algebra (S’, 7) obtained from
the colored algebra (.S, 7) of faces and degeneracies by “forgetting” the generators g3 and 0y withn > 0
and all relations containing them. Replacing the colored algebra (S, 7) by the colored algebra (S’, 7) in
all of the above considerations, we obtain a proof of Corollary 3.2 without the connectedness assumption
on the differential modules.
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