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Abstract—The notion of coupled fixed point was introduced in 2006 by Bhaskar and Lakshmikan-
tham. On the other hand, Filipović et al. [M. Filipović et al., “Remarks on “Cone metric spaces
and fixed-point theorems of T -Kannan and T -Chatterjea contractive mappings”,” Math. Comput.
Modelling 54, 1467–1472 (2011)] proved several fixed and periodic point theorems for solid cones
on cone metric spaces. In this paper we prove some coupled fixed-point theorems for certain
T -contractions and study the existence of solutions of a system of nonlinear integral equations using
the results of our work. The results of this paper extend and generalize well-known comparable
results in the literature.
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1. INTRODUCTION AND PRELIMINARIES
The following famous fixed-point theorem was proved by Banach in 1922 [1]: “Suppose that (X, d)

is a complete metric space and a self-map f of X satisfies d(fx, fy) ≤ λd(x, y) for all x, y ∈ X where
λ ∈ [0, 1); that is, f is a contraction. Then f has a unique fixed point. Later, other people considered
various definitions of contractive mappings and proved several fixed-point theorems [2]–[7]. On the
other hand, the notion of cone metric space was introduced in 2007 by Huang and Zhang [8]. Then
several fixed and common fixed-point results on cone metric spaces were obtained in [9]–[18].

In 2009, Beiranvand et al. [19] defined T -contractions in a metric space. Afterward, some fixed-point
results dealing with Kannan contraction and the Zamfirescu operator were proved for T -contractions
in [20], [21]. Soon afterwards, Morales and Rajes [22] introduced T -Kannan and T -Chatterjea contrac-
tive mappings in cone metric spaces and proved some fixed-point theorems. Then other authors [23], [24]
obtained some fixed-point results under T -contractions on cone metric spaces. Later, Filipović et al.
[25] defined T -Hardy-Rogers contraction in a cone metric space and proved some fixed and periodic
point theorems. Also, recently, Rahimi et al. proved some new fixed and periodic point theorems for
T -contractions of two maps on cone metric spaces in [26], [27].

In 2006, Bhaskar and Lakshmikantham [28] introduced the concept of coupled fixed point in partially
ordered metric spaces. Then, other authors generalized this concept and proved several common coupled
fixed and coupled fixed-point theorems in ordered metric and ordered cone metric spaces (see [29]–[39]
and the references contained therein).

In this paper, we define the concept of T -contraction in coupled fixed-point theory and obtain some
coupled fixed-point results on cone metric spaces without normality condition. Our theorems extend,
unify and generalize the results of Sabetghadam et al. [37] and Bhaskar and Lakshmikantham [28].

We begin with some important definitions.

∗The article was submitted by the authors for the English version of the journal.
**E-mail: rahimi@iauctb.ac.ir

***E-mail: pasquale.vetro@unipa.it
****E-mail: gha.soleimani.sci@iauctb.ac.ir, gh.soleimani2008@gmail.com

158



COUPLED FIXED-POINT RESULTS FOR T -CONTRACTIONS 159

Definition 1 (see [40], [8]). Let E be a real Banach space, θ the null element of E and P a subset of E.
Then P is called a cone if and only if

(a) P is closed, nonempty and P �= {θ};

(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P ;

(c) if x ∈ P and −x ∈ P , then x = θ.

Given a cone P ⊂ E, a partial ordering � with respect to P is defined by x � y ⇐⇒ y − x ∈ P. We
shall write x ≺ y to mean x � y and x �= y. Also, we write x � y if and only if y− x ∈ intP (where intP
is the interior of P ). If intP �= ∅, the cone P is said to be solid. A cone P is said to be normal if there
exists a number K > 0 such that, for all x, y ∈ E,

θ � x � y =⇒ ‖x‖ ≤ K‖y‖.
The least positive number satisfying the above inequality is called the normal constant of P .

Definition 2 (see [8]). Let X be a nonempty set. Suppose that the mapping d : X ×X → E satisfies

(d1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Then, d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 3 (see [8]). Let (X, d) be a cone metric space, {xn} a sequence in X and x ∈ X. Then

(i) {xn} converges to x if, for every c ∈ E with θ � c, there exists an n0 ∈ N such that d(xn, x) � c
for all n > n0. We denote this by limn→+∞ xn = x.

(ii) {xn} is called a Cauchy sequence if, for every c ∈ E with θ � c, there exists an n0 ∈ N such that
d(xn, xm) � c for all m,n > n0.

The notation θ � c for c ∈ intP of a positive cone is used by Krein and Rutman [41]. Also, a cone
metric space X is said to be complete if every Cauchy sequence in X is convergent in X. In the sequel
we shall always suppose that E is a real Banach space, P is a solid cone in E, and � is a partial ordering
with respect to P .

Lemma 1 (see [25]). Let (X, d) be a cone metric space over an ordered real Banach space E. Then
the following properties are often used, particularly when dealing with cone metric spaces in
which the cone need not be normal.
(P1) If x � y and y � z, then x � z.
(P2) If θ � x � c for each c ∈ intP , then x = θ.
(P3) If x � λx where x ∈ P and 0 ≤ λ < 1, then x = θ.
(P4) Let xn → θ in E and θ � c. Then there exists a positive integer n0 such that xn � c for each
n > n0.

Definition 4 (see [25]). Let (X, d) be a cone metric space, P a solid cone and S : X → X. Then

(i) S is said to be sequentially convergent if, for every sequence {xn}, such that {Sxn} is
convergent, then {xn} also is convergent.

(ii) S is said to be subsequentially convergent if, for every sequence {xn}, such that {Sxn} is
convergent, then {xn} has a convergent subsequence.
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(iii) S is said to be continuous if limn→+∞ xn = x implies that limn→+∞ Sxn = Sx, for all {xn}
in X.

Definition 5 (see [25]). Let (X, d) be a cone metric space and T, f : X → X be two mappings.
A mapping f is called a T -Hardy-Rogers contraction if there exist αi ≥ 0, i = 1, . . . , 5 with
α1 + α2 + α3 + α4 + α5 < 1 such that for all x, y ∈ X,

d(Tfx, Tfy) � α1d(Tx, Ty) + α2d(Tx, Tfx) + α3d(Ty, Tfy) + α4d(Tx, Tfy) + α5d(Ty, Tfx).

In Definition 5, if one assumes that

α1 = α4 = α5 = 0 and α2 = α3 �= 0 (respectively, α1 = α2 = α3 = 0 and α4 = α5 �= 0),

then one obtains a T -Kannan (respectively, T -Chatterjea) contraction.

Theorem 1 (see [26], [42]). Let (X, d) be a complete cone metric space, P a solid cone and
T : X → X a continuous and one-to-one mapping. Moreover, let f be a mapping on X satisfying

d(Tfx, Tfy) � αd(Tx, Ty) + β[d(Tx, Tfx) + d(Ty, Tfy)] + γ[d(Tx, Tfy) + d(Ty, Tfx)],

for all x, y ∈ X, where α, β, γ ≥ 0 and α+ 2β + 2γ < 1; that is, f be a T -contraction. Then

(1) for each x0 ∈ X, {Tfnx0} is a Cauchy sequence;

(2) there exists a zx0 ∈ X such that limn→∞ Tfnx0 = zx0 ;

(3) if T is subsequentially convergent, then {fnx0} has a convergent subsequence;

(4) there exists a unique wx0 ∈ X such that fwx0 = wx0 , that is, f has a unique fixed point;

(5) if T is sequentially convergent, then, for each x0 ∈ X, the sequence {fnx0} converges to
wx0 .

Example 1 (see [22], [26]). Let X = [0, 1], E = C2
R
[0, 1] with the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞,

P = {f ∈ E|f ≥ 0} and d(x, y) = |x− y|2t where 2t ∈ P . Moreover, suppose that Tx = x2 and
fx = x/2, for all x ∈ X. (X, d) is a cone metric space with non-normal solid cone [8], [16]. Also, T
is a one-to-one, continuous mapping, and f is not a Kannan contraction [22]. All of the conditions of
Theorem 1 are satisfied with α = γ = 0 and β = 1/3. Therefore, x = 0 is the unique fixed point of f .

In the sequel, we review some definitions for coupled fixed-point fields.

Definition 6 (see [37]). Let (X, d) be a cone metric space. An element (x, y) ∈ X ×X is called a
coupled fixed point of the mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

Note that if (x, y) is a coupled fixed point of F , then also (y, x) is a coupled fixed point of F .

Theorem 2 (see [37]). Let (X, d) be a complete cone metric space and P a solid cone. Suppose
F : X ×X → X satisfies the following contractive condition for all x, y, x∗, y∗ ∈ X:

d(F (x, y), F (x∗, y∗)) � k

2
[d(x, x∗) + d(y, y∗)] (1)

where k ∈ [0, 1) is a constant. Then F has a unique coupled fixed point.

Example 2 (see [37]). Let E = R
2, P = {(x, y) ∈ R

2 : x, y ≥ 0}, X = [0, 1] and d : X ×X → E be
defined by d(x, y) = (|x− y|, |x− y|). Then (X, d) is a complete cone metric space. Define the
mapping F : X ×X → X by F (x, y) = (x+ y)/6. Then F satisfies the contractive condition (1) with
k = 1/3 ∈ [0, 1); that is,

d(F (x, y), F (x∗, y∗)) � 1

6
[d(x, x∗) + d(y, y∗)].

According to Theorem 2, F has a unique coupled fixed point which, in this case, is (0, 0).
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2. MAIN RESULTS

The main results of this work are divided into two parts. In the first part, we prove some coupled
fixed-point theorems for T -contractions. Next, we explain a general approach to our theorems in the
first part.

2.1. Coupled Fixed-Point Theorems

Definition 7. Let (X, d) be a cone metric space and T : X → X be a mapping. A mapping
F : X ×X → X is called a T -Sabetghadam-contraction if there exist α, β ≥ 0 with α+ β < 1 such
that for all x, y ∈ X,

d(TF (x, y), TF (x∗, y∗)) � αd(Tx, Tx∗) + βd(Ty, Ty∗)

Theorem 3. Suppose that (X, d) is a complete cone metric space, P is a solid cone, and T : X → X
is a continuous and one-to-one mapping. Moreover, let F : X ×X → X be a mapping satisfying

d(TF (x, y), TF (x∗, y∗)) � αd(Tx, Tx∗) + βd(Ty, Ty∗) (2)

for all x, y, x∗, y∗ ∈ X, where α, β ≥ 0 with α+ β < 1. Then

(i) for each x0, y0 ∈ X, {TFn(x0, y0)} and {TFn(y0, x0)} are Cauchy sequences;

(ii) there exist zx0 , zy0 ∈ X such that

lim
n→+∞

TFn(x0, y0) = zx0 and lim
n→+∞

TFn(y0, x0) = zy0 ;

(iii) if T is subsequentially convergent, then {TFn(x0, y0)} and {TFn(y0, x0)} have a convergent
subsequence;

(iv) there exist unique wx0 , wy0 ∈ X such that F (wx0 , wy0) = wx0 and F (wy0 , wx0) = wy0 , that is,
F has a unique coupled fixed point;

(v) if T is sequentially convergent, then, for each x0, y0 ∈ X, the sequence {TFn(x0, y0)}
converges to wx0 ∈ X and the sequence {TFn(y0, x0)} converges to wy0 ∈ X.

Proof. Let x0, y0 ∈ X and set

xn+1 = F (xn, yn) = Fn+1(x0, y0), yn+1 = F (yn, xn) = Fn+1(y0, x0)

for all n ∈ N ∪ {0}. Now, according to (2), we have

d(Txn, Txn+1) = d(TF (xn−1, yn−1), TF (xn, yn)) � αd(Txn−1, Txn) + βd(Tyn−1, T yn), (3)

d(Tyn, T yn+1) = d(TF (yn−1, xn−1), TF (yn, xn)) � αd(Tyn−1, T yn) + βd(Txn−1, Txn). (4)

Let dn = d(Txn, Txn+1) + d(Tyn, T yn+1). From (3) and (4), we obtain

dn � (α+ β)(d(Txn−1, Txn) + d(Tyn−1, T yn)) = λdn−1,

where λ = α+ β < 1. Thus, for all n,

θ � dn � λdn−1 � λ2dn−2 � · · · � λnd0. (5)

If d0 = θ then (x0, y0) is a coupled fixed point of F . Now, let d0 > θ. If m > n, we have

d(Txn, Txm) � d(Txn, Txn+1) + d(Txn+1, Txn+2) + · · · + d(Txm−1, Txm) (6)

and similarly,

d(Tyn, T ym) � d(Tyn, T yn+1) + d(Tyn+1, T yn+2) + · · ·+ d(Tym−1, T ym). (7)

Adding up (6) and (7) and using (5), since λ < 1, we have

d(Txn, Txm) + d(Tyn, T ym) � dn + dn+1 + · · · + dm−1
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� (λn + λn+1 + · · ·+ λm−1)d0

� λn

1− λ
d0 → θ as n → +∞.

Now, by (P1) and (P4), it follows that for every c ∈ intP there exists a positive integer N such that
d(Txn, Txm) + d(Tyn, T ym) � c for every m > n > N , so {Txn} and {Tyn} are Cauchy sequences in
X. Since X is a complete cone metric space, there exist zx0 , zy0 ∈ X such that

lim
n→+∞

TFn(x0, y0) = zx0 , lim
n→+∞

TFn(y0, x0) = zy0 . (8)

Now if T is subsequentially convergent, Fn(x0, y0) and Fn(y0, x0) have convergent subsequences.
Thus, there exist wx0 , wy0 ∈ X and two sequences {xni} and {yni} such that

lim
i→+∞

Fni(x0, y0) = wx0 , lim
i→+∞

Fni(y0, x0) = wy0 .

Because of the continuity of T , we have

lim
i→+∞

TFni(x0, y0) = Twx0 , lim
i→+∞

TFni(y0, x0) = Twy0 . (9)

Now, by (8) and (9), we conclude that

Twx0 = zx0 , Twy0 = zy0 .

On the other hand, from (d3) and (2), we have

d(TF (wx0 , wy0), Twx0) � d(TF (wx0 , wy0), TF (xni , yni)) + d(Txni+1, Twx0)

� αd(Twx0 , Txni) + βd(Twy0 , T yni) + d(Txni+1, Twx0).

Using Lemma 1, it follows that d(TF (wx0 , wy0), Twx0) = θ, which implies the equality

TF (wx0 , wy0) = Twx0 .

Since T is one-to-one, then F (wx0 , wy0) = wx0 . Analogously, one finds that F (wy0 , wx0) = wy0 .
Therefore, (wx0 , wy0) is a coupled fixed point of F . Now if (ux0 , uy0) is another coupled fixed point of
F , then

d(Twx0 , Tux0) = d(TF (wx0 , wy0), TF (ux0 , uy0)) � αd(Twx0 , Tux0) + βd(Twy0 , Tuy0) (10)

and

d(Twy0 , Tuy0) = d(TF (wy0 , wx0), TF (uy0 , ux0)) � αd(Twy0 , Tuy0) + βd(Twx0 , Tux0). (11)

Adding up (10) and (11), we obtain

d(Twx0 , Tuy0) + d(Twx0 , Tuy0) � λ[d(Twx0 , Tux0) + d(Twy0 , Tuy0)]. (12)

Since λ = α+ β < 1, from (12) follows that d(Twx0 , Tux0) + d(Twy0 , Tuy0) = θ. Hence,

d(Twx0 , Tux0) = d(Twy0 , Tuy0) = θ.

So, Twx0 = Tux0 and Twy0 = Tuy0 . Since T is one to one, we have (wx0 , wy0) = (ux0 , uy0). Finally if
T is sequentially convergent, then we can replace n by ni. Thus, we have

lim
n→+∞

TFn(x0, y0) = wx0 , lim
n→+∞

TFn(y0, x0) = wy0 .

This completes the proof of Theorem 3.

Proceeding as in the proof of Theorem 3, we can obtain the following theorems.

Theorem 4. Suppose that (X, d) is a complete cone metric space, P is a solid cone, and T : X → X
is a continuous and one-to-one mapping. Moreover, let F : X ×X → X be a mapping satisfying

d(TF (x, y), TF (x∗, y∗)) � αd(TF (x, y), Tx) + βd(TF (x∗, y∗), Tx∗)

for all x, y, x∗, y∗ ∈ X, where α, β ≥ 0 with α+ β < 1. Then, the results of Theorem 3 hold.
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Theorem 5. Suppose that (X, d) is a complete cone metric space, P is a solid cone, and T : X → X
is a continuous and one-to-one mapping. Moreover, let F : X ×X → X be a mapping satisfying

d(TF (x, y), TF (x∗, y∗)) � αd(TF (x, y), Tx∗) + βd(TF (x∗, y∗), Tx)

for all x, y, x∗, y∗ ∈ X, where α, β ≥ 0 with α+ β < 1. Then, the results of Theorem 3 hold.

The following corollaries are obtained from Theorems 3, 4 and 5.

Corollary 1. Suppose that (X, d) is a complete cone metric space, P is a solid cone, and
T : X → X is a continuous and one-to-one mapping. Moreover, let F : X ×X → X be a mapping
satisfying

d(TF (x, y), TF (x∗, y∗)) � k

2
[d(Tx, Tx∗) + d(Ty, Ty∗)] (13)

for all x, y, x∗, y∗ ∈ X, where k ∈ [0, 1). Then, the results of Theorem 3 hold.

Corollary 2. Suppose that (X, d) is a complete cone metric space, P is a solid cone, and
T : X → X is a continuous and one-to-one mapping. Moreover, let F : X ×X → X be a mapping
satisfying

d(TF (x, y), TF (x∗, y∗)) � k

2
[d(TF (x, y), Tx) + d(TF (x∗, y∗), Tx∗)]

for all x, y, x∗, y∗ ∈ X, where k ∈ [0, 1). Then, the results of Theorem 3 hold.

Corollary 3. Suppose that (X, d) is a complete cone metric space, P is a solid cone, and
T : X → X is a continuous and one-to-one mapping. Moreover, let F : X ×X → X be a mapping
satisfying

d(TF (x, y), TF (x∗, y∗)) � k

2
[d(TF (x, y), Tx∗) + d(TF (x∗, y∗), Tx)]

for all x, y, x∗, y∗ ∈ X, where k ∈ [0, 1). Then, the results of Theorem 3 hold.

Remark 1. If in each of Theorems 3, 4 and 5, we take T = IX where IX is the identity mapping on
X, then we obtain the main results of Sabetghadam et al. [37, Theorems 2.2, 2.5, 2.6]. Also if in each
of Corollaries 1, 2 and 3, we take T = IX , then we obtain the other results of Sabetghadam et al. [37,
Corollaries 2.3, 2.7, 2.8]. Therefore, our theorems and corollaries extend and generalize well-known
comparable results in the literature.

Example 3. Let X = [0, 1]. Take E = C1
R
[0, 1] endowed with order induced by

P = {φ ∈ E : φ(t) ≥ 0 for t ∈ [0, 1]}.

The mapping d : X ×X → E is defined by d(x, y)(t) = |x− y|3t. In this case (X, d) is a complete
cone metric space with a cone having nonempty interior. Define the mappings F : X ×X → X and
T : X → X by

Tx =
x

2
, F (x, y) =

x+ y

4
.

Then F satisfies the contractive condition (13) with k = 1/2; that is,

d(TF (x, y), TF (u, v)) � 1

4
[d(Tx, Tu) + d(Ty, Tv)].

Therefore, by Corollary 1, F has a unique coupled fixed point, which, in this case, is (0, 0). Also, let
F : X ×X → X be defined by F (x, y) = (x+ y)/2. Then F satisfies the contractive condition (13)
with k = 1. In this case, (0, 0) and (1, 1) are both coupled fixed points of F . Thus, the coupled fixed
point of F is not unique.

For more examples, one can see [43], [44], [37] and translate into this framework our theorems and
corollaries.
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2.2. General Approach

We start with the following Lemma.

Lemma 2. The following assertions hold:

(1) Suppose that (X, d) is a cone metric space. Then, (X ×X, d1) is a cone metric space with

d1((x, y), (u, v)) = d(x, u) + d(y, v). (14)

Further, (X, d) is complete if and only if (X ×X, d1) is complete.

(2) The mapping F : X ×X → X has a coupled fixed point if and only if the mapping

SF : X ×X → X ×X

defined by SF (x, y) = (F (x, y), F (y, x)) has a fixed point in X ×X.

Proof. (1) Clearly, d1 satisfies conditions (d1) and (d2) of Definition 2. Thus, we only need to prove
condition (d3) for d1. Since (X, d) is a cone metric space, we have

d(x, u) � d(x, z) + d(z, u) for all x, z, u ∈ X (15)

and

d(y, v) � d(y,w) + d(w, v) for all y, v, w ∈ X. (16)

Adding up (15) and (16), we obtain

d1((x, y), (u, v)) = d(x, u) + d(y, v)

� (d(x, z) + d(z, u)) + (d(y,w) + d(w, v))

= (d(x, z) + d(y,w)) + (d(z, u) + d(w, v))

= d1((x, y), (z, w)) + d1((z, w), (u, v)).

Thus, (X ×X, d1) is a cone metric space. The proof of completeness is easy and is left to the reader.

(2) Let (x, y) be a coupled fixed point of F . In this case, F (x, y) = x and F (y, x) = y. Thus,

SF (x, y) = (F (x, y), F (y, x)) = (x, y).

Therefore, (x, y) ∈ X ×X is a fixed point of SF . Conversely, suppose that (x, y) ∈ X ×X is a fixed
point of SF , then SF (x, y) = (x, y). Consequently, F (x, y) = x and F (y, x) = y.

Theorem 6. Suppose that (X, d) is a complete cone metric space, P is a solid cone, and T : X → X
is a continuous and one-to-one mapping. Moreover, let F : X ×X → X be a mapping satisfying

d(TF (x, y), TF (x∗, y∗)) + d(TF (y, x), TF (y∗, x∗)) � λ[d(Tx, Tx∗) + d(Ty, Ty∗)] (17)

for all x, y, x∗, y∗ ∈ X, where λ ∈ [0, 1). Then, the results of Theorem 3 hold.

Proof. According to T -Hardy-Rogers contraction (Definition 5) and Lemma 2(2), the contractive
condition (17) for all Y = (x, y), V = (u, v) ∈ X ×X becomes

d1(SF (Y ), SF (V )) � λd1(TY, TV ).

Since λ < 1, the conclusion follows by setting a1 = λ and a2 = a3 = a4 = a5 = 0 in Theorem 2.1 of [25].
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3. AN APPLICATION

In this section, we study the existence of solutions of a system of nonlinear integral equations using
the results proved in Section 2.

Consider the following system of integral equations:

F (x, y)(t) =

ˆ T

0
K(t, s)f(s, x(s), y(s)) ds+ g(t), (18)

F (y, x)(t) =

ˆ T

0
K(t, s)f(s, y(s), x(s)) ds+ g(t), (19)

where t ∈ [0, T ], T > 0.
Let X = C([0, T ],R) be the set of continuous functions defined on [0, T ] endowed with the metric

given by

d(u, v) = sup
t∈[0,T ]

|u(t)− v(t)| for all u, v ∈ X.

We make the following assumptions:
(a) K : [0, T ]× [0, T ] → R is a continuous function.
(b) g ∈ C([0, T ],R).
(c) f : [0, T ]× R× R → R is a continuous function.
(d) For all t ∈ [0, T ], for all x, y, u, v ∈ X, we have

|f(t, x(t), y(t)) − f(t, u(t), v(t))| ≤ α|x(t)− u(t)|+ β|y(t)− v(t)|,
where α, β ≥ 0 and α+ β < 1.

(e)
ˆ T

0
|K(t, s)| ≤ 1.

Now, we formulate our result.

Theorem 7. Under hypotheses (a)–(e), the system (18)–(19) has at least one solution in
C([0, T ],R).

Proof. We consider the operator F : X ×X → X defined by

F (x, y)(t) =

ˆ T

0
K(t, s)f(s, x(s), y(s)) ds+ g(t), t ∈ [0, T ].

It is easy to show that (x, y) is a solution to (18)–(19) if and only if (x, y) is a coupled fixed point of F .
To establish the existence of such a point, we will use our Theorem 3 with T the identity mapping. Then
we must check that all the hypotheses of Theorem 3 are satisfied.
Let x, y, u, v ∈ X. For all t ∈ [0, T ], we have

|F (x, y)(t) − F (u, v)(t)| ≤
ˆ T

0
|K(t, s)| |f(t, x(s), y(s)) − f(t, u(s), v(s))| ds.

Using condition (d), we obtain

|F (x, y)(t) − F (u, v)(t)| ≤
ˆ T

0
|K(t, s)| [α|x(s) − u(s)|+ β|y(s)− v(s)|] ds

≤
(ˆ T

0
|K(t, s)| ds

)
[αd(x, u) + βd(y, v)].

Using condition (e), we obtain

|F (x, y)(t) − F (u, v)(t)| ≤ αd(x, u) + βd(y, v).

This implies that

d(F (x, y), F (u, v)) ≤ αd(x, u) + βd(y, v)
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for all x, y, u, v ∈ X. Then the contractive condition of Theorem 3 is satisfied. Therefore, Theorem 3
applies to F , which has a unique coupled fixed point (x∗, y∗) in C([0, T ],R), that is, (x∗, y∗) is the unique
solution to system (18)–(19).
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