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1. INTRODUCTION

Let M denote the class of all Lebesgue measurable functions on R+ := [0,∞), and let

M+ := {f ∈ M : f ≥ 0}.

Let K ⊂ M+ be a cone with a positive homogeneous functional σ : K → R+, i.e., if α > 0 and f ∈ K,
then αf ∈ K, σ(αf) = ασ(f); furthermore, σ(f) = 0 if and only if f = 0 almost everywhere.

The following problem is well known: For a given cone K, construct an optimal Banach
space X0 ⊂ M such that K ↪→ X0 and if K ↪→ X for a Banach space X ⊂ M as well, then X ⊂ X0.
Here K ↪→ X denotes a continuous embedding. This problem was considered in the paper of Gol’dman
and Zabreiko [1], where its close association with similar problems on optimal spaces in the embedding
theory for Sobolev, Besov, and Calderón spaces, and Bessel and Riesz potentials, etc. (see, for
example, [2]–[7]), as well as with applications to estimates of approximation numbers, was noted.

Let M↓ ⊂ M+ be the subset of all nonincreasing functions, and let M↑ ⊂ M+ be the subset of all
nondecreasing functions. Let 0 < p ≤ ∞, and let v ∈ M+, be a given weight function (a weight). We
consider the weight cone of monotone functions K = Lp,v ⊂ M↓, that, for 0 < p < ∞, is of the form

Lp,v :=

{
f ∈ M

↓ : ‖f‖p,v :=
(ˆ ∞

0

(
1

t

ˆ t

0
f

)p

v(t) dt

)1/p

< ∞
}

and, for p = ∞,

L∞,v :=

{
f ∈ M↓ : ‖f‖∞,v := ess sup

t≥0

(
1

t

ˆ t

0
f

)
v(t) < ∞

}
,

and obtain the optimal Banach space X0 containing this cone. Explicit formulas for the norm of the
space X0 ⊃ K will be presented in Sec. 3 (Theorem 2).

Section 2 deals with the auxiliary problem of finding the Banach space associated with the cone K, a
problem that can be reduced to the characterization of the weighted inequalities of the embedding Lp,v in
a weighted Lebesgue space on the semiaxis. The solution of this problem was first given in [8] and [9], but
more explicit formulas were obtained by Gogatishvili and Pick in [10] and [11]. However, the methods
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of discretization [9] and antidiscretization used in the proofs in [10] and [11] are fairly complicated;
therefore, in Sec. 2, we give simple proofs of the assertions that we need; these proofs differ from those
in [9]–[12], while the techniques developed there will be used in our arguments in Secs. 3 and 4. In
conclusion, in Sec. 4, we solve a similar problem for the weight cone of quasiconcave functions

Ω0,1 :=

{
f ∈ M+ : f ∈ M↑,

f(t)

t
∈ M↓

}
.

For 0 < p ≤ ∞ and a weight function v ∈ M+, we consider the weight cone of functions K = Lp,v of
the form

Lp,v :=

{
f ∈ Ω0,1 : ‖f‖Lp,v :=

(ˆ ∞

0
[f ]pv

)1/p

< ∞
}
, 0 < p < ∞,

or, for p = ∞,

L∞,v :=
{
f ∈ Ω0,1 : ‖f‖L∞,v := ess sup

t≥0
f(t)v(t) < ∞

}
,

and obtain the optimal Banach space X0 containing this cone. Note that the cone Lp,v was first studied
by Sawyer [13] and then this cone, as well as the cone Lp,v, was studied intensively in connection with
problems involving Lorentz spaces and related problems in analysis [8]–[12], [14]–[26], etc.

Throughout the paper, products of the form 0 · ∞ will be assumed equal to 0. The relation A 
 B
means A ≤ cB with constant c depending only on p; A ≈ B is equivalent to A 
 B 
 A. We use the
notation := and =: to define new quantities. If 0 < p ≤ ∞, then p �= 1,∞, p = 1 p′ := 1 p = ∞.

p′ :=

⎧⎪⎪⎨
⎪⎪⎩

p

p− 1
if p �= 1,∞,

∞ if p = 1,

1 if p = ∞.

2. WEIGHTED INEQUALITIES ON THE CONE OF MONOTONE FUNCTIONS

2.1. Let 0 < p < ∞. For a fixed g ∈ M↓, we consider the characteristic problem for the inequality
ˆ ∞

0
fg ≤ C

(ˆ ∞

0

(
1

t

ˆ t

0
f

)p

v(t) dt

)1/p

, f ∈ M
↓, (2.1)

where 0 < p < ∞, the constant C is assumed least possible, and the problem is to find a sharp estimate of
the constant C in terms of the weight v and the parameter p. Further, we assume that the nondegeneracy
conditions hold:

0 <

ˆ
v(z) dz

(z + t)p
< ∞,

ˆ 1

0
z−pv(z) dz =

ˆ ∞

1
v = ∞. (2.2)

If these conditions do not hold, then it is necessary to analyze a number of pathological cases.
For p = ∞, a similar problem is considered for the inequalityˆ ∞

0
fg ≤ C ess sup

t≥0

(
1

t

ˆ t

0
f

)
v(t), f ∈ M↓.

Set

Pv(t) :=
1

t

ˆ t

0
v, Qpv(t) := ptp−1

ˆ ∞

t
s−pv(s) ds.

Then, by a trivial verification procedure, we can establish that

PQp = QpP = P +
1

p
Qp.
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The case p = 1. In this case, for g ∈ M+, inequality (2.1) is of the formˆ ∞

0
fg ≤ C

ˆ ∞

0
f(s) ds

ˆ ∞

s

v(t)

t
dt, f ∈ M

↓,

and its characterization is known [14, Proposition 1]:

C = sup
s>0

´ s
0 g´ s

0 (
´∞
z (v(t)/t) dt) dz

= sup
s>0

Pg(s)

PQ1v(s)
.

The case p �= 1,∞. Let

F (t) :=

(
1

t

ˆ t

0
f

)p

, f ∈ M↓,

and, without loss of generality, suppose that

g(t) =

ˆ ∞

t

h(s) ds

s
, h ∈ M+.

Then (2.1) is equivalent to (ˆ ∞

0
F 1/ph

)p

≤ Cp

ˆ ∞

0
Fv. (2.3)

Since

F (t) ∈ M↓, tpF (t) ∈ M↑,

it follows from Sinnamon’s lemma [20, Lemma 2.3] that there exists an F (t) ≈ F (t) and a sequence of
functions {wn} ⊂ M+ such that ˆ ∞

0

wn(z) dz

(z + t)p
↑ F (t);

therefore, (2.3) is equivalent to
(ˆ ∞

0
h(t)

(ˆ ∞

0

w(z) dz

(z + t)p

)1/p

dt

)p


 Cp

ˆ ∞

0
V w, w ∈ M

+, (2.4)

where

V (z) :=

ˆ ∞

0

v(t) dt

(z + t)p
≈ t1−pPQpv(t).

Set

Spw(t) :=

ˆ ∞

0

w(z) dz

(z + t)p
.

Then (2.4) is equivalent to(ˆ ∞

0
[Spw]

1/ph

)p


 Cp
0

ˆ ∞

0
V w, w ∈ M+, (2.5)

where C0 ≈ C .

The case 0 < p < 1. For the best constant C0 in inequality (2.5), using Theorem [27, Chap. XI, Sec. 1.5,
Theorem 4], we obtain

Cp
0 = sup

z>0

1

V (z)

(ˆ ∞

0

h(t) dt

t+ z

)p

.
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Since ˆ ∞

0

h(t) dt

t+ z
≈ 1

z

ˆ z

0
h+

ˆ ∞

z

h(t) dt

t
=

1

z

ˆ z

0

ˆ ∞

s

h(t) dt

t
ds =

1

z

ˆ z

0
g, (2.6)

it follows that, for 0 < p < 1 and g ∈ M↓, the best constant in (2.1) satisfies the two-sided estimate

C ≈ sup
z>0

(
1

z

ˆ z

0
g

)
1

V 1/p(z)
≈ sup

z>0

(
1

z

ˆ z

0
g

)
z1/p

′

(PQpv(z))1/p
.

The case 1 < p < ∞. It is easy to see that (2.5), and hence also (2.1), is equivalent to the simultaneous
validity of two inequalities (ˆ ∞

0

h(t)

t

(ˆ t

0
w

)1/p

dt

)p

≤ Cp
1

ˆ ∞

0
wV1,

(ˆ ∞

0
h(t)

(ˆ ∞

t
w

)1/p

dt

)p

≤ Cp
2

ˆ ∞

0
wV2,

where

V1(z) :=
1

zp

ˆ z

0
v +

ˆ ∞

z
t−pv(t) dt ≈ z1−pPQpv(z), V2(z) := zpV1(z);

further,

C ≈ C1 + C2.

It is known [28, Theorem 3.3] (see also [29, formula (1.18)] that, for the best constants C1 and C2, the
following estimates hold:

Cp′

1 ≈
ˆ ∞

0
[V1(x)]

1/(1−p)

(ˆ ∞

x

h(s) ds

s

)1/(p−1)h(x)

x
dx,

Cp′

2 ≈
ˆ ∞

0
[V2(x)]

1/(1−p)

(ˆ x

0
h(t) dt

)1/(p−1)

h(x) dx.

Integrating by parts, we obtain

Cp′

1 ≈
ˆ ∞

0

(ˆ ∞

x

h(s) ds

s

)p′ x1/(p−1)
´ x
0 v

V p′
2 (x)

dx,

Cp′

2 ≈
ˆ ∞

0

(ˆ x

0
h

)p′ xp−1
´∞
x s−pv(s) ds

V p′

2 (x)
dx,

Then

Cp′

1 ≈
ˆ ∞

0

(ˆ ∞

x

h(s) ds

s

)p′ Pv(x)

(PQpv(x))p
′ dx,

Cp′

2 ≈
ˆ ∞

0

(
1

x

ˆ x

0
h

)p′ Qpv(x)

(PQpv(x))p
′ dx.

Since PQpv ≥ Pv, PQpv ≥ Qpv, it follows that

Pv(x)

(PQpv(x))p
′ =

Pv(x)PQpv(x)

(PQpv(x))p
′+1

≥ Pv(x)Qpv(x)

(PQpv(x))p
′+1

,

Qpv(x)

(PQpv(x))p
′ =

Qpv(x)PQpv(x)

(PQpv(x))p
′+1

≥ Pv(x)Qpv(x)

(PQpv(x))p
′+1
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and, using (2.6), we can write

Cp′ ≈ Cp′

1 + Cp′

2 �
ˆ ∞

0

(
1

x

ˆ x

0
g(t) dt

)p′ Pv(x)Qpv(x)

(PQpv(x))p
′+1

dx.

To prove of the reverse inequality

Cp′ ≈ Cp′

1 + Cp′

2 

ˆ ∞

0

(
1

x

ˆ x

0
g(t) dt

)p′ Pv(x)Qpv(x)

(PQpv(x))p
′+1

dx, (2.7)

we note that (2.7) is equivalent to two inequalities

Cp′

1 ≈
ˆ ∞

0

(ˆ ∞

x

h(s) ds

s

)p′ Pv(x)dx

(PQpv(x))p
′ 


ˆ ∞

0

(
1

x

ˆ x

0
g(t) dt

)p′ Pv(x)Qpv(x)

(PQpv(x))p
′+1

dx, (2.8)

Cp′

2 ≈
ˆ ∞

0

(
1

x

ˆ x

0
h

)p′ Qpv(x) dx

(PQpv(x))p
′ 


ˆ ∞

0

(
1

x

ˆ x

0
g(t) dt

)p′ Pv(x)Qpv(x)

(PQpv(x))p
′+1

dx. (2.9)

Recall that here g(t) =
´∞
t (h(s)/s) ds.

Let us show that inequalities (2.8) and (2.9), and hence also (2.7), hold. For (2.8), we have
ˆ ∞

0
[g]p

′ Pv

(PQpv)p
′ 


ˆ ∞

0

(
1

x

ˆ x

0
g

)p′

ψ(x) dx, g ∈ M
↓, (2.10)

where

ψ :=
PvQpv

(PQpv)p
′+1

.

By Theorem [8, Theorem 4.2(a)], (2.10) is valid if and only ifˆ t

0

Pv

(PQpv)p
′ 


ˆ t

0
sp

′−1 ds

ˆ ∞

s
z−p′ψ(z) dz. (2.11)

Integrating by parts under condition (2.2), we obtainˆ ∞

s
z−p′ψ(z) dz =

ˆ ∞

s
z−p′ Pv(z)Qpv(z)

(PQpv)p
′+1

dz =

ˆ ∞

s

(ˆ z

0
v

)
Qpv(z)

(
´ z
0 Qpv)p

′+1
dz

≈
ˆ ∞

s

(ˆ z

0
v

)
d

(
−
(ˆ z

0
Qpv

)−p′)
≥

´ s
0 v

(
´ s
0 Qpv)p

′ .

Thus, ˆ t

0
sp

′−1 ds

ˆ ∞

s
z−p′ψ(z) dz �

ˆ t

0
sp

′−1

´ s
0 v

(
´ s
0 Qpv)p

′ ds =

ˆ t

0

Pv

(PQpv)p
′ ,

and, therefore, inequality (2.11) is proved.
Let us now verify (2.9). By the change

u(x) :=

ˆ x

0
h,

we reduce (2.9) to the inequality
ˆ ∞

0
[u(x)]p

′ Qpv(x)

(
´ x
0 Qpv)p

′ dx 

ˆ ∞

0

(ˆ ∞

x
s−2u(s) ds

)p′

ψ(x) dx, (2.12)

where u ∈ M↑. By Theorem [8, Theorem 4.2(b)], (2.12) is valid if and only ifˆ ∞

t

Qpv(x)

(
´ x
0 Qpv)p

′ dx ≈ 1

(
´ t
0 Qpv)p

′−1
=

1

tp′−1(PQpv(t))p
′−1


 1

tp′

ˆ t

0
ψ +

ˆ ∞

t

ψ(z) dz

zp′
. (2.13)
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To prove the last inequality, we writeˆ t

0
ψ =

ˆ t

0

Pv(z)Qpv(z)

(PQpv)p
′+1

dz =

ˆ t

0

Pv(z)Qpv(z)

(QpPv)p
′+1

dz =

ˆ t

0

z−p−1(
´ z
0 v)

´∞
z s−pv(s) ds

(
´∞
z s−p−1(

´ s
0 v) ds)p′+1

dz

≈
ˆ t

0

(ˆ ∞

z
s−pv(s) ds

)
d

((ˆ ∞

z
s−p−1

(ˆ s

0
v

)
ds

)−p′)
�

´∞
t s−pv(s) ds

(
´∞
z s−p−1(

´ s
0 v) ds)p′

.

Then

1

tp′

ˆ t

0
ψ � Qpv(t)

tp′−1(PQpv(t))p
′ . (2.14)

For the second summand on the right-hand side of (2.13), we write
ˆ ∞

t

ψ(z) dz

zp′
=

ˆ ∞

t

(
´ z
0 v)Qpv(z)

(
´ z
0 Qpv)p

′+1
dz =

ˆ ∞

t

(ˆ z

0
v

)
d

(
−
(ˆ z

0
Qpv

)−p′)

�
´ t
0 v

(
´ t
0 Qpv)p

′ =
Pv(t)

tp′−1(PQpv(t))p
′ . (2.15)

It follows from (2.14) and (2.15) that

1

tp′

ˆ t

0
ψ +

ˆ ∞

t

ψ(z) dz

zp′
� Pv(t) +Qpv(t)

tp′−1(PQpv(t))p
′ =

1

tp′−1(PQpv(t))p
′−1

and, therefore, (2.13) is proved.

Thus, for 1 < p < ∞ and g ∈ M↓, the best constant in (2.1) satisfies the relation

C ≈
(ˆ ∞

0

(
1

x

ˆ x

0
g(t) dt

)p′ Pv(x)Qpv(x)

(PQpv(x))p
′+1

dx

)1/p′

.

2.2. We shall now discard the monotonicity condition for the function g in inequality (2.1).

Let w(x) ∈ M+. By the change f(x) =
´∞
x ρ, the problem of characterizing inequality (2.1) for

g = w can be reduced to the two-sided estimate of the functional

J := sup
f∈M↓

´∞
0 fw

(
´∞
0 ((1/t)

´ t
0 f)

pv(t) dt)1/p
= sup

ρ∈M+

´∞
0 ρW

(
´∞
0 ((1/t)

´ t
0 ds

´∞
s ρ)pv(t) dt)1/p

, (2.16)

where

W (t) :=

ˆ t

0
w.

Applying [30, Theorem 4.1], we obtain

J = sup
ρ∈M+

´∞
0 ρW

(
´∞
0 ((1/t)

´ t
0 ds

´∞
s ρ)pv(t) dt)1/p

, (2.17)

where

W (x) := x sup
t≥x

Pw(t) =: xW(x). (2.18)

Since W (x) ∈ M↑, W (x)/x ∈ M↓, it follows that [10, Lemma 2.8] there exists a Borel measure dη such
that

W (x) ≈ x

ˆ
[0,∞)

dη(s)

x+ s
. (2.19)
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Changing the order of integration, we obtain

J ≈ sup
ρ∈M+

ˆ
[0,∞)

(ˆ ∞

0

xρ(x)

x+ s
dx

)
dη(s)

(ˆ ∞

0

(ˆ ∞

0

xρ(x)

x+ s
dx

)p

v(t) dt

)1/p
.

Just as in the argument in the first part, we can assume without loss of generality that

(ˆ ∞

0

xρ(x) dx

x+ s

)p

≈
ˆ ∞

0

ν(z) dz

(z + s)p
, Jp ≈ sup

ν∈M+

(ˆ
[0,∞)

(ˆ ∞

0

ν(z)

(z + s)p
dz

)1/p

dη(s)

)p

´∞
0 νV

. (2.20)

Just as in the characterization of inequality (2.4) for the case 1 < p < ∞, we can write

J ≈
(ˆ ∞

0

(
sup
t≥x

1

t

ˆ t

0
w

)p′ (Pv(x))Qpv(x)

(PQpv(x))p
′+1

dx

)1/p′

.

For 0 < p < 1, applying [27, Chap. XI, Sec. 1.5, Theorem 4] and using (2.20), we obtain

J ≈ sup
t≥0

t1/p
′
Pw(t)

[PQpv(t)]1/p
, 0 < p < 1,

and, similarly, for p = 1,

J = sup
t≥0

Pw(t)

PQ1v(t)
, p = 1.

2.3. The case p = ∞. Here the problem is to characterize the inequality
ˆ ∞

0
fw ≤ C ess sup

t≥0

(
1

t

ˆ t

0
f

)
v(t) =: ‖vPf‖∞, f ∈ M↓, (2.21)

for a fixed function w ∈ M+. First, note [11] that as f ∈ M↓,

‖vPf‖∞ = ‖VPf‖∞, where V(t) := t sup
s≥t

v(s)

s
, v(s) := ess sup

τ∈[0,s]
v(τ). (2.22)

Just as for (2.16) and (2.17), we see that (2.21) is equivalent to the two-sided estimate of the
functional

J := sup
ρ∈M+

´∞
0 ρW

ess supt≥0 V(t)((1/t)
´ t
0 ds

´∞
s ρ)

.

Note that

1

t

ˆ t

0
ds

ˆ ∞

s
ρ ≈

ˆ ∞

0

sρ(s) ds

t+ s
=: Sρ(t);

therefore, in view of (2.19), we have

J ≈ sup
ρ∈M+

´
[0,∞) Sρ dη

‖VSρ‖∞
. (2.23)

Obviously,

J 

ˆ ∞

0

dη

V .
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Since
1

V ∈ M↓,
t

V(t) ∈ M↑,

it follows that there exists a Borel measure dλ for which
1

V(t) ≈
ˆ
[0,∞)

s dλ(s)

t+ s
, (2.24)

and a sequence {λn} ⊂ M+ such thatˆ ∞

0

sλn(s) ds

t+ s
↑
ˆ
[0,∞)

s dλ(s)

t+ s
≈ 1

V(t) .

If, in (2.23), we take ρ = λn, then

J �
ˆ
[0,∞)

dη

V ;

therefore,

J ≈
ˆ
[0,∞)

dη

V ≈
ˆ
[0,∞)

W dλ.

Thus, we have proved the following statement.

Theorem 1. Let 0 < p ≤ ∞, let w ∈ M+, and let v ∈ M+ be a weight function satisfying condi-
tion (2.2). If

J := sup
f∈M↓

´∞
0 fw

(
´∞
0 [Pf ]pv)1/p

,

then

J ≈
(ˆ ∞

0

(
sup
t≥x

1

t

ˆ t

0
w

)p′ (Pv(x)Qpv(x)

(PQpv(x))p
′+1

dx

)1/p′

, 1 < p < ∞, (2.25)

J ≈ sup
t≥0

t1/p
′
Pw(t)

[PQpv(t)]1/p
, 0 < p < 1, (2.26)

J = sup
t≥0

Pw(t)

PQ1v(t)
, p = 1, (2.27)

and

sup
f∈M↓

´∞
0 fw

ess supt≥0 v(t)Pf(t)
≈
ˆ
[0,∞)

W dλ, (2.28)

where the measure dλ is related to the weight function v by the formulas (2.22) and (2.24) and W
is given by w in (2.18).

3. OPTIMAL BANACH SPACES CONTAINING A CONE OF MONOTONE FUNCTIONS
For a given cone K ⊂ M+ with positive homogeneous functional σ, by an associated Banach

space K ′ we mean the space with the norm

‖g‖K ′ := sup
0�=h∈K

´∞
0 |g|h
σ(h)

.

Under sufficiently general assumptions, Gol’dman and Zabreiko [1, Theorem 2.2] proved that the
Banach space X0 associated with K ′ is optimal, i.e.,

‖f‖X0 = sup
0�=g∈K ′

´∞
0 |fg|
‖g‖K ′

.
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Theorem 2. Let 0 < p ≤ ∞, let v ∈ M+ be a weight function satisfying condition (2.2), and let
K ⊂ M+ be a cone coinciding with Lp,v or L∞,v. For f ∈ M+, denote

f↓(t) := ess sup
s≥t

|f(s)|.

Then, the norms of the optimal Banach spaces X0 for the cones K satisfy the following relations:

1) ‖f‖X0 ≈
(ˆ ∞

0
[Pf↓]p

PψQp′ψ

(PQp′ψ)p+1

)1/p

, 1 < p < ∞, (3.1)

where ψ is given by the formula ψ := PvQpv/(PQpv)
p′+1;

2) ‖f‖X0 =

ˆ ∞

0
f↓Q1v, p = 1; (3.2)

3) ‖f‖X0 ≈
ˆ ∞

0
f↓(t)Qpv(t)

(ˆ t

0
Qpv

)1/p−1

dt, 0 < p < 1; (3.3)

4) ‖f‖X0 ≈ sup
t≥0

f↓(t)´
[t,∞) dλ

, p = ∞, (3.4)

where the measure dλ is related to the weight function v by formulas (2.22) and (2.24).

Proof. Let 1 < p < ∞. Then, by Theorem 1 (see (2.25)),

‖g‖K ′ := sup
0�=h∈Lp,v

´∞
0 |g|h
‖h‖Lp,v

≈
(ˆ ∞

0

(
sup
t≥x

1

t

ˆ t

0
|g|

)p′ (Pv(x))Qpv(x)

(PQpv(x))p
′+1

dx

)1/p′

.

Thus,

‖f‖X0 ≈ sup
g∈M+

´∞
0 |f |g(ˆ ∞

0

(
sup
t≥x

1

t

ˆ t

0
g

)p′((Pv(x))Qpv(x)

(PQpv(x))p
′+1

)
dx

)1/p′
.

Further, using an argument similar to that in the proof of Theorem 3.3 from [30], we obtain

‖f‖X0 ≈ sup
g∈M+

´∞
0 f↓g

(
´∞
0 (supt≥x Pg(t))p′ψ(x) dx)1/p′

=: sup
g∈M+

´∞
0 f↓g

(
´∞
0 [G(t)]p′ψ(x) dx)1/p′

=: F.

Applying (2.25), we can write

F = sup
g∈M+

´
[0,∞) Pg(t)t d(−f↓(t))

(
´∞
0 [G(x)]p′ψ(x) dx)1/p′

≥ sup
g∈M↓

´
[0,∞) Pg(t)t d(−f↓(t))

(
´∞
0 [Pg(x)]p′ψ(x) dx)1/p′

= sup
g∈M↓

´∞
0 f↓g

(
´∞
0 [Pg(x)]p′ψ(x) dx)1/p′

≈
(ˆ ∞

0
[Pf↓]p

PψQp′ψ

(PQp′ψ)p+1

)1/p

=: F

and, therefore, the lower bound in (3.1) is proved.

Further, note that G(t) ∈ M↓, tG(t) ∈ M↑; therefore, by Sinnamon’s lemma [20, Lemma 2.3], there
exists a G(t) ≈ G(t) and a sequence of functions {gn} ⊂ M↓ such that

Pgn(t) ↑ G(t).

Again applying (2.25) and the monotone convergence theorem, we obtainˆ
[0,∞)

Pg(t)t d(−f↓(t)) ≤
ˆ
[0,∞)

G(t)t d(−f↓(t)) ≈
ˆ
[0,∞)

G(t)t d(−f↓(t))
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= lim
n→∞

ˆ
[0,∞)

Pgn(t)t d(−f↓(t)) = lim
n→∞

ˆ ∞

0
f↓gn 
 F lim

n→∞

(ˆ ∞

0
[Pgn]

p′ψ

)1/p′

= F
(ˆ ∞

0
[G]p

′
ψ

)1/p′

≈ F
(ˆ ∞

0
[G]p

′
ψ

)1/p′

,

and the upper bound in (3.1) is established.

Further, let p = 1, and let K = L1,v. Applying (2.27), we obtain

‖g‖K ′ := sup
0�=h∈L1,v

´∞
0 |g|h
‖h‖L1,v

= sup
t>0

P |g|(t)
PQ1v(t)

=:

∥∥∥∥ P |g|(t)
PQ1v(t)

∥∥∥∥
∞
.

Thus,

‖f‖X0 = sup
g∈M+

´∞
0 |f |g

‖(Pg)/(PQ1v)‖∞
= sup

g∈M+

´∞
0 f↓g

‖(Pg)/(PQ1v)‖∞
≥
ˆ ∞

0
f↓Q1v.

Since ˆ ∞

0
f↓g =

ˆ
[0,∞)

Pg(t)t d(−f↓(t))

≤
∥∥∥∥ Pg

PQ1v

∥∥∥∥
∞

ˆ
[0,∞)

PQ1v(t)t d(−f↓(t)) =

∥∥∥∥ Pg

PQ1v

∥∥∥∥
∞

ˆ ∞

0
f↓Q1v,

it follows that

‖f‖X0 ≤
ˆ ∞

0
f↓Q1v

and, therefore, (3.2) is proved.

In the same way, we consider the case 0 < p < 1. By Theorem 1 (see (2.26)), we have

‖g‖K ′ := sup
0�=h∈Lp,v

´∞
0 |g|h
‖h‖Lp,v

≈ sup
t>0

t1/p
′
P |g|(t)

[PQpv(t)]1/p
.

Hence

‖f‖X0 ≈ sup
g∈M+

´∞
0 |f |g

supt>0(t
1/p′Pg(t)/[PQpv(t)]1/p)

= sup
g∈M+

´∞
0 f↓g

supt>0(t
1/p′Pg(t)/[PQpv(t)]1/p)

= sup
g∈M+

´
[0,∞)(

´ t
0 g) d(−f↓(t))

supt>0(
´ t
0 g/[

´ t
0 Qpv]1/p)

=
1

p

ˆ ∞

0
f↓(t)Qpv(t)

(ˆ t

0
Qpv

)1/p−1

dt

and, therefore, (3.3) is proved.

In the case p = ∞, K = L∞,v, using (2.28), we obtain

‖g‖K ′ := sup
0�=h∈L∞,v

´∞
0 |g|h

‖h‖L∞,v

≈
ˆ
[0,∞)

Gdλ,

‖f‖X0 ≈ sup
g∈M+

´∞
0 |f |g´

[0,∞)Gdλ
= sup

g∈M+

´∞
0 f↓g´

[0,∞)Gdλ
= sup

g∈M+

´
[0,∞) Pg(t)t d(−f↓(t))´

[0,∞)(sups≥t Pg(s))t dλ(t)

= sup
g∈M+

´∞
0 f↓g´

[0,∞) Pg(t)t dλ(t)
= sup

g∈M+

´
[0,∞)(

´ t
0 g) d(−f↓(t))´

[0,∞)(
´ t
0 g) dλ(t)

= sup
t≥0

f↓(t)´
[t,∞) dλ

and, therefore, (3.4) is proved.
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4. OPTIMAL BANACH SPACES CONTAINING A CONE
OF QUASICONCAVE FUNCTIONS

Here we study a similar problem for the cone generated by the set of quasiconcave functions

Ω0,1 :=

{
f ∈ M+ : f ∈ M↑,

f(t)

t
∈ M↓

}
.

Let 0 < p ≤ ∞, and let v ∈ M+ be a given weight function satisfying condition (2.2). We consider
the weight cone of quasiconcave functions K = Lp,v, whose form depends on the parameter p:

Lp,v :=

{
f ∈ Ω0,1 : ‖f‖Lp,v :=

(ˆ ∞

0
[f ]pv

)1/p

< ∞
}
, 0 < p < ∞,

L∞,v :=

{
f ∈ Ω0,1 : ‖f‖L∞,v := ess sup

t≥0
f(t)v(t) < ∞

}
,

and obtain the optimal Banach space X0 containing this cone.

First, we need an analog of Theorem 1. Denote

w̃(t) :=

ˆ ∞

t
w, vp(t) := tpv(t), v1(s) := ess sup

τ∈[0,s]
v1(τ), V1(t) := t sup

s≥t

v1(s)

s
.

Theorem 3. Let 0 < p ≤ ∞, let w ∈ M+, and let v ∈ M+ be a weight function satisfying condi-
tion (2.2). If

J := sup
f∈Ω0,1

´∞
0 fw

‖f‖Lp,v

,

then

J ≈
(ˆ ∞

0
(Pw̃)p

′ (PvpQpvp
(PQpvp)p

′+1

)1/p′

, 1 < p < ∞, (4.1)

J ≈ sup
t≥0

t1/p
′
Pw̃(t)

[PQpvp(t)]1/p
, 0 < p ≤ 1, (4.2)

and

sup
f∈Ω0,1

´∞
0 fw

‖f‖L∞,v

≈
ˆ ∞

0

sw(s) ds

V1(s)
. (4.3)

Proof. Let 0 < p < ∞. Applying Sinnamon’s lemma (see [20, Lemma 2.3]), it is easy to see that

J ≈ sup
ν∈M↓

´∞
0 (

´ t
0 ν)w(t) dt

(
´∞
0 (Pν)pvp)1/p

= sup
ν∈M↓

´∞
0 νw̃

(
´∞
0 (Pν)pvp)1/p

.

In view of the inclusion w̃ ∈ M↓, applying Theorem 1, we obtain (4.1) and (4.2). Let the measure dλ1 be
related to V1 in the same way as dλ is related to V in Theorem 1. Then, applying (2.28), we obtain

sup
f∈Ω0,1

´∞
0 fw

‖f‖L∞,v

≈ sup
ν∈M↓

´∞
0 νw̃

ess supt≥0 Pν(t)v1(t)
≈
ˆ
[0,∞)

(ˆ t

0
w̃

)
dλ1(t)

=

ˆ ∞

0

(ˆ ∞

t
w

) ˆ
[t,∞)

dλ1 ≈
ˆ ∞

0

sw(s) ds

V1(s)
.
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Let

Φp(t) :=
t

(
´ t
0 Qpv)1/p

, F−1
p (t) := t sup

s≥t

1

s
sup

z∈[0,s]
Φp(z).

Then, just as in the case of the measure dλ, there exists a Borel measure dτ for which

Fp(t) ≈
ˆ
[0,∞)

s dτ(s)

s+ t
. (4.4)

(This relation is similar to (2.24).)

Theorem 4. Let 0 < p ≤ ∞, let v ∈ M+ be a weight function satisfying condition (2.2), and let
K ⊂ M+ be a cone coinciding with Lp,v or L∞,v. For f ∈ M+, denote

f↑(t) := ess sup
s≤t

|f(s)|.

Then, the norms of the optimal Banach spaces X0 for the cones K satisfy the relations

1) ‖f‖X0 ≈
(ˆ ∞

0

(
f↑(t)

t

)p PψpQp′ψp

(PQp′ψp)p+1

)1/p

, 1 < p < ∞,

where ψp is given by the formula ψp := PvpQpvp/(PQpvp)
p′+1;

2) ‖f‖X0 ≈
ˆ
[0,∞)

t sup
s≥t

f↑(s)

s
dτ(t), 0 < p ≤ 1,

where the measure dτ is given by relation (4.4);

3) ‖f‖X0 ≈ sup
t≥0

f↑(t)´
[t,∞) dλ

, p = ∞,

where the measure dλ is related to the weight function v by the formulas (2.22) and (2.24).

Proof. Let 1 < p < ∞. Then, by Theorem 3 (see (4.1)),

‖g‖K ′ := sup
0�=h∈Lp,v

´∞
0 |g|h
‖h‖Lp,v

≈
(ˆ ∞

0

(
1

t

ˆ t

0
ds

ˆ ∞

s
|g|

)p′

ψp(t) dt

)1/p′

.

Thus,

‖f‖X0 ≈ sup
g∈M+

´∞
0 |f |g

(
´∞
0 ((1/t)

´ t
0 ds

´∞
s g)p′ψp(t) dt)1/p

′ .

Applying [30, Corollary 3.4] and, further, Theorem 1, we obtain

‖f‖X0 ≈ sup
g∈M+

´∞
0 f↑g

(
´∞
0 ((1/t)

´ t
0 ds

´∞
s g)p′ψp(t) dt)1/p

′

= sup
g∈M+

´
[0,∞)(

´∞
s g) df↑(s)

(
´∞
0 ((1/t)

´ t
0 ds

´∞
s g)p′ψp(t) dt)1/p

′ = sup
ν∈M↓

´
[0,∞) ν df

↑(s)

(
´∞
0 (Pν)p

′
ψp)1/p

′

≈
(ˆ ∞

0

(
f↑(t)

t

)p PψpQp′ψp

(PQp′ψp)p+1

)1/p

.

Let 0 < p ≤ 1. Then, by Theorem 3 (see (4.2)),

‖g‖K ′ ≈ sup
t≥0

t1/p
′
P |̃g|(t)

[PQpvp(t)]1/p
=: sup

t≥0
Φp(t)P |̃g|(t).
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Therefore,

‖f‖X0 ≈ sup
g∈M+

´∞
0 |f |g

supt≥0 Φp(t)P |̃g|(t)
.

Again, applying [30, Corollary 3.4] and, further, Theorem 1 (see formula (2.28)), we obtain

‖f‖X0 ≈ sup
g∈M+

´∞
0 f↑g

supt≥0 Φp(t)P g̃(t)
= sup

g∈M+

´
[0,∞) g̃ df

↑

supt≥0 Φp(t)P g̃(t)
= sup

ν∈M↓

´
[0,∞) ν df

↑

supt≥0Φp(t)Pν(t)

≈
ˆ
[0,∞)

t sup
s≥t

f↑(s)

s
dτ(t).

For p = ∞, applying (4.3), we can write

‖g‖K ′ ≈
ˆ ∞

0

s|g(s)|(s) ds
V1(s)

;

therefore,

‖f‖X0 ≈ sup
g∈M+

´∞
0 |f |g´∞

0 (s|g(s)|/V1(s)) ds
= sup

t≥0

|f(t)|V1(t)

t
.
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