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Abstract—The logistic equation supplemented with a summand characterizing delay is considered.
The local and nonlocal dynamics of this equation are studied. For equations with delay, we use the
standard Andronov–Hopf bifurcation methods and the asymptotic method developed by the author
and based on the construction of special evolution equations defining the local dynamics of the
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asymptotics of nonlocal relaxation cycles. A comparison of the results obtained with those for the
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1. STATEMENT OF THE PROBLEM

The logistic equation

u̇ = r[1− u]u, r > 0, (1.1)

possesses a simple dynamics. All the solutions with positive initial conditions tend to 1 as t → ∞. The
dynamics of the logistic equation with delay (the Hutchinson equation)

u̇ = r[1− u(t− T )]u, r, T > 0, (1.2)

is significantly more varied. For rT ≤ 37/24, all the solutions (1.2) with a positive initial function also
tend to 1 as t → ∞ [1]. For λ = rτ ≤ π/2, the equilibrium state u0 ≡ 1 is asymptotically stable and, for
λ = rT > π/2, this equation has a periodic solution u0(t, λ) [2]. For sufficiently small values of λ− π/2
and for a sufficiently large λ, this cycle is stable [3]. In addition, note that the number of unstable periodic
solutions (1.2) unboundedly increases as λ → ∞ [4].

Here we shall consider the following “average” (in a certain sense) equation between (1.1) and (1.2):

u̇ = r[1− au− bu(t− T )]u,

where a, b > 0 and the normalization condition a+ b = 1 holds.
It is convenient to pass to the notation a = α and b = 1− α, 0 < α < 1, and make the change of time

variable t → T t. As a result, we obtain the equation

u̇ = λ[1− αu− (1− α)u(t− 1)]u, λ = Tr. (1.3)

The initial functions ϕ ∈ C[−1,0] for Eq. (1.3) are assumed nonnegative. The solutions with these initial
functions remain nonnegative as t increases. Just as in [3], [5], we can show that, for sufficiently large t,
all (nonnegative) solutions of (1.3) satisfy the estimate

u ≤ min(α−1, exp(λ(1− α))).
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The zero solution of all Eqs. (1.1), (1.2), and (1.3) is unstable. The stability of the equilibrium state
u0 ≡ 1 in (1.3) is defined by the distribution of the roots of the characteristic equation

μ = −λ[α+ (1− α) exp(−μ)]. (1.4)

Let us state two simple statements on the distribution of the roots of Eq. (1.4).

Lemma 1. Let α > 1/2. Then all the roots of (1.4) have negative real parts.

Lemma 2. Let α < 1/2. Then all the roots of (1.4) satisfy the inequality

Reμ ≤ ln
b

a
.

In the assumption of Lemma 1, all (positive) solutions of (1.3) tend to 1 as t → ∞, and, in the
assumption of Lemma 2, they are bounded in λ as λ → ∞. These assertions already indicate an essential
difference in the dynamical properties of (1.2) and (1.3).

The main results of the paper are given in Secs. 2–4. The first two sections deal with the behavior
of the solutions of (1.3) in a sufficiently small neighborhood of the equilibrium state u0 ≡ 1. In Sec. 2,
we consider the simplest “regular” case based on the Andronov–Hopf bifurcation. An important role is
played by the distribution of the roots of (1.4). For each α < 1/2, there exists a value of λ0(α) > 0 such
that, for λ < λ0(α), all the roots of (1.4) have negative real parts and, for λ > λ0(α), there are roots with
positive real part. We shall study the behavior of the solutions of (1.3) under the condition

|λ− λ0(α)| � 1.

Note that λ0(0) = π/2 and λ0(α) → ∞ as α → 1/2− 0. The difference in the dynamical properties
of the solutions of Eqs. (1.2) and (1.3) is more conspicuous under the condition

ε = λ−1 � 1. (1.5)

In Sec. 3, we assume that, along with condition (1.5), the following condition holds:

α =
1

2
− ν, where |ν| � 1. (1.6)

We study the local dynamics of the solutions of Eq. (1.3) in a sufficiently small (and independent of ε
and ν) neighborhood of the equilibrium state u0 under conditions (1.5) and (1.6).

For a linearized (on u0) Eq. (1.3),

εv̇ = −1

2
[v + v(t− 1) + μ(v − v(t− 1))], (1.7)

the characteristic quasipolynomial is expressed as

2εμ = −(1 + exp(−μ)− ν(1− exp(−μ))). (1.8)

It is easy to show that (1.8) has no roots with positive and real parts separated from zero as ε, ν → 0.
It is important that the real parts of infinitely many roots of (1.8) tend to zero as ε, ν → 0. Therefore,
we can say that, in the problem of the stability of the equilibrium state u0 ≡ 1 the infinite-dimensional
critical case, is realized. Various methods for studying the dynamical properties of solutions in similar
cases were developed in [6]–[10]. In what follows, they will be used in the study of the local dynamics
of Eq. (1.3). As main results, special nonlinear equations of parabolic and degenerate–parabolic types
not containing small parameters will be constructed. Their nonlocal dynamics essentially determines
the behavior of the solutions of the original equation for small ε and ν.

In the next section, we shall study the “basic” case in which ν = cε2. As it turns out, under this
condition, the corresponding solutions are mostly formed of lower modes (in the parabolic equation).
Therefore, it is natural to call such solutions slowly oscillating.

Under the condition ν = cε2γ , where 0 < γ < 1, the solutions of the constructed evolution equations
will contain rapidly oscillating (in the spatial variable) components.

Finally, in Sec. 4, we study the nonlocal behavior of the solutions of (1.3) under condition (1.5).
Let us note that the behavior of the solutions of the degenerate (for ε = 0) Eq. (1.3) does not provide
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any information about the behavior of the solutions for ε �= 0. We use the special asymptotic method
developed in [3], [4], [11]. With its help, it can be shown that, for 0 < α < 1/2 and for sufficiently small ε,
Eq. (1.3) has a stable relaxation periodic solution and, for it, asymptotic formulas can be obtained. A
comparison is given with the asymptotics of the relaxation cycle for Eq. (1.2) and for the logistic equation
with constraint and retarded argument,

u̇ = λ[1− u(t− 1)]u(A − u), A > 1. (1.9)

2. THE ANDRONOV–HOPF BIFURCATION

Consider the behavior of the solutions of Eq. (1.3) with initial conditions from a sufficiently small
neighborhood of the equilibrium state u0 ≡ 1. In many respects, this behavior depends on the distribu-
tion of the roots of the characteristic quasipolynomial (1.4). It follows from Lemma 1 that it is necessary
to consider only cases in which

α <
1

2
. (2.1)

The following simple statement is valid.

Lemma 3. Suppose that inequality (2.1) holds. Then there exists a λ0 = λ0(α) such that, for
λ < λ0(α), all the roots of (1.4) have negative real parts and, for λ > λ0(α), Eq. (1.4) has a root
with positive real part.

This implies that, for λ < λ0, all the solutions of (1.3) with initial conditions sufficiently close to 1 tend
to 1 as t → ∞ and, for λ > λ0, the equilibrium state u0 ≡ 1 is unstable and the problem is no longer a
local one. Here we shall study the “boundary” case. Let us fix the value of α0 so that 0 < α0 < 1/2, and
suppose that, for some constants λ1 and α1,

λ = λ0(α0) + ελ1, α = α0 + ελ1, (2.2)

where ε is a small parameter:

0 < ε � 1. (2.3)

For ε = 0, Eq. (1.4) has a pair of pure imaginary roots μ1,2 = ±iω, ω > 0, while all the other roots
have negative real parts. Under conditions (2.2), (2.3), the well-known Andronov–Hopf bifurcation
exists: this means that, in a sufficiently small (independent of ε) neighborhood u0 ≡ 1, Eq. (1.3) has a
local stable two-dimensional invariant integral manifold (see, for example, [12], [13]). On it, this equation
is expressed (under some nondegeneracy conditions) as the following complex equation of first order:

dξ

dt
= εa1ξ + d|ξ|ξ +O(ε2 + |ξ|2). (2.4)

After the normalizing changes ε = εt and ξ → ε1/2ξ, we see that, essentially, the behavior of the solutions
of (2.4) is determined by the following equation (the normal form):

dξ

dτ
= a1ξ + d|ξ|2ξ (2.5)

(see, for example [14]). The solutions of Eq. (2.5) are related to the solutions of Eq. (1.3) by the formula

u = 1 + ε1/2
(
ξ(τ) exp(iωt) + ξ(τ) exp(−iωt)

)
+ εu2(τ, t) + ε3/2u3(τ, t) + · · · , (2.6)

in which the functions uj(τ, t) are 2π/ω-periodic in t. Thus, in a neighborhood of u0, the dynamical
properties of (1.3) are determined essentially by the behavior of the solutions of (2.5); therefore, it only
remains to determine the coefficients a1 and d. To do this, let us use the formal series (2.6). We substitute
it into (1.3) and, in the resulting formal identity, we shall successively equate the coefficients of identical
powers of ε. So, at the second step, collecting the coefficients of ε1, we determine the function u2(τ, t):

u2(τ, t) = gξ2 exp(2iωt) + g ξ
2
exp(−2iωt),
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where

g = λ0(1− α0)i sinω · [2iω + α0λ0 + (1− α0)λ0 exp(−2iω)]−1.

At the third step, we collect the coefficients of ε3/2. Using the solvability conditions for the resulting
equation with respect to the 2π-periodic (in t) function u3(τ, t), we obtain Eq. (2.5) for the unknown
amplitude ξ(τ) in which

a1 = −[1− (1− α0)λ0 exp(−iω)]−1 · [λ1(1 + (1− α0) exp(−iω)) + λ0α1(1 + exp(−iω))],

d = −λ2
0[1− λ0(1− α0) exp(−iω)]−1 · [2α0 + (1− α0)(exp(iω) + exp(−2iω))]

×
[
(1− α0)i sinω · [2iω + α0λ0 + (1− α0)λ0] exp(−2iω)

]−1
.

Note that the stability of the zero solution in (2.5) is determined by the sign of expression Re a1, and,
under the conditions Re a1 > 0 and Re d < 0, this equation has the stable periodic solutions

ξ0(τ) = ρ0 exp(iϕ0τ),

where ρ0 = [(−Re a1)(Re d)
−1]1/2 and ϕ0 = Im a1 + ρ20 Im d.

Let us state, as an example, the corresponding result.

Theorem 1. Let Re a1 > 0, and let Re d < 0. Then there exists an ε0 > 0 such that, for all ε ∈ (0, ε0],
Eq. (1.3) has the asymptotically orbitally stable periodic solution

u0(t, ε) = 1 + ε1/2ρ0 cos[(ω + εϕ0 + o(ε2)t] + o(ε).

of period

T (ε) = 2πω−1(1 + εϕω−1 + o(ε2)).

Note that, for α1 = 0 and λ1 > 0, the condition Re a1 > 0 holds, while, for λ1 = 0 and α1 > 0, we
have inequality Re a1 < 0. For sufficiently small values of the parameter α0, the parameters in (1.3) are
close to those in (1.2), and hence ω ∼ π/2 and Re d < 0 [3].

Let us show that the number of different periodic solutions of Eq. (1.3) increases unboundedly as
λ → ∞. We shall use some constructions from [4]. Assume that α1 = 0. First, note that, as the
parameter ε changes from 0 to ε0, the period T (ε) of the periodic solution u0(t, ε) varies from 2π/ω
to 2π/ω(1 + εϕ0ω

−1 + o(ε2)) and its length is close to 2πω−2ϕ0ε0. Note that the function u0(t, ε) is
simultaneously the solution of the equation

u̇ = λ[1− αu− (1− α)u(t − nT (ε))]u.

Let us make the normalizing changes t → (1 + nT (ε))t and u((1 + nT (ε))t) = V (t). As a result, for the
function V , we obtain Eq. (1.3), the only difference being that, instead of the coefficient λ, we now have
the coefficient λn = λ(1 +nT (ε)). This equation has the periodic solution Vn(t, ε) = u0((1 +nT (ε))t, ε)
of period Tn(ε) = T (ε)(1 + nT (ε))−1. It necessarily exists for all

λ ∈ {(λ0 + ελ1)(1 + nT (ε)), 0 < ε ≤ ε0}.
Hence it immediately follows that, as λ → ∞ (n → ∞), the number of periodic solutions of Eq. (1.3)
increases unboundedly.

3. CONSTRUCTION OF QUASINORMAL FORM FOR LARGE VALUES
OF THE PARAMETER λ

In this section, we continue the study of the local (in a small neighborhood of u0 ≡ 1) dynamics of
Eq. (1.3). The main assumption is that the following condition holds:

λ−1 = ε � 1.

In this case, α0 = 1/2. As already noted, in the case under consideration, the real parts of infinitely many
roots of the characteristic equation (1.4) tend to zero as ε → 0. The standard methods used for the study
of local dynamics and based on the theory of invariant manifolds and the theory of normal forms turn out
to be inapplicable. We shall use the approach developed in [6]–[10]. First, consider the simplest case in
which the parameter ν is of order ε2 in ε, and then we turn to the more complicated case in which ν = ε2γ

and 0 < γ < 1.
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3.1. Slowly Oscillating Solutions
Let us set

ν = cε2 (3.1)

and write out the asymptotics (as ε → 0) of the roots λk(ε) (k = 0,±1,±2, . . . ) of Eq. (1.4) whose real
parts tend to zero as ε → 0. Using standard methods, we obtain

λk(ε) = λk0 + ελk1 + ε2λk2 + · · · ,
where

λk0 = π(2k + 1)i, λk1 = −2π(2k + 1)i, λk2 = −2π2(2k + 1)2 + 4π(2k + 1)i− 2c.

The functions const · exp(λk(ε)t), k = 0,±1,±2, . . . , are solutions of the linear equation (1.7). They
can be written as the product of a slowly oscillating (with respect to time, i.e., depending on τ = ε2t)
function by an oscillating (periodic) function: ξ(τ) exp[iπ(2k + 1)(1 − 2ε)t].

Following the approach in [6]–[10], consider the formal series

v = ε1/2
∞∑

k=−∞
ξk(τ) exp[i(2k + 1)πy] + ε2v1(τ, y) + ε5/2v2(τ, y) + · · ·

in which y = (1− 2ε)t and the dependence on y of the function vi(τ, y) is periodic. We introduce another
convenient notation, setting

ξ(τ, y) =
∞∑

k=−∞
ξk(τ) exp[iπ(2k + 1)y].

Then

v(t, ε) = ε1/2ξ(τ, ε) + ε2v1(τ, y) + ε5/2v2(τ, y) + · · · . (3.2)

Further, we set u = 1 + v in (1.3). As a result, for v(t), we obtain the equation

εv̇ = −1

2
[v + v(t− 1) + cε2(v − v(t− 1))](1 + v). (3.3)

Let us substitute (3.2) into (3.3) and collect the coefficients of identical powers of ε. At the second step,
we obtain the relation

v1(τ, y) = −ξ(τ, y)
∂ξ(τ, y)

∂y
.

At the third step, collecting the coefficients of ε5/2, we find the equation for v2(τ, y). Using the solv-
ability condition for this equation, we obtain the following equation for the unknown amplitude ξ(τ, y):

1

2

∂ξ

∂τ
=

∂2ξ

∂y2
+ 2

∂ξ

∂y
− cξ + ξ2

∂ξ

∂y
(3.4)

with the antiperiodic boundary conditions

ξ(τ, y + 1) ≡ −ξ(τ, y). (3.5)

This immediately yields the following statement.

Theorem 2. Suppose that, for all τ > τ0, the boundary-value problem (3.4), (3.5) has a bounded
solution ξ0(τ, y) together with its derivatives with respect to τ and y. Then Eq. (3.3) has an
asymptotic (with respect to the residual up to O(ε5/2)) solution for which

v0(t, ε) = ε1/2ξ0(τ, y)− ε2ξ20(τ, y)
∂ξ0(τ, y)

∂y

and τ = ε2t, y = (1 − 2ε)t.

Note that, in some cases, e.g., for the equilibrium states or time-periodic solutions of sys-
tem (3.4), (3.5), it is possible to assert the existence of a close solution of (3.3) and study its stability.
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3.2. On the Solution of the Boundary-Value Problem (3.4), (3.5)

Consider the boundary-value problem (3.4), (3.5). In it, it is convenient to make the changes τ1 = 2τ ,
x = y − 2τ , and α = −c. Further, we replace τ1 by τ , obtaining the final equation

∂ξ

∂τ
=

∂2ξ

∂x2
+ αξ + ξ2

∂ξ

∂x
(3.6)

with antiperiodic boundary conditions (3.5).

First, note that the equilibrium state ξ ≡ 0 is stable for α ≤ π2 and unstable for α > π2. It is
easy to justify the assertion that, for α < 0, this equilibrium state is globally stable: all solutions
of (3.6), (3.5) tend to zero as τ → ∞. Indeed, the following statement describes the behavior of the
solutions of (3.6), (3.5), and hence also of Eq. (3.3) for α < 0.

Theorem 3. Let α < 0, and let the solution of the boundary-value problem (3.6), (3.5) be deter-
mined for all τ ≥ τ0 and be continuously differentiable with respect to τ and y. Then

lim
τ→∞

ˆ 2

0
ξ2(τ, y) dy = 0.

Proof. To prove the theorem, it suffices to multiply (3.6) by ξ(τ, y) and integrate from 0 to 2 over y (in
view of (3.5)).

Numerical studies show that, for 0 ≤ α ≤ π2 as well, all the solutions of the boundary-value problem
(3.6), (3.5) also tend to zero as ε → ∞.

Consider the case in which

α = π2 + ν, 0 < ν � 1.

The boundary-value problem (3.6), (3.5) linearized at zero is of the form

∂η

∂τ
=

∂2η

∂x2
+ (π2 + ν)η, η(τ, x+ 1) = −η(τ, x). (3.7)

The characteristic equation

μ = −π2(2k + 1) + (π2 + ν), k = 0,±1,±2, . . . , (3.8)

for (3.7) has two zero roots for ν = 0. In (3.7), these roots correspond to the solutions c cos πx
and c sinπx. The other roots of (3.8) are negative. For a sufficiently small ν, the boundary-value
problem (3.6), (3.5) has a stable two-dimensional local invariant integral manifold in a sufficiently small
(and independent of ν) neighborhood of the equilibrium state ξ ≡ 0 [12], [13]. On this manifold, the
boundary-value problem under consideration can be reduced to normal form, i.e., to a system of two
ordinary differential equations with a special nonlinearity. The distinctive feature of such a system is
that there are several “degeneracies.” First, the nonlinearity in (3.6) is cubic (there are no quadratic
summands). Second, it turns out that the Lyapunov quantity [15] is zero. The system of two equations
on an invariant manifold can be written up to o(ν) as one scalar equation of the form

dη

ds
= iδ|η|2η + ν[a+ b|η|4]η, (3.9)

where s = ν1/2τ and the coefficients δ, a, and b are to be determined. The relationship between the
solutions of (3.6), (3.5) on this manifold and the solutions of (3.9) is given by the asymptotic formula

ξ(τ, ε) = ν1/4[η(s) exp(iπx) + η(s) exp(−iπx)] + ν1/2ξ2(s, x)

+ ν3/4ξ3(s, x) + νξ4(s, x) + ν5/4ξ5(s, x) + · · · . (3.10)

To find all the coefficients in (3.10), and hence also the solutions of (3.8), we substitute expression (3.10)
into the boundary-value problem (3.6), (3.5) and collect the coefficients of identical powers of ν,

MATHEMATICAL NOTES Vol. 98 No. 1 2015



104 KASHCHENKO

taking (3.9) into account. First, we obtain ξ2(s, x) ≡ 0 and, from the condition of the solvability of
the resulting equation for ξ3(s, x), we derive the equality

δ = π, ξ3(s, x) =
iη3

8π
e3πx +

−iη 3

8π
e−3πx.

At the following step, we obtain the relation ξ4(s, x) ≡ 0 and, from the condition of the solvability of
the corresponding equation for ξ5(s, x), we determine the coefficients a and b: a = 1, b = −1/8. For
these δ, a, and b, Eq. (3.9) has a unique stable cycle η0(s) for which

η0(s) =
4
√
8 exp(iπ

√
8 s).

This implies that, for small ν, the boundary-value problem (3.4), (3.5) has the following stable cycle:

ξ0(τ, ε) = 2
4
√
8ε cos(πx+ πτ

√
8ε+ γ) +O(

√
ε ).

Numerical simulations show that, for all α > π2, the boundary-value problem (3.6), (3.5) has a unique
stable cycle. For large α, this cycle has a pronounced relaxation structure.

Let us present several graphs (Figs. 1–3) obtained on the basis of numerical analysis.

Fig. 1. The solid line depicts the value of the amplitude obtained by numerical calculations. The dotted line shows the
analytical value of the amplitude.

Fig. 2. The solid line depicts the value of the period obtained by numerical calculations. The dotted line shows the
analytical value of the period.

The three-dimensional graph of the oscillations of the solution of the boundary-value problem under
consideration for ε = 2 is shown in Fig. 4. It is seen from the figure that the surface formed by the
solution is the so-called “traveling-wave” mode.

3.3. Rapidly Oscillating Solutions

Set

y = cε2γ , 0 < γ < 1. (3.11)
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Fig. 3. The increase in the frequency and the amplitude of oscillations as the parameter ε increases. The solid line
corresponds to ε = 0.01 and the dotted line to ε = 0.5. The time shift is t = τ − 100 980.

Fig. 4. Traveling wave for ε = 2.

It was shown above that if condition (3.1) holds (i.e., for α = 1), the local dynamics of (3.3) is
determined by the nonlocal behavior of the solutions of the boundary-value problem (3.4), (3.5); see for-
mula (3.2). Therefore, we can say that the main contribution to the formation of the structures (3.6), (3.5)
are made by modes with relatively small numbers. Therefore, they were called slowly oscillating.

But, under condition (3.11), this is not so. In that case, it will be shown that the main contribution to
the formation of the structures are made by modes with asymptotically large (as ε → 0) numbers.

Let us introduce some notation. We arbitrarily fix the parameter z ∈ (−∞,∞) and z �= 0, and by
θz = θz(ε) we denote a value from the half-interval [0, 2) such that the quantity zεγ−1 + θz is an odd
integer. Further, consider the set of integers

Kz = {(zεγ−1 + θz)(2k + 1), k = 0,±1,±2, . . . }.

For the values of k from Kz , the asymptotic formulas (2.5) take the form

λk(ε) = (zεγ−1 + θz)π(2k + 1)(1 − 2ε)i− z2ε2γπ2(2k + 1)2 − cε2γ + o(ε2α).

In the case under consideration, the analog of the formal series (3.2) is

v = εγ/2ξ(τ, x) + ε2γv1(τ, x) + ε5γ/2v2(τ, x) + · · · ,
where τ = ε2γt, x = (zεγ−1 + θ)(1− 2ε)t. Substituting this expression into (3.3) and performing
standard actions, we obtain the following boundary-value problem for determining the function ξ(τ, x):

1

2

∂ξ

∂ε
= z2

∂2ξ

∂x2
− cξ + zξ2

∂ξ

∂x
, (3.12)

ξ(τ, x+ 1) ≡ −ξ(τ, x). (3.13)

Let us state the final result.
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Theorem 4. Suppose that, for some z = z0, for all τ > τ0, the boundary-value problem (3.12),
(3.13) has a bounded solution ξ0(τ, y) together with its derivatives with respect to τ and y. Then,
for α = 1/2 and y = cε2γ , Eq. (1.3) has an asymptotic (with respect to the residual up to O(ε5γ/2))
solution u0(t, ε) for which

u0(t, ε) = 1 + εγ/2ξ0(τ, x)− ε2γzξ0(τ, x)
∂ξ0(τ, x)

∂x
,

where τ = ε2γt, x = (z0ε
γ−1 + θ)(1− 2ε)t.

3.4. A More Complicated Construction

Let condition (3.11) hold. Let us fix an arbitrary integer n > 1 and consider an arbitrary set of
numbers z1, . . . , zn, zj �= 0. By θj = θj(zj , ε) ∈ [0, 2) we denote a value for which the expression
zjε

γ−1 + θ is an odd integer. The role of the boundary-value problem (3.12), (3.13) is played by the
equations

1

2

∂ξ

∂τ
=

(
z1

∂

∂x1
+ · · · + zn

∂

∂xn

)2

ξ − cξ + ξ2
(
z1

∂

∂x1
+ · · · + zn

∂

∂xn

)
ξ (3.14)

with 1-periodic or 1-antiperiodic (in x1, . . . , xn) boundary conditions, and the number of antiperiodic
boundary conditions is odd.

The assertion of Theorem 3 holds and the solutions of (1.3) and (3.14) are related by

u = 1 + εγ/2ξ(τ, x1, . . . , xn) + ε2γξ(τ, x1, . . . , xn)

(
z1

∂

∂x1
+ · · ·+ zn

∂

∂xn

)
ξ(τ, x1, . . . , xn),

where τ = ε2γt, xj = (zjε
γ−1 + θj)(1 − 2ε)t.

4. ASYMPTOTICS OF THE RELAXATION CYCLE FOR LARGE λ

Here we assume that the condition α < 1/2 holds and the parameter λ is sufficiently large. To
study of the dynamical properties of Eq. (1.3), we shall use a special asymptotic method developed
in [3], [5], [11]. With regard to Eq. (1.3), this is as follows. First, we fix a set of initial functions S in the
phase space C[−1,0] of Eq. (1.3). Further, we study the asymptotics as λ → ∞ of all solutions with initial
conditions from S. As it turns out, after some time has elapsed, each such solution is again contained
in the original set S. Therefore, from the solutions of (1.3), we can construct a first-return operator
that takes the set S into itself. Using well-known assertions about mappings of such type, we conclude
that, in S, there exists a fixed point (a function ϕ0(s) ∈ C[−1,0]) of the operator under consideration.
The solution (1.3) with the initial condition ϕ0(s) is, obviously, periodic. This solution is usually called
slowly oscillating, because, as will be shown in what follows, the distance between the “splashes” (the
roots of the equation u(t) = 1) is not less than the delay time 1.

The set S ⊂ C[−1,0] is defined as follows. Let S be a set of all such nonnegative continuous
functions ϕ(s) from C[−1,0] for which the following conditions hold:

1) ϕ(0) = 1;

2) 0 ≤ ϕ(s) ≤ ϕ(s), where

ϕ(s) =

{
δ if − 1 ≤ s ≤ −δ

(δ−1 − 1)s + 1 if − δ ≤ s ≤ 0, δ = λ−1/2 � 1.
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By u(t, ϕ) we denote the solution of (1.3) with initial (for t = 0) condition u(0, ϕ) = ϕ(s) ∈ S. Let us
now construct the asymptotics of u(t, ϕ) as λ → ∞.

First, consider two equations

u̇ = λu[1− αu− (1− α)δ], (4.1)

u̇ = λu[1− αu]. (4.2)

Denote by u0(t) and u0(t), respectively, the solutions of these equations with initial conditions
u0(0) = u0(0) = 1. Therefore,

u0(t) = [1− (1− α)δ] exp(λ(1 − (1− α)v)t)

× [1− α− (a− α)δ + α exp(λ(1 − (1− α)δ)t)]−1,

u0(t) = exp(λt)[1 − α+ α exp(λt)]−1.

Using well-known results on differential inequalities, we see that

u0(t) ≤ u(t, ϕ) ≤ u0(t) for t ∈ [0, 1− δ], (4.3)

u0(t) ≥ u(t, ϕ) for t ∈ [0, 1]. (4.4)

Hence we conclude that, as λ → ∞, the asymptotic relations

u(t, ϕ) = α−1 + o(1) and u(1, ϕ) ≤ α−1 (4.5)

hold uniformly on the closed interval [δ, 1 − δ] and over all ϕ(s) ∈ S.
Now let t ∈ [1, 2 − δ]. Consider the equation

u̇ = λu[1− αu− (1− α)u0(t− 1)]

and by u00(t) denote its solution with initial (for t = 1) condition u00(1) = α−1. It follows from the
inequality u(t, ϕ) ≤ u00(t) and from the properties of u00(t) that, uniformly in t ∈ [1 + δ, 2− δ], we have

u(t, ϕ) = o(1) (4.6)

and, for the first positive root t1(ϕ) of the equation u(t, ϕ) = 1, the following relation holds:

t1 = 1 + o(λ−1/2). (4.7)

Further, for t ∈ [1 + δ, 2 − δ], Eq. (1.3) can be expressed as

u̇ = λu[1− (1− α)α−1 + o(1)];

therefore,

u(t, ϕ) = exp

[
λ
2α− 1

α
(1 + o(1))(t − t1)

]
(4.8)

and, in particular,

u(2− δ, ϕ) = exp

[
λ
2α− 1

α
(1 + o(1))

]
.

Hence, from (1.3), we conclude that

u(2, ϕ) = exp

[
λ
2α− 1

α
(1 + o(1))

]
.

Denote by t2(ϕ) the second positive root of the equation u(t, ϕ) = 1. For t ∈ [2 + δ, 3 − δ] and, as
long as u(t, ϕ) = o(1), the function u(t, ϕ) is a solution of the equation u̇ = λu[1− αu+ o(1)], and
hence

u(t, ϕ) = u(2, ϕ) exp[λ(1 + o(1))(t − 2)]. (4.9)

Thus, we conclude that the root t2(ϕ) exists and the following asymptotic equality holds:

t2(ϕ) = 2 + (1− 2α)α−1 + o(1) = α−1 + o(1).
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Consider the operator

Π(ϕ(s)) = u(s + t2(ϕ), ϕ).

From (4.7) and (4.8), we then see that Π(ϕ(s)) ∈ S, i.e., ΠS ⊂ S. It follows from well-known results
(see, for example, [16]) that, in S, there exists a fixed point ϕ0(s) of the operator Π: Π(ϕ0(s)) = ϕ0(s).
The solution u0(t, λ) of Eq. (1.3) with initial condition ϕ0(s) is periodic with period Tα(λ) = t2(ϕ0(s))
and, as λ → ∞,

Tα(λ) = α−1 + o(1). (4.10)

Thus, we have proved the following statement.

Theorem 5. Under the condition 0 < α < 1/2, there exists a λ0 > 0 such that, for all λ ≥ λ0,
Eq. (1.3) has a slowly oscillating periodic solution uα(t, λ) with period Tα(λ) for which the
asymptotic equalities (4.10) as well as the following equalities hold:

uα(0, λ) = 1,

uα(t, λ) = α+ o(1) for each t ∈ (0, 1),

uα(0, λ) = o(1) for each t ∈ (1, T0(λ)).

Applying methods from [3], [4], we can show that the solution u0(t, λ) is asymptotically orbitally
stable.

Let us make a few remarks.

Remark 1. The set S can be significantly enlarged. So, for example, the parameter δ appearing in the
definition of S need not depend on λ.

Remark 2. Once the “zero” approximation uλ(t, λ) is obtained, we can find the asymptotic expansion
with arbitrary accuracy with respect to λ.

It is interesting to compare the asymptotics for λ  1 of the slowly oscillating solutions u0(t, λ) (with
period T0(λ)) of the equation

u̇ = λu[1− u(t− 1)] (4.11)

with the solution uα(t, λ) of Eq. (1.3).

So, for u0(t, λ), we have [3], [4]:

T0(λ) = λ−1(1 + o(1)) exp(λ),

max
t

u0(t, λ) = (1 + o(1)) exp(λ− 1),

min
t

u0(t, λ) = exp[− exp(λ(1 + o(1)))].

Note that, as α → 0, the following relations hold:

max
t

(uα(t,λ)) → ∞, Tα(λ) → ∞.

With a view for a discussion and propagation of the results obtained in this paper, let us consider the
logistic equation (1.9) with delay and constraints:

u̇ = λ[1− u(t− 1)]u(A − u), A > 1.

For all t > t0, the solutions with initial (for some t0) condition 0 ≤ ϕ(s) ≤ A remain in the range
between 0 and A. Applying the asymptotic method proposed above, we fix, for the initial set, the same
set S ⊂ C[−1,0] as in the proof of Theorem 5. Let us state the corresponding result for Eq. (1.9).
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Theorem 6. Under the condition A > 1, there exists a λ0, λ0 > 0, such that, for all λ ≥ λ0, Eq. (1.9)
has a slowly oscillating periodic solution uA(t, λ) with period TA(λ) for which the asymptotic
equalities

TA(λ) = A2(A− 1)−1,

as well as

uA(0, λ) = 1,

uA(t, λ) = A+ 0(1) for each t ∈ (0, A(A − 1)−1),

uA(t, λ) = 0(1) for each t ∈ (A(A− 1)−1, TA(λ)).

hold.

The graphs of u0(t, λ), uα(t, λ), and uA(t, λ) are given in Fig. 5. The main difference between uα(t, λ)
and uA(t, λ) is only in that the “steps” are intervals, where uα,A > 1, which have width 1+ 0(1) for uα(t)
and greater width for uA(t, λ).

Fig. 5. The shape of the functions u0(t, λ), uα(t, λ), and uA(t, λ).

The structure of the slowly oscillating periodic solution of the equation

u̇ = λ[1− αu− (1− α)u(t− 1)]u(A − u)

varies (compared to uα,A(t, λ)) insignificantly. Certainly, for all the equations examined here, the
following statement is valid: the number of periodic (rapidly oscillating) solutions increases unboundedly
as λ → ∞.

5. CONCLUSIONS

The dynamical properties of the logistic equation containing the delay (1.3), essentially differs from
those of the logistic equation (1.1) and the logistic equation with delay (1.2). For α > 1/2, the
equilibrium state u0 ≡ 1 is stable for all positiveλ. For 0 < α < 1/2, bifurcation phenomena may arise as
soon as the parameter λ reaches some threshold value λ(α). Forα ∼ 1/2 and λ  1, the local dynamical
properties are described by the nonlocal behavior of the solutions of special nonlinear boundary-value
problems of parabolic type. It is natural to expect that, in this case, we deal with complicated and
nonregular oscillations. But if α < 1/2 and λ  1, then the oscillations are of clear-cut relaxation type.
The existence of a relaxation cycle is established and its asymptotics is obtained. A comparison with the
asymptotic characteristics of the cycle for the Hutchinson equation. (1.2) and some of its generalizations
is given.
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