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Abstract—For an elliptic-hyperbolic type equation, the boundary-value problem with nonlocal
Samarskii–Ionkin condition in a rectangular domain is solved. Using the spectral analysis method,
a uniqueness criterion is established and the existence theorem for the solution of the problem is
proved. The solution of the problem is constructed as the sum of a biorthogonal series.

DOI: 10.1134/S0001434615090114

Keywords: elliptic-hyperbolic type equation, boundary-value problem, Samarskii–Ionkin
condition, spectral analysis, Bessel’s equation, Weierstrass criterion.

1. INTRODUCTION

In the present paper, we consider the following equation of mixed, elliptic-hyperbolic, type:

Lu = K(y)uxx + uyy = 0, (1.1)

where K(y) = sgn y · |y|m, m > 0, in the rectangular domain

D = {(x, y) | 0 < x < 1, −α < y < β},
which degenerates on the change-of-type line. For Eq. (1.1) in the domain D, we pose the following
problem.

Boundary-value problem. In the domain D, find the function u(x, y) satisfying the following
conditions:

u(x, y) ∈ C1(D) ∩C2(D+ ∪D−), (1.2)

Lu(x, y) ≡ 0, (x, y) ∈ D+ ∪D−, (1.3)

u(x, β) = ϕ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ 1, (1.4)

u(1, y) = 0, −α ≤ y ≤ β, (1.5)ˆ 1

0
u(x, y)dx = A = const, −α ≤ y ≤ β, (1.6)

where D− = D∩{y < 0}, D+ = D∩{y > 0}, ϕ(x) andψ(x) are given sufficiently smooth functions
satisfying the conditions ϕ(1) = ψ(1) = 0 and

ˆ 1

0
ϕ(x) dx =

ˆ 1

0
ψ(x) dx = A. (1.7)

*E-mail: sabitovauk@rambler.ru

454



BOUNDARY-VALUE PROBLEM FOR MIXED-TYPE EQUATIONS 455

For various equations, including those of mixed type, but with constant coefficients, problems of
similar type were studied, in particular, in [1]–[3].

For a fixed y ∈ (−α, 0) ∪ (0, β), integrating Eq. (1.1) over the variable x from ε to 1− ε, where ε is a
sufficiently small number, we obtain

K(y)

ˆ 1−ε

ε
uxx dx+

ˆ 1−ε

ε
uyy dx = 0.

Hence, as ε → 0, we have

K(y)[ux(1, y) − ux(0, y)] +
d2

dy2

ˆ 1

0
u(x, y) dx = 0.

In view of condition (1.6), the last equality becomes the other nonlocal condition

ux(0, y) = ux(1, y), −α ≤ y ≤ β, (1.8)

expressing the equality of flows across the lateral sides x = 0 and x = 1 of the rectangle D.
In what follows, instead of problem (1.2)–(1.6), we shall study the problem described by (1.2)–(1.5)

and (1.8). In this paper, using ideas from [2]–[5]„ we establish a criterion for the uniqueness of the
solution of problem (1.2)–(1.5), (1.8). In justifying the existence of a solution of the problem, we must
deal with the small denominators with respect to the parameter α. Under certain conditions on the
number α and the functions ϕ(x), ψ(x), the solution can be expressed as the sum of a biorthogonal
series. We prove the convergence of the constructed series for the class (1.2).

2. UNIQUENESS OF THE SOLUTION

We search for the particular solutions of Eq. (1.1) satisfying conditions (1.2), (1.5), (1.8), in the
form u(x, y) = X(x)Y (y) by using the method of separation of variables. Substituting this product
into Eq. (1.1), we obtain the relations

X ′′(x) + μX(x) = 0, 0 < x < 1, (2.1)

X(1) = 0, X ′(0) = X ′(1), (2.2)

Y ′′(y)− μ sgn y · |y|mY (y) = 0, y ∈ (−α, 0) ∪ (0, β), (2.3)

where μ is a constant. Problem (2.1), (2.2) is non-self-adjoint; The adjoint problem is of the form

Y ′′(x) + μY (x) = 0, 0 < x < 1, Y ′(0) = 0, Y (0) = Y (1).

The eigenvalues of the first problem are the numbers μn = λ2
n, λn = 2πn, n = 1, 2, . . . , to which

correspond to the following eigen and associated functions

X0(x) = 2(1− x),

X2n−1(x) = 4 sin 2πnx, X2n(x) = 4(1 − x) cos 2πnx, n = 1, 2, . . . .
(2.4)

For n ≥ 1, the eigenvalues are double, the X2n−1(x) are eigenfunctions, and the X2n(x) are
associated functions. The system of eigen and associated functions of the adjoint problem is of the
form

Y0(x) = 2,

Y2n(x) = 4 cos 2πnx, Y2n−1(x) = 4x sin 2πnx, n = 1, 2, . . . .
(2.5)

It is easy to verify that systems (2.4) and (2.5) are mutually biorthogonal, i.e.,

(Xk(x), Yl(x)) = δkl,

where δkl is the Kronecker delta. Both problems under consideration are regular and, therefore, the
systems {Xk} and {Yk} are complete in the space L2(0, 1) [6]. Since both these systems are Bessel, i.e.,
for all f ∈ L2(0, 1), the following inequalities hold:

Σ|(f,Xk)|2 < ∞, Σ|(f, Yk)|2 < ∞,
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it follows from the Bari theorem that these systems constitute Riesz bases in L2(0, 1).

Suppose that u(x, y) is a solution of problem (1.2)–(1.5), (1.8). Consider the functions

wn(y) =

ˆ 1

0
u(x, y) cos 2πnx dx, n = 1, 2, . . . , (2.6)

w0(y) =

ˆ 1

0
u(x, y) dx, (2.7)

zn(y) =

ˆ 1

0
u(x, y)x sin 2πnx dx, n = 1, 2, . . . . (2.8)

Using (2.6), we introduce the function

wε,n(y) =

ˆ 1−ε

ε
u(x, y) cos 2πnx dx, n = 1, 2, . . . , (2.9)

where ε > 0 is a sufficiently small number. Twice differentiating equality (2.9) for y ∈ (−α, 0) ∪ (0, β)
and taking into account Eq. (1.1), we can write

w′′
ε,n(y) =

ˆ 1−ε

ε
uyy(x, y) cos 2πnx dx = − sgn y · |y|m

ˆ 1−ε

ε
uxx(x, y) cos 2πnx dx

= − sgn y · |y|m
ˆ 1−ε

ε
uxx(x, y) cos 2πnx dx. (2.10)

Integrating (2.10) by parts twice, taking into account conditions (1.5), (1.8), and passing to the limit as
ε → 0, we obtain the differential equation

w′′
n(y)− sgn y · |y|m(2πn)2wn(y) = 0 (2.11)

with the boundary conditions

wn(β) =

ˆ 1

0
ϕ(x) cos 2πnx dx = ϕn, wn(−α) =

ˆ 1

0
ψ(x) cos 2πnx dx = ψn. (2.12)

The general solution of Eq. (2.11) is of the form

wn(y) =

{
an

√
y I1/(2q)(pny

q) + bn
√
yK1/(2q)(pny

q), y > 0,

cn
√−yJ1/(2q)(pn(−y)q) + dn

√−yY1/(2q)(pn(−y)q), y < 0,
(2.13)

where J1/(2q)(pn(−y)q) and Y1/(2q)(pn(−y)q) are Bessel functions of the first and the second kind,
respectively, I1/(2q)(pny

q) and K1/(2q)(pny
q) are modified Bessel functions, an, bn, cn and dn is an

arbitrary constants, and q = (m+ 2)/2, pn = (2πn)/q.
In view of (1.2), we choose the constants an, bn, cn, and dn so that the following equalities hold:

wn(0+) = wn(0−), w′
n(0+) = w′

n(0−). (2.14)

The first of the equalities (2.14) holds for dn = −πbn/2 and any an and cn, while the second equality
holds for cn = π cot[π/(4q)]bn/2− an and dn = −πbn/2.

Let us substitute the resulting expressions for the constants cn and dn into (2.13); then the functions
wn(y) take the form

wn(y) =

{
an

√
y I1/(2q)(pny

q) + bn
√
yK1/(2q)(pny

q), y > 0,

−an
√−yJ1/(2q)(pn(−y)q) + bn

√−yY 1/(2q)(pn(−y)q), y < 0,
(2.15)

where

Y 1/(2q)(pny
q) =

π

2 sin[π/(2q)]
(J1/(2q)(pny

q) + J−1/(2q)(pny
q)).
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Note that, for the functions (2.15), the following equality holds:

w′′
n(0+) = w′′

n(0−) = 0.

Now, using (2.12) and (2.15), we obtain the following system for finding an and bn:{
anI1/(2q)(pnβ

q) + bnK1/(2q)(pnβ
q) = ϕnβ

−1/2,

−anJ1/(2q)(pnα
q) + bnY 1/(2q)(pnα

q) = ψnα
−1/2, n = 1, 2, . . . .

(2.16)

If the determinant of system (2.16) is nonzero,

Δn(α, β) = J1/(2q)(pnα
q)K1/(2q)(pnβ

q) + I1/(2q)(pnβ
q)Y 1/(2q)(pnα

q) �= 0, n ∈ N, (2.17)

then this system has the unique solution

an =
ϕn

√
αY 1/(2q)(pnα

q)− ψn
√
βK1/(2q)(pnβ

q)

Δn(α, β)
√
αβ

, (2.18)

bn =
ϕn

√
αJ1/(2q)(pnα

q) + ψn
√
β I1/(2q)(pnβ

q)

Δn(α, β)
√
αβ

. (2.19)

Using (2.18) and (2.19), from (2.15) we determine the final form of the functions

wn(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ϕn

√
αyΔn(α, y) + ψn

√
βyAn(y, β)

Δn(α, β)
√
αβ

, y > 0,

ϕn
√−αyBn(α,−y) + ψn

√
−βyΔn(−y, β)

Δn(α, β)
√
αβ

, y < 0,

(2.20)

where

Δn(α, y) = J1/(2q)(pnα
q)K1/(2q)(pny

q) + Y 1/(2q)(pnα
q)I1/(2q)(pny

q), (2.21)

An(y, β) = I1/(2q)(pnβ
q)K1/(2q)(pny

q)− I1/(2q)(pny
q)K1/(2q)(pnβ

q),

Bn(α,−y) = Y 1/(2q)(pn(−y)q)J1/(2q)(pnα
q)− Y 1/(2q)(pnα

q)J1/(2q)(pn(−y)q), (2.22)

Δn(−y, β) = J1/(2q)(pn(−y)q)K1/(2q)(pnβ
q) + Y 1/(2q)(pn(−y)q)I1/(2q)(pnβ

q).

Just as for wn(y), we see that the function w0(y) defined by formula (2.7), satisfies the conditions

w′′
0(y) = 0, y ∈ (−α, 0) ∪ (0, β), (2.23)

w0(0+) = w0(0−), w′
0(0+) = w′

0(0−), (2.24)

w0(β) =

ˆ 1

0
ϕ(x) dx = ϕ0, w0(−α) =

ˆ 1

0
ψ(x) dx = ψ0. (2.25)

The unique solution of problem (2.23)–(2.25) is given by

w0(y) =
ϕ0 − ψ0

α+ β
(y + α) + ψ0. (2.26)

Repeating the same actions for the function zn(y) as for wn(y) given by formula (2.8), we obtain the
inhomogeneous differential equation

z′′n(y)− sgn y · |y|m(2πn)2zn(y) = −4πn sgn y · |y|mwn(y), (2.27)

where y ∈ (−α, 0) ∪ (0, β), with the corresponding boundary conditions

zn(β) =

ˆ 1

0
ϕ(x)x sin 2πnx dx = ϕ1n, (2.28)

zn(−α) =

ˆ 1

0
ψ(x)x sin 2πnx dx = ψ1n (2.29)
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and the conjugation conditions

zn(0+) = zn(0−), z′n(0+) = z′n(0−). (2.30)

Using the method of variation of arbitrary constants, we find a solution of problem (2.27)–(2.30) in
the form

zn(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
αy [ϕ1n − z+n (β)]Δn(α, y)

Δn(α, β)
√
αβ

+

√
βy [ψ1n − z−n (α)]An(y, β)

Δn(α, β)
√
αβ

+ z+n (y), y > 0,

√
−βy [ψ1n − z−n (α)]Δn(−y, β)

Δn(α, β)
√
αβ

+

√−αy [ϕ1n − z+n (β)]Bn(α,−y)

Δn(α, β)
√
αβ

+ z−n (y), y < 0,

(2.31)

where the functions z+n (y) and z−n (y) are defined, respectively, by the equalities

z+n (y) =
2πn

q2
√
y [bnK1/(2q)(pny

q)− anI1/(2q)(pny
q)]

×
{
y2q

[(
1 +

1

4(pnqyq)2

)
I1/(2q)(pny

q)K1/(2q)(pny
q)

+
1

4
(pnq)

2y2q−2(I1/(2q)−1(pny
q)

+ I1/(2q)+1(pny
q))[K1/(2q)+1(pny

q) +K1/(2q)−1(pny
q)]

]
− (2p2n)

−1

}

− π2n

q2 sin(π/(2q))
bnI1/(2q)(pny

q)y2q+1/2

×
[

π

2 sin(π/(2q))
(I2−1/(2q)(pny

q)− I−1/(2q)−1(pny
q)I1−1/(2q)(pny

q))

− 2K1/(2q)(pny
q)I1/(2q)(pny

q)− 2I1+1/(2q)(pny
q)K1/(2q)−1(pny

q)

]

+
2πn

q2
anK1/(2q)(pny

q)y2q+1/2

× [I21/(2q)(pny
q)− I1/(2q)−1(pny

q)I1/(2q)+1(pny
q)], y > 0, (2.32)

z−n (y) = −π2n

2q2
y2q+1/2[anJ1/(2q)(pny

q)− bnY1/(2q)(pny
q)]

×
[
2J1/(2q)(pny

q)Y1/(2q)(pny
q)− J1/(2q)+1(pny

q)Y1/(2q)−1(pny
q)

− J1/(2q)−1(pny
q)Y1/(2q)+1(pny

q)
]

− π2n

q2
bny

2q+1/2[Y 2
1/(2q)(pny

q)− Y1/(2q)+1(pny
q)Y1/(2q)−1(pny

q)]J1/(2q)(pny
q)

+
π2n

q2
any

2q+1/2[J2
1/(2q)(pny

q)− J1/(2q)+1(pny
q)J1/(2q)−1(pny

q)]Y1/(2q)(pny
q)

+
πn

p2nq
3

[
an + 2cot

π

2q
bn

]
J1/(2q)(pny

q)
√
y − πn

p2nq
3
bnY1/(2q)(pny

q)
√
y, y < 0. (2.33)

Note that more detailed calculations in the derivation of formula (2.31) were given in [7, Secs. 1.1, 2.1].
Under condition (2.17), formulas (2.20), (2.26), (2.31) imply the uniqueness of the solution of problem

(1.2)–(1.5), (1.8), because if ϕ(x) ≡ 0, ψ(x) ≡ 0 on [0, 1], then wn(y) ≡ 0, w0(y) ≡ 0, zn(y) ≡ 0 for
n = 0, 1, 2, . . . on [−α, β]. Then, from (2.6)–(2.8), we obtain

4

ˆ 1

0
u(x, y)(1 − x) cos 2πnx dx = 0, 2

ˆ 1

0
(1− x)u(x, y) dx = 0,
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4

ˆ 1

0
u(x, y) sin 2πnx dx = 0, n = 1, 2, . . . .

Hence, in view of the completeness of the system of root functions (2.4) in the space L2[0, 1], it follows
that the function u(x, y) = 0 almost everywhere on [0, 1] for any y ∈ [−α, β]. By virtue of (1.2), the
function u(x, y) is continuous on D; therefore, u(x, y) ≡ 0 on D.

If, for some α, β, and n = l ∈ N, condition (2.17) fails, i.e., Δl(α, β) = 0, then the homogeneous
problem (1.2)–(1.5), (1.8) (where ϕ(x) = ψ(x) ≡ 0) has the nontrivial solution

ul(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
yΔl(α, y)

J1/(2q)(plαq)
Xl(x), y > 0,

√−yΔl(−y, β)

I1/(2q)(plβq)
Xl(x), y < 0,

(2.34)

where

Xl(x) = A1(1− x) cos 2πlx+A2(1− x) +A3 sin 2πlx

and Ai, i = 1, . . . , 3 are arbitrary constants.
It is easy to verify that the function (2.34) constructed above belongs to the class C2(D) and is a

solution of Eq. (1.1) everywhere in D.
Naturally, we ask whether there exist zeros of the expression Δn(α, β) for a fixed n with respect to α.

Let us express Δn(α, β) as

Δn(α, β) = I1/(2q)(pnβ
q)δn(α, β), (2.35)

where

δn(α, β) = J1/(2q)(pnα
q)
K1/(2q)(pnβ

q)

I1/(2q)(pnβq)
+ Y 1/(2q)(pnα

q). (2.36)

The existence of zeros of δn(α, β) with respect to α follows from the fact that J1/(2q)(pkz) and
Y 1/(2q)(pkz), z = αq, are linearly independent solutions of Bessel’s equation

y′′(z) +
1

z
y′(z) +

[
p2k −

(
1

2qz

)2]
y(z) = 0. (2.37)

Since the functions J1/(2q)(pkz) and δn(z, β) are linearly independent solutions of Eq. (2.37), it follows
from the general theory of linear differential equations [8, p. 135 (Russian transl.)] that the zeros of two
linearly independent solutions of Bessel’s equation strictly alternate, i.e., the interval between any two
successive zeros of any of these solutions contains exactly one zero of the other solution. The function
J1/(2q)(pkz) has a countable set of positive zeros. Then the function δn(z, β) also has a countable set of
positive zeros with respect to z = αq .

Thus, we have proved the following statement.

Theorem 1. If there exists a solution of problem (1.2)–(1.5), (1.8), then it is unique if and only if
Δn(α, β) �= 0 for all n ∈ N.

3. EXISTENCE OF A SOLUTION
Since α and β are arbitrary positive numbers, for sufficiently large n, the expression Δn(α, β)

appearing in the denominators of formulas (2.20), (2.31) can become sufficiently small due to the
existence of a countable set of zeros of δn(α, β) with respect to αq . Therefore, the problem of small
denominators arises just as in the study of the Dirichlet problem for Eq. (1.1), [9].

As is well known [10, p. 99 (Russian transl.)], Kν(z) = O(z−1/2e−z) and Iν(z) = O(z−1/2ez) as
z → +∞; hence the quantity

J1/(2q)(pnα
q)
K1/(2q)(pnβ

q)

I1/(2q)(pnβq)
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is an infinitesimal of higher order than Y 1/(2q)(pnα
q) for large n. Therefore, it suffices to consider the

expression

δ̃n(α) =
2 sin(π/(2q))

π
Y 1/(2q)(2πnαq) = J1/(2q)(2πnαq) + J−1/(2q)(2πnαq), αq =

αq

q
,

which also has a countable set of positive zeros with respect to α.
Using the asymptotic formula for the function

Jν(z) =

√
2

πz
cos

(
z − π

2
ν − π

4

)
+O(z−3/2), z → ∞,

for n > n0, where n0 is a sufficiently large natural number, we obtain

√
nδ̃n(α) =

1

π
√
αq

[
cos

(
2πnαq −

π

4q
− π

4

)
+ cos

(
2πnαq +

π

4q
− π

4

)]

=
2

π
α−1/2
q cos

(
π

4q

)
cos

(
2πnαq −

π

4

)
= A cos

(
2πnαq −

π

4

)
.

It is easy to see that if, for example, αq = μ ∈ N, i.e., α = (μq)1/q , then, for n > n0,

|
√
nδ̃n(α)| = A

∣∣∣∣cos
(
2πnμ− π

4

)∣∣∣∣ = A

∣∣∣∣cos π4
∣∣∣∣ ≥ C̃1 > 0;

here and further, the C̃i are positive constants.
Now let αq = k/m be a rational number, where k and m, and m and 4 are coprime numbers. Then

|
√
nδ̃k/m(α)| = A

∣∣∣∣cos
(
2π

kn

m
− π

4

)∣∣∣∣. (3.1)

Let us divide 2kn by m with remainder 2kn = sm+ r, s, r ∈ N ∪ {0}, 0 ≤ r < m. If r = 0, then this
case can be reduced to the one examined above. Let r > 0, and it is obvious that 1 ≤ r ≤ m− 1 and
m ≥ 2. Then expression (3.1) takes the form

|
√
nδ̃k/m(α)

∣∣∣∣ = A

∣∣∣∣cos π
(

r

m
− 1

4

)∣∣∣∣ ≥ C̃2 > 0.

Therefore, the following statement is valid.

Lemma 1. If one of the following conditions holds:

1) αq is any natural number;

2) αq is any rational number, i.e., αq = k/m /∈ N, where k,m ∈ N, k and m, and m and 4 are
coprime numbers,

then there exist positive constants n0 (n0 ∈ N) and C0 depending on α and q such that, for any
fixed β > 0 and all n > n0, the following estimate holds:

|
√
nδn(α)| ≥ C0 > 0. (3.2)

If δn(α, β) �= 0 for n = 1, . . . , n0 and estimate (3.2) holds, then the solution of problem (1.2)–(1.5),
(1.8) can be expressed as the sum of the series

u(x, y) = 2(1− x)w0(y) + 4

∞∑
n=1

wn(y)(1 − x) cos 2πnx+ 4

∞∑
n=1

zn(y) sin 2πnx, (3.3)

where the functions w0(y), wn(y), zn(y) are given, respectively, by formulas (2.26), (2.20), (2.31).
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Let us now show that, under certain conditions with respect to the functions ϕ(x) and ψ(x), the
series (3.3) and its first derivatives in the closed domain D, and the second derivatives with respect to x
and y, respectively, in the closed domains D+ and D− converge uniformly.

Consider the following ratios:

Pn(y) =

√
yΔn(α, y)

Δn(α, β)
, Qn(y) =

√
yAn(y, β)

Δn(α, β)
, y ∈ [0, β], (3.4)

Mn(y) =

√−yBn(α,−y)

Δn(α, β)
, Nn(y) =

√−yΔn(−y, β)

Δn(α, β)
, y ∈ [−α, 0]. (3.5)

Lemma 2. Let condition (3.2) hold for all n > n0. Then, for such n, the following estimates hold:

|Pn(y)| ≤ C1, |P ′
n(y)| ≤ C2n, |P ′′

n (y)| ≤ C3n
2,

|Qn(y)| ≤ C4n
1−λ, |Q′

n(y)| ≤ C5n
λ, |Q′′

n(y)| ≤ C6n
3−λ, y ∈ [0, β],

|Mn(y)| ≤ C7n
λe−nd, |M ′

n(y)| ≤ C8ne
−nd, |M ′′

n(y)| ≤ C9n
2+λe−nd,

|Nn(y)| ≤ C10n
λ, |N ′

n(y)| ≤ C11n
1/2+λ, |N ′′

n(y)| ≤ C12n
2+λ, y ∈ [−α, 0],

where λ = 1/2 + 1/2q, d = 2πβq , βq = βq/q, and the Ci are positive constants here and elsewhere.

Proof. The validity of these estimates of the functions (3.4), (3.5) and of their derivatives are established
using the asymptotic formulas describing the behavior of Bessel functions [10, pp. 98–99 (Russian
transl.)] as z → 0 and z → +∞. Here, as an example, we consider the functions Pn(y) and Mn(y). In
view of (2.35) and (3.2), using (3.4) and (2.21) for 0 ≤ y ≤ β and large n, we obtain

|Pn(y)| ≤
∣∣∣∣
√
nJ1/(2q)(pnα

q)
√
yK1/(2q)(pny

q)

I1/(2q)(pnβq)C̃0

∣∣∣∣+
∣∣∣∣
√
nyI1/(2q)(pny

q)Y 1/(2q)(pnα
q)

I1/(2q)(pnβq)C̃0

∣∣∣∣
≤ C̃3|

√
nY 1/(2q)(pnα

q)| ≤ C1, (3.6)

because for y ∈ [0, β],∣∣∣∣y1/2I1/(2q)(pnyq)I1/(2q)(pnβq)

∣∣∣∣ ≤ C̃4, |y1/2K1/(2q)(pny
q)| ≤ C̃5n

−1/(2q).

Using the formulas [10, p. 90 (Russian transl.)]

d

dz
[zνIν(z)] = zνIν−1(z),

d

dz
[zνKν(z)] = −zνKν−1(z),

we calculate the derivative

P ′
n(y) =

pnqy
q−1/2

Δn(α, β)

[
I1/(2q)−1(pny

q)Y 1/(2q)(pnα
q)− J1/(2q)(pnα

q)K1/(2q)−1(pny
q)
]
. (3.7)

Since, for y ∈ [0, β],

|yq−1/2I1/(2q)−1(pny
q)| ≤ C̃6n

−(1−1/(2q)), |yq−1/2K1/(2q)−1(pny
q)| ≤ C̃7n

−(1−1/(2q)),

using formula (3.7) and taking into account (2.35) and (3.2), we obtain

|P ′
n(y)| ≤

|pnq
√
nyq−1/2I1/(2q)−1(pny

q)Y 1/(2q)(pnα
q)|

I1/(2q)(pnβq)C̃0

+
|pnq

√
nyq−1/2J1/(2q)(pnα

q)K1/(2q)−1(pny
q)|

I1/(2q)(pnβq)C̃0

≤ C̃6pn
√
n|Y 1/(2q)(pnα

q)| ≤ C2n.
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It is easy to verify that the second derivative P ′′
n (y) is P ′′

n (y) = (pnq)
2y2q−2Pn(y). In view of

estimate (3.6), it follows from this equality that |P ′′
n (y)| ≤ C3n

2.

Similarly, using (3.5), (2.22), and (2.35), (3.2) we estimate the function Mn(y):

|Mn(y)| ≤
√
n|J1/(2q)(pnαq)

√−yY 1/(2q)(pn(−y)q)|
I1/(2q)(pnβq)C̃0

+

√
n|√−yJ1/(2q)(pn(−y)q)Y 1/(2q)(pnα

q)|
I1/(2q)(pnβq)C̃0

. (3.8)

For any y ∈ [−α, 0], using the estimate

|
√
−yY 1/(2q)(pn(−y)q)| ≤ C̃8n

1/(2q), |
√
−yJ1/(2q)(pn(−y)q)| ≤ C̃9n

1/(2q),

from inequality (3.8), we obtain

|Mn(y)| ≤ C7n
λe−nd. (3.9)

Using the formulas [10, p. 20 (Russian transl.)]

d

dz
(zνJν(z)) = zνJν−1(z),

d

dz
(zνJ−ν(z)) = −zνJ1−ν(z),

we calculate the derivative

M ′
n(y) =

π(−y)q−1/2pnq

2 sin(π/(2q))Δn(α, β)

× [J1/(2q)(pnα
q)J1−1/(2q)(pn(−y)q) + J−1/(2q)(pnα

q)J1/(2q)−1(pn(−y)q)].

Hence, in view of (2.35) and (3.2), we obtain |M ′
n(y)| ≤ C8n

λe−nd.

The second derivative of the function Mn(y) is of the form M ′′
n(y) = (pnq)

2y2q−2Mn(y). Then
estimate (3.9) implies the inequality |M ′′

n(y)| ≤ C9n
2+λe−nd.

Lemma 3. The following assertions hold:

1) the functions z+n (y) and z−n (y) are solutions of the inhomogeneous equation (2.27) for y > 0
and y < 0, respectively, and satisfy the zero initial conditions

z+n (0) = 0, z+n
′
(0) = 0, z−n (0) = 0, z−n

′
(0) = 0;

2) for 0 < ε ≤ y ≤ β and large n, the following estimates hold:

|z+n (y)| ≤ C̃3n
−3/2(|an|e−2πnβq + |bn|e−2πnεq),

|z+n
′′
(y)| ≤ C̃4n

1/2(|an|e−2πnβq + |bn|e−2πnεq);

3) for −α ≤ y ≤ −ε < 0 and large n, the following estimates hold:

|z−n (y)| ≤ C̃5(|cn|+ |dn|)n−1/2, |z−n
′′
(y)| ≤ C̃6n

3/2(|cn|+ |dn|),
where ε > 0 is a sufficiently small number, βq = βq/q, εq = εq/q.

The proof is based on (2.32) and (2.33), and the asymptotic formulas describing the behavior of
Bessel functions as z → 0 and z → +∞ are used in the proof. A detailed proof is given in ([7, Sec. 1.1,
Sec. 2.1]).
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Lemma 4. Let condition (3.2) hold for all n > n0. Then, for such n, the following estimates hold:

|wn(y)| ≤ C13(|ϕn|+ nλ|ψn|), |w′
n(y)| ≤ C14(|ϕn|n+ n1/2+λ|ψn|),

|w′′
n(y)| ≤ C15(n

2|ϕn|+ n2+λ|ψn|),
|zn(y)| ≤ C16(|ϕ1n|+ nλ|ψ1n|), |z′n(y)| ≤ C17(n|ϕ1n|+ n1/2+λ|ψ1n|),

|z′′n(y)| ≤ C18(n
2|ϕ1n|+ n2+λ|ψ1n|).

The validity of these estimates follows from Lemmas 2 and 3.

Lemma 5. If ϕ(x) ∈ C3[0, 1], ψ(x) ∈ C3+γ [0, 1], γ > λ,

ϕ′(0) = ϕ′(1), ψ′(0) = ψ′(1), ϕ(1) = 0, ψ(1) = 0, ϕ′′(1) = 0, ψ′′(1) = 0,

then the following estimates hold:

|ϕn| ≤
C19|gn|

n3
, |ϕ1n| ≤ C20

(
|g1n|
n3

+
|gn|
n4

)
, |ψn| ≤

C21

n3+γ
, |ψ1n| ≤

C22

n3+γ
, (3.10)

where

gn =

ˆ 1

0
ϕ′′′(x) sin(2πnx) dx, g1n =

ˆ 1

0
ϕ′′′(x)x cos(2πnx) dx,

+∞∑
n=1

g2n < +∞,
+∞∑
n=1

g21n < +∞.

(3.11)

Proof. Using the assumptions of the lemma, we integrate by parts three times in the integrals (2.12),
(2.28), and (2.29). Further, applying the theorem on the rate of decrease of the coefficients of the
Fourier series of a function satisfying, on [0,1], Hölder’s condition with exponent γ ∈ (0, 1], we obtain
estimates (3.10). The convergence of the series (3.11) can be justified in a similar way to [2].

Thus, in view of Lemmas 4 and 5, the series (3.3) for any (x, y) from D is majorized by the convergent
series

C23

+∞∑
n=1

1

n3

(
|gn|+ |g1n|+

1

nγ−λ

)
;

therefore, in view of the Weierstrass criterion, the series (3.3) converges absolutely and uniformly in
the closed domain D. The series containing the first derivatives on D and the second derivatives are
majorized, respectively, on the closed domains D+ and D− by the convergent numerical series

C24

+∞∑
n=1

1

n

(
|gn|+ |g1n|+

1

nγ−λ

)
.

Therefore, the sum u(x, y) of the series (3.3) belongs to the class (1.2) and satisfies Eq. (1.1) on the set
D+ ∪D−.

If, for the values of αq indicated in Lemma 1 and l = k1, k2, . . . , km, where

1 ≤ k1 < k2 < · · · < km ≤ n0,

ki, i = 1, . . . ,m, and m are given natural numbers, the equality Δl(α, β) = 0 holds, then, to solve
problem (1.2)–(1.5), (1.8), it is necessary and sufficient that the following conditions hold:

ϕl

√
αJ1/(2q)(plα

q) + ψl

√
βI1/(2q)(plβ

q) = 0, (3.12)

ϕ1l

√
αJ1/(2q)(plα

q) + ψ1l

√
βI1/(2q)(plβ

q) = 0, l = k1, k2, . . . , km. (3.13)

In that case, the solution of the problem is obtained as the sum of the series

u(x, y) = 2(1 − x)w0(y)
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+ 4

(k1−1∑
n=1

+

k2−1∑
n=k1+1

+ · · ·+
+∞∑

n=km+1

)
[zn(y) sin 2πnx+ (1− x)wn(y) cos 2πnx]

+
∑
l

ul(x, y), (3.14)

where, in the last sum, l assumes the values k1, k2, . . . , km and the functions ul(x, y) are given by the
formula

ul(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϕl
√
y I1/(2q)(ply

q)
√
β I1/(2q)(plβq)

+
ϕ1l

√
y I1/(2q)(ply

q)
√
β I1/(2q)(plβq)

+ Cl

√
yΔl(α, y)

J1/(2q)(plαq)

)
Xl(x), y > 0,

(
ψl
√−yJ1/(2q)(pl(−y)q)
√
αJ1/(2q)(plαq)

+
ψ1l

√−yJ1/(2q)(pl(−y)q)
√
αJ1/(2q)(plαq)

+

√−yΔl(−y, β)

I1/(2q)(plβq)

)
Xl(x), y < 0,

where Cl is an arbitrary constant; the finite sums in (3.14) must be assumed zeros, provided that the
upper limit is smaller than lower one.

Thus, we have proved the following statement.

Theorem 2. Let the functions ϕ(x) and ψ(x) satisfy the assumptions of Lemma 5, and let
estimate (3.2) hold for n > n0. In that case, if δn(α, β) �= 0 for all n = 1, . . . , n0, then there exists
a unique solution of problem (1.2)–(1.5), (1.8) and this solution is given by the series (3.3); if
δn(α, β) = 0 for some n = k1, k2, . . . , km ≤ n0, then problem (1.2)–(1.5), (1.8) is solvable only if
conditions (3.12), (3.13) hold and then the solution is given by the series (3.14).

In view of Theorem 2, the function (3.3) constructed above satisfies all the conditions of problem
(1.2)–(1.5), (1.8) whenever the functions ϕ(x), ψ(x) satisfy the assumptions of Lemma 5, but, at the
same time, the function (3.3) does not satisfy equality (1.6), i.e., the function (3.3) is not a solution of
problem (1.2)–(1.6). Using Theorem 2, it is easy to prove the following statement.

Theorem 3. Let all the assumptions of Theorem 2 and conditions (1.7) hold. In that case, if
δn(α, β) �= 0 for all n = 1, . . . , n0, then there exists a unique solution of problem (1.2)–(1.6) and it
is given by the series (3.3), where w0(y) = A; if δn(α, β) = 0 for some n = k1, k2, . . . , km ≤ n0, then
problem (1.2)–(1.6) is solvable only if conditions (3.12), (3.13) hold and then the solution is given
by the series (3.14) for ω0(y) = A.

In view of formulas (2.20), (2.26), (2.31), it is easy to verify the validity of the equalities

w′′
n(0+) = w′′

n(0−), n = 0, 1, 2, . . . ,

z′′n(0+) = z′′n(0−), n = 1, 2, . . . .

Hence we obtain the following qualitative result concerning the deletion of the singularity on the
change-of-type line of Eq. (1.1).

Corollary. The solution u(x, y) (constructed above) of the problem belongs to the class C2(D),
and the function u(x, y) is a solution of Eq. (1.1) everywhere in D.
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