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Abstract—In the general case, the order of a finite nonidentity group G is substantially larger than
the squared degree of every irreducible character Θ of G, i.e., Θ(1)2 < |G|. In the present paper, we
study finite groups with an irreducible character Θ such that

|G| ≤ 2Θ(1)2.
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1. INTRODUCTION

Let G be a finite nonidentity group having an irreducible representation over the field of complex
numbers with character Θ. According to the orthogonality relations for irreducible characters (Chap. 4
in [1]), the sum of squared degrees of these characters is equal to the order of the group. In particular,

Θ(1)2 < |G|.
In the general case, the order of the group is significantly greater than the squared degree of any
irreducible character of the group. However, according to [2], every simple non-Abelian group G has
an irreducible character of degree exceeding |G|1/3. Snyder [3] studied groups with irreducible character
of degree d for which |G| = d(d+ e). He proved that, in this case, the order of the group G is bounded
by a function of e for e > 1. In the case of e = 1, G is a Frobenius group. The objective of the present
paper is the investigation of finite groups with an irreducible character Θ such that

|G| ≤ 2Θ(1)2.

Definition 1. We refer to a finite group G of order greater than two which has an irreducible character Θ
such that 2Θ(1)2 ≥ |G| as a LC(Θ)-group.

The following theorem shows that every irreducible character of an LC(Θ)-group G always enters
the decomposition of the squared character Θ under the assumption that G is not a 2-group.

Theorem 1. Let G be a LC(Θ)-group. If the order of G is not a power of 2, then every irreducible
character of G is a constituent of the character Θ2.

Note that the extraspecial 2-group of order 22n+1 has an irreducible character of degree 2n. The
equation |G| = 2Θ(1)2 for an irreducible character Θ of a group G need not hold for 2-groups only. The
direct product of the alternating group A4 and the symmetric group S3 has an irreducible character Θ of
degree 6, and thus |G| = 2 · 62.

In the general case, the problem of describing the structure of a group having an irreducible
character Θ such that |G| ≤ cΘ(1)2 for a small constant c seems to be rather complicated. The five
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Mathieu groups, the Thompson sporadic group, and the Janko group of order 604800 have a character
of this kind for c < 3.1.

It is natural to study finite LC(Θ)-groups for which the degree of the character Θ is subjected to
some additional restrictions. Below we prove some results concerning LC(Θ)-groups for which Θ(1) is
a degree of a prime p. Recall that a group is said to be p-nilpotent if all elements of orders coprime to p
form a subgroup.

Theorem 2. Let G be an LC(Θ)-group. If, for some prime p, the Sylow p-subgroup of G is Abelian
and Θ(1) = pm for some positive integer m, then G is a p-nilpotent group, Op(G) = 1, and the
Sylow p-subgroup of G is of order pm.

The following theorem gives a complete description of LC(Θ)-groups with Θ(1) = pm and an
Abelian Sylow p-subgroup.

Theorem 3. Let G be an LC(Θ)-group with Abelian Sylow p-subgroup and an irreducible
character Θ of degree pm, where p is a prime and m is a positive integer. In this case, either p
is a Mersenne prime and the group G is a direct product of m Frobenius groups of order p(p+ 1)
or p = 2 and G is a direct product of groups each of which is a Frobenius group of order qi2

mi

(where qi = 2mi + 1 are Fermat primes) or is a Frobenius group of order 3223 (in this case, mi = 3),
where

∑
i mi = m.

All groups are assumed to be finite. The symbol p is always used to denote a prime. For the necessary
information concerning ordinary representations of finite groups and standard notation, see [1]. For every
element a of a group G, denote by ha the number of elements of G conjugate to a. The inner product of
characters χ and ψ of a group G is denoted by 〈χ,ψ〉. In particular, if these characters are irreducible,
then 〈χ,ψ〉 = δχ,ψ. Denote by Irr(G) the set of irreducible characters of a group G.

2. PROOF OF THEOREM 1

Let G and Θ satisfy the conditions of Theorem 1. By the equation
∑

χ∈Irr(G)

χ(1)2 = |G|,

the character Θ is a unique irreducible character of G of maximal degree. Therefore, all characters
conjugate to Θ, under the action of the Galois group of the extension Q(Θ) of the field of rational
numbers Q (Q(Θ) is obtained by adjoining the elements Θ(g) for all g ∈ G to Q), coincide with Θ.
Hence all values Θ(g), g ∈ G, are rational integers. In particular, Θ(g) = Θ(g) for every g ∈ G. In any
case, Θ is a faithful character.

Let Φ = Θ2, and let the order of G do not exceed 2Φ(1). Note that, since the values of Θ are real,
it follows that Φ(g) ≥ 0 for every g ∈ G. Assume that an irreducible character χ has the property
〈Φ, χ〉 = 0, i.e., the multiplicity of χ in Φ is equal to 0. Then

∑

t∈G#

Φ(t)χ(t) + Φ(1)χ(1) = 0.

Since Θ is an irreducible character of G, it follows that

|G|〈Θ,Θ〉 =
∑

t∈G#

Φ(t) + Φ(1) = |G| ≤ 2Φ(1).

Therefore,
∣
∣
∣
∣

∑

t∈G#

Φ(t)

∣
∣
∣
∣ =

∑

t∈G#

Φ(t) ≤ Φ(1).
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Further, since all values of Φ(t) are nonnegative, we obtain the inequality

Φ(1)χ(1) ≥
∑

t∈G#

Φ(t)χ(1) =

∣
∣
∣
∣

∑

t∈G#

Φ(t)

∣
∣
∣
∣χ(1) ≥

∣
∣
∣
∣

∑

t∈G#

Φ(t)χ(t)

∣
∣
∣
∣ = Φ(1)χ(1).

Thus, the intermediate inequalities obtained above become equalities, which is possible only if

|G| = 2Φ(1) = 2Θ(1)2.

Here Φ(t) �= 0 if and only if |χ(t)| = χ(1). In particular, it follows from Theorems 4.1.2 and 4.1.3 in [1]
that, in this case, λ = χ(t)/χ(1) is a root of unity. Note that the theorem is already proved for any
group G of odd order, and we may assume below that the order of the group G is even. Moreover,
|G| = 2Θ(1)2.

Assume first that χ = Θ and χ is not a constituent of Φ. It follows from what was said above that
there is a nonidentity element t0 ∈ G for which Θ(t0) �= 0. However, Θ(t0) �= 0 for Θ(t0) = |Θ(1)| only.
Indeed, since Θ is an irreducible character of G, it follows from the first orthogonality relation that

|G|〈Θ,Θ〉 =
∑

t∈G
|Θ(t)|2 = |G| = 2Θ(1)2.

In this case, there is precisely one value t0 ∈ G# for which |Θ(t0)| = Θ(1). In particular, Z(G) = {1, t0}.
Moreover, for every t ∈ G \ {1, t0} we have Θ(t) = 0.

Let χ1, χ2, . . . , χk be all irreducible characters of G whose kernel contains Z(G). Obviously, these
characters exhaust all irreducible characters of the group G/Z(G). Therefore,

k∑

i=1

χ(1)2 =
|G|
2

= Θ(1)2.

Thus,

|G| = |G/Z(G)| +Θ(1)2.

Therefore, the number of conjugacy classes of G is greater by one than the number of conjugacy classes
of the group G/Z(G). In this case, Z(G) is contained in the kernel of every irreducible character of G
which differs from Θ.

If g ∈ G \Z(G), thenΘ(g) = 0. It follows now from the second orthogonality relation (Theorem 4.2.8
of [1]) that every element gt0 for g ∈ G \Z(G) is conjugate to the element g. However, an element x ∈ G
of odd prime order m cannot be conjugate to xt0 which has the order 2m. Therefore, |G| is a power of
two.

Since the character Θ vanishes outside Z(G), for every χ ∈ Irr(G) we have

〈Φ, χ〉 = |G|−1(χ(1)Θ2(1) + χ(t0)Θ
2(t0)) = χ(1).

However, for χ = Θ we obtain 〈Φ,Θ〉 = 0.
We can now assume that χ �= Θ. Recall that an irreducible character χ can be absent in the

decomposition of Φ only if |G| = 2Θ(1)2. Since χ �= Θ, it follows from the orthogonality relation that
〈χ,Θ〉 = 0. Therefore,

∑

g∈G#

χ(g)Θ(g) = −χ(1)Θ(1).

Since

|G|〈Θ,Θ〉 =
∑

t∈G#

Φ(t) + Φ(1) = |G| = 2Φ(1),

it follows that
∑

t∈G#

Φ(t) = Φ(1).
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268 KAZARIN, POISEEVA

Let t0 = 1, t1, t2, . . . , tk be all elements of G for which Φ(t) �= 0. In this case, we also have χ(t) �= 0.
Recall that |χ(ti)| = χ(1) in this case and, therefore, χ(ti) = λiχ(1), where λi is a root of unity for
every i. Thus,

k∑

i=1

Φ(ti)χ(ti) + Φ(1)χ(1) = 0,

k∑

i=1

Φ(ti) = Φ(1).

Write λi = χ(ti)/χ(1) for i = 1, . . . , k. As was proved above, |λi| = 1 for any i. Hence

k∑

i=1

Φ(ti)λi +Φ(1) = 0.

Denote by ai = Reλi the real part of the number λi. It can readily be seen that |ai| ≤ 1. Therefore, since
Φ(t) ≥ 0 for every t ∈ G, we obtain

Φ(1) =

∣
∣
∣
∣

k∑

i=1

Φ(ti)ai

∣
∣
∣
∣ ≤

k∑

i=1

Φ(ti)|ai| ≤ Φ(1).

Hence λi = −1 for any i ≤ k. It follows from what was said above and from the orthogonality of χ and Θ
that

0 =
∑

g∈G#

χ(g)Θ(g) + χ(1)Θ(1) = −χ(1)
∑

g∈G#

Θ(g) + χ(1)Θ(1).

Therefore,

−
∑

g∈G#

Θ(g) + Θ(1) = 0.

However, 〈Θ, 1G〉 = 0, and hence
∑

g∈G#

Θ(g) + Θ(1) = 0.

A contradiction. Thus, for every χ ∈ Irr(G) \ {Θ} we have 〈Φ, χ〉 �= 0. This completes the proof of the
theorem.

3. PROOF OF THEOREM 2

Let the Sylow p-subgroup of G be Abelian, and let Θ(1) = pm. We claim that the order of the
Sylow p-subgroup P of G is equal to pm and that Op(G) = 1. If z ∈ P and hz = |G : CG(z)|, then
hzΘ(z)/Θ(1) is an algebraic integer, and it follows from the fact that hz and p are coprime and from the
Burnside lemma (Lemma 4.3.1 of [1]) that either Θ(z) = 0 or z ∈ Z(Θ), i.e., |Θ(z)| = Θ(1).

Since Θ ∈ Irr(G), it follows from the first orthogonality relation (Theorem 4.2.2 of [1]) that

|Z(Θ)|Θ(1)2 =
∑

z∈Z(Θ)

|Θ(z)|2 ≤
∑

t∈G
|Θ(t)|2 = |G|〈Θ,Θ〉 = |G| ≤ 2Θ(1)2.

Therefore, either p = 2 and |G| = |P |, which fails to hold because P is Abelian, or Θ(z) = 0 for every
z ∈ P#.

Suppose first that Op(G) �= 1. Since P is Abelian, it follows that the subgroup Op(M) is contained
in the center of the normal subgroup M = CG(Op(G)), and M contains P , and thus the index |G : M |
is not divisible by p. Let N = Op(G). By Clifford theory (Theorem 6.2 of [4]),

Θ|M = e

s∑

i=1

θi,
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where θi stand for the conjugate irreducible characters of M (in particular, θi(1) = θ1(1) for every i ≤ s),
the number e divides the index of the inertia subgroup IG(θ1) in G, and s divides |IG(θ1) : M |. Therefore,

pm = Θ(1) = esθ1(1).

Since the numbers e and s divide |G : M |, these numbers are coprime to p. Hence e = s = 1
and Θ|M ∈ Irr(M). The latter means that N ≤ Z(Θ|M ). In particular, |Θ(g)| = Θ(1) for every
g ∈ Op(G). Therefore,

|Op(G)| = 2 = p and |G| = 2p2m,

i.e., G is a 2-group. As can be seen from what was said above, this leads to a contradiction. Thus,
Op(G) = 1.

By the Brodkey theorem [5], there is a Sylow p-subgroup P1 of G for which P ∩ P1 = 1. Let
N = NG(P ) and N1 = NG(P1). Since P and P1 are the only Sylow p-subgroups in N and N1, it follows
that |N ∩N1| is not divisible by p. Here N and N1 are conjugate. Therefore, G �= NN1. On the other
hand,

|NN1| =
|N |2

|N ∩N1|
≥ |N : P ||P |2.

If N �= P , then |G| > 2p2m, which contradicts the assumption. Thus, P = NG(P ) and, by Burnside’s
transfer theorem (Theorem 7.4.3 of [1]), the group G is p-nilpotent. This completes the proof of the
theorem.

4. PROOF OF THEOREM 3

Let us preclude the proof of Theorem 3 by two auxiliary assertions.

Lemma 1. Let G be an LC(Θ)-group having the Abelian Sylow p-subgroup P and an irre-
ducible character Θ of degree pm. Then G = F (G) � P is a semidirect product of the Fitting
subgroup F (G) of G and P . Here F (G) is a direct product of elementary Abelian groups.

Proof. By Theorem 2, the group G is p-nilpotent, i.e.,

G = M � P,

where |G| < 2|P |2, |M | < 2|P |, and M = Op′(G). Let us show first that

M = Op′(G) = F ∗(G).

Recall that F ∗(G) is a central product of the subgroup L(G), which is a central product of quasisimple
groups normal in L(G), and the Fitting subgroup of G (the case in which one of the mentioned
subgroups is trivial is not excluded) (see [6, p. 50–51 (Russian transl.)]). Since G is p-nilpotent
and Op(G) = 1 by Theorem 2, it follows that the subgroup F ∗(G) is contained in M .

Suppose that L(G) and F (G) are nontrivial. By Proposition 1.27 in [6], we have the inequality
CG(F

∗(G)) ≤ F ∗(G). By the Brodkey theorem [5], P ∩ P g = 1 for some g ∈ F ∗(G). Representing
the group F ∗(G)P as the union of double cosets F ∗(G)P =

⋃
i PgiP , we obtain

|F ∗(G)| |P | ≥ |P |+ |PgP | = |P |+ |P |2.
Thus, |F ∗(G))| ≥ |P |+ 1. Since |G| ≤ 2|P |2, we have

2|P |2 ≥ |G| ≥ |P |(|P | + 1)|M : F ∗(G)|.
Hence M = F ∗(G).

Let

|P/CP (F (G))| = r and |P/CP (L(G))| = s.

By Proposition 1.27 of [6] and by Theorem 2, the intersection of the subgroups CP (F (G)) and CP (L(G))
is trivial. The length of the orbit of P on F (G) is |P : CP (F (G))| = r, and the length of the orbit of P on
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L(G) is equal to |P : CP (L(G))| = s. Since the intersection of the subgroups CP (F (G)) and CP (L(G))
is trivial, we have

r ≥ |CP (L(G))| and s ≥ |CP (F (G))|.

Let L = L(G)/Z(L(G)). The group P induces a group of automorphisms on L. If an element a of P
acts identically on L, then it acts identically on L = L(G) as well. Indeed, if [L, 〈a〉] ≤ Z(L), then

[Z(L), L] = [L, 〈a〉, L] = [〈a〉, L, L] = 1.

By the three-subgroup lemma [1, Theorem 2.2.3], we have [L,L, 〈a〉] = 1. Since L is a quasisimple
group, it follows that [L,L] = L. Therefore, [L, 〈a〉] = 1. Applying the Brodkey theorem [5], we conclude
that the group P/CP (L) has a faithful orbit on L/Z(L). In particular,

|L(G)| > |Z(L(G))|s.
Therefore, |F (G)| > r and |L(G)| > s|Z(G)|. In particular,

|M | = |F (G)L(G)| = |F (G)||L(G)|
|F (G) ∩ L(G)| > rs.

Since CP (L(G)) × CP (F (G)) is a subgroup of P , it follows that

rs = |P/CP (L(G))||P/CP (F (G))| = |P |2
|CP (F (G))||CP (L(G))| > |P |.

Here |M | < 2|P | only if CP (F (G)) × CP (L(G)) = P . Thus,

G = MP = F (G)CP (L(G))L(G)CP (F (G)).

Denoting

CP (F (G)) = P1 and CP (L(G)) = P2,

we obtain two groups M1 = L(G) � P1 and M2 = F (G)� P2 with the lengths of the orbits of the
p-subgroups P1 on L(G) and P2 on F (G) that are equal to r = |P1| and s = |P2|, respectively. Thus,
the problem is reduced to the cases in which F ∗(G) = L(G) and those in which F ∗(G) = F (G).

We claim that, in the case of G = L(G)� P , where P is an Abelian p-group of order coprime to the
order of L(G) = L, we have |L| ≥ 2|Z(L)||P |. As was noted above, P has a faithful orbit on L/Z(L).
Therefore, without loss of generality, we may assume that Z(L) = 1 and L is a direct product of k ≥ 1
simple non-Abelian groups. Let us prove our assertion by induction on the number k. If k = 1, then
it follows from Lemma 7 in [7] that |Out(L)| is less than |L|/2. Our assertion is proved in this case.
Let L = L1 × L2 be the direct product of two proper P-admissible subgroups of L. By the induction
assumption,

|L1| ≥ 2|P/CP (L1)|, |L2| ≥ 2|P/CP (L2)|.
Since CP (L1) ∩ CP (L2) = 1, it follows that

|L| = |L1||L2| ≥ 4|P/CP (L1)| |P/CP (L2)| = 4|P | |P |
|CP (L1)||CP (L2)|

.

Since CP (L1) ∩ CP (L2) = 1, we obtain the desired conclusion, namely, |L| > 2|P |.
We can now assume that L is a direct product L1 × L2 × · · · × Lk of simple non-Abelian groups

conjugate in G. The subgroup P acts transitively on the set {L1, . . . , Lk} and, therefore, P contains
a subgroup P0, of index k ≥ 2, which normalizes the subgroup L1. Here P0 normalizes also any other
subgroup Li, i ≤ k. Therefore, P0 acts faithfully on every Li. By the induction assumption, |Li| > 2|P0|
for every i ≤ k and

|L| > 2k|P0| > 2k|P0| = 2|P |.

Thus, we can assume that F ∗(G) = F (G). We claim that F (G) is a direct product of elementary
Abelian groups. As above, G = F (G)� P . Suppose first that s = 1 and Q1 = Q �= 1 is a Sylow
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q-subgroup of the group F = F (G). By the Thompson theorem (Theorem 5.3.11 of [1]), there is a
characteristic subgroup Q0 of Q such that Q0/Z(Q0) is an elementary Abelian group and an arbitrary
q′-automorphism of Q acts nontrivially on Q0/Φ(Q0). If F = Q, then P acts faithfully on Q0/Φ(Q0)
and, therefore,

|Q0/Φ(Q0)| ≥ |P |+ 1.

However, if Q0 �= Q, then |Q| > 2(|P | + 1), and thus |G| > 2|P |2, a contradiction. Therefore, Q is an
elementary Abelian group.

If F is not a Sylow q-subgroup of G (i.e., s > 1), then, using the induction, we obtain the desired
conclusion. This completes the proof of the lemma.

Lemma 2. Let G be an LC(Θ)-group satisfying the conditions of Theorem 3, let P be the Sylow
p-subgroup of G, and let F = F (G) be the Fitting subgroup. Then G is a direct product of
Frobenius groups of orders qni

i pmi with a Frobenius complement of order pmi .

Proof. By Lemma 1, the subgroup F (G) = Q1 ×Q2 × · · · ×Qs is a direct product of qi-subgroups
of G which are elementary Abelian P-admissible groups, where the qi are primes. By Lemma 1, every
Sylow q-subgroup Q of F (G) is elementary Abelian and, therefore, it can be viewed as a linear vector
space V of dimension n, where |Q| = qn, and the group P/CP (V ) has a faithful representation on V
of degree n. By the Maschke theorem (Theorem 3.3.1 of [1]), for every minimal normal subgroup L
of Q, there is a P-invariant (and therefore normal in F (G)P ) subgroup M of Q for which L×M = Q.
Therefore, we may assume that our notation is chosen in such a way that the group F (G) is the direct
product of minimal normal subgroups Q1 ×Q2 · · · ×Qs each of which is elementary Abelian of order
qni
i , where qi is some prime coprime to p.

The group Pi = P/CP (Qi) has an irreducible representation of degree ni over Qi, which is regarded
as a vector space over the field GF (qi). It is clear that the group G/CG(Qi) is isomorphic to a semidirect
product Fi = Qi � Pi and is a Frobenius group of order qni

i pmi , where mi is a positive integer.

Let Ti be the direct product of all Qj , 1 ≤ j ≤ s, which differ from Qi. Then

CP (Ti) ∩ CP (Qi) ⊆ Z(G) = 1.

At the same time, the length of the orbit P on Qi is equal to |P/CP (Qi)|. Similarly, |P/CP (Ti)| is the
length of the orbit of P on Ti; here CP (Qi)× CP (Ti) is a subgroup of P . It can readily be seen that
|P/CP (Qi)× P/CP (Ti)| = |P |, and hence

QiCP (Li)× LiCP (Qi) = G.

Here QiCP (Li) = Fi is a Frobenius group. The induction completes now the proof of Lemma 2.

Proof of Theorem 3. By Lemma 2, the order of the Fitting subgroup of G is equal to
∏s

i=1 q
ni
i , while

the order of the Sylow p-subgroup P of this group, which is equal to the degree of the character Θ, is
equal to

∏s
i=1 p

mi = pm.
Since pmi is the order of the Frobenius complement of the Frobenius group Fi, it follows that pmi

divides qni
i − 1. Since qni

i − 1 = lip
mi , it follows that

|G| ≥ |P |2
s∏

i=1

(

li +
1

pmi

)

.

However, |G| ≤ 2|P |2 and, therefore, li = 1 for all i, i.e., pmi = qni
i − 1 for any i ≤ s.

It follows from the Zsigmondy theorem [8] that, if a and b are positive integers, where a ≥ 2, b ≥ 3,
and (a, b) �= (2, 6), then there is a prime r dividing ab − 1 and such that r does not divide ai − 1 for
1 ≤ i ≤ b− 1. If q is a prime, q > 2, n ≥ 3, and qn − 1 = pm, then r = p = 2, because qn − 1 is even.
Therefore, n ≤ 2. If n = 2, then

q2 − 1 = (q − 1)(q + 1) = 2m
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only for q = 3 and m = 3. For n = 1, we have q − 1 = 2m, i.e., q = 2m + 1 is a Fermat prime. If q = 2,
then 2n − 1 = pm for a prime p only for m = 1 by the same Zsigmondy theorem. That is, p is a Mersenne
prime.

Thus, for p = 2, the group G is a direct product of Frobenius groups of orders qi(qi − 1), where qi is a
Fermat prime, and a Frobenius group of order 32 · 23, and, for p > 2, G is a direct product of Frobenius
groups of order p(p+ 1), where p is a Mersenne prime. This completes the proof of the theorem.

5. EXAMPLES

Example 1. Let G be the direct product of two Frobenius groups of orders 6 and 72. Then G is an
LC(Θ)-group with the greatest degree of an irreducible character equal to 16 = 24 and with the Abelian
Sylow 2-subgroup.

Example 2. The group G = A4 ×A4 is an LC(Θ)-group with the greatest degree of an irreducible
character equal to 9 = 32 and with the Abelian Sylow 3-subgroup.

Example 3. The group G = A4 × S3 is a group with an irreducible character Θ of degree 6, and thus
|G| = 2Θ(1)2; the Sylow p-subgroups of G are Abelian for p ∈ {2, 3}; however, G is not a 2-group.

Example 4. The group G = AGL2(3) is a semidirect product of an elementary Abelian group V of
order 9 and the group GL2(3) acting on V as the group of nondegenerate linear transformations. In this
case,

|G| = 9 · 48 = 432.

Zenkov [9] showed that the group G has an irreducible character Θ of degree 24, and thus |G| < 2Θ(1)2,
but the Sylow 2-subgroup of G is non-Abelian.
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