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1. INTRODUCTION

Single server queues with unreliable server have been studied by numerous authors. This is largely
due to a wide range of applications in highly diverse fields such as computer systems, telecommunica-
tions, transportation systems, airports, etc. The paper [1], where a model of queue with unreliable server
was introduced, was one of the first papers on the topic. One should also mention the paper [2], where
various types of interruptions are considered and the notion of completion time, which can be used to
reduce a system with interruptions to an M/G/1/∞ system, is introduced. The papers [3] and [4] deal
with the topic as well. The paper [5] provides a description of existing results and a vast bibliography.

It is assumed in the model considered in the present paper that the server breakdown and resumption
are caused by some external factors independent of the input flow and the in-service time. The process
affecting the server operation is an ergodic Markov chain. One peculiar feature of this model is that the
regeneration times and the times between interruptions are, in general, dependent, which distinguishes
the present paper from those cited above.

The aim of our study is to find conditions for the existence of a proper limit distribution of the virtual
waiting time in the system. The proof of the theorem in the present paper is largely based on the results
of [6] as well as on the properties of regenerative flows.

The paper is organized as follows. The mathematical model is described in Sec. 2. Section 3 presents
the proof of the ergodic theorem. Examples of applications of this theorem are given in Sec. 4.

2. DESCRIPTION OF THE MODEL

Consider a Reg /G/1/∞ queue, where the symbol Reg indicates that the input flow is regenerative.
Let us give a definition of regenerative flow following [7].

Definition 1. A stochastic process {A(t), t ≥ 0} with left continuous nondecreasing trajectories on
a probability space (Ω,F ,P) is called a regenerative flow if there exists an increasing sequence
{θj , j ≥ 0}, θ0 = 0, of random variables such that

{κj}∞j=1 = {θj − θj−1, A(θj−1 + t)−A(θj−1), t ∈ [0, θj − θj−1)}∞j=1

is a sequence of independent identically distributed random elements. Further, we assume that
a filtration {Ft, t ≥ 0}, Ft ⊆ F , is given, the process A(t) is measurable, and each θj , j = 1, 2, . . . ,
is a Markov moment with respect to {Ft, t ≥ 0}.

*E-mail: aybatov.serik@gmail.com

821



822 AIBATOV

The sequence {τi = θi − θi−1}∞i=1 consists of independent identically distributed random variables,
which are called the regeneration times, and ξi = A(θi)−A(θi−1) is the number of units arriving in the
ith regeneration period. We assume that Eξi < ∞ and Eτi < ∞, so that, with probability 1, there exists
a limit

lim
t→∞

A(t)

t
=

Eξ1
Eτ1

= λ (a.s.),

which is called the arrival rate. A considerable part of flows customarily used in queuing theory are
regenerative. These include doubly stochastic Poisson flows with random arrival rate representing
a regenerative stochastic process (e.g., see [8]), semi-Markov queues (e.g., see [9]), Markov modulated
queues (e.g., see [7]) and many others. Regenerative flows have a number of useful properties simplifying
the analysis of systems whose input flows are regenerative. Many of these properties, which are used in
what follows, were described and proved in [7].

Request service times are given by a sequence {ηi}∞i=1 of independent identically distributed random
variables independent of the input flow. Set B(x) = P{ηi ≤ x} and b = Eη1 < ∞.

We need the following assumption, which ensures that the processes in question are regenerative
(e.g., see [10]).

Condition 1. Let {tn}∞n=1 be the request arrival times. Then

P{ξ1 = 0, τ1 > 0}+ P{ξ1 = 1, τ1 − t1 > η1} > 0. (1)

The total service time for all request arriving on [0, t) will be denoted by

X(t) =

A(t)∑

j=1

ηj .

Then X(t) is a regenerative flow as well, with regeneration points {θi}.
The server can break down, its breakdowns and time intervals between resumptions being related to

a stochastic process U(t) independent of A(t) and {ηi}. We assume that U(t) is an ergodic Markov
chain with state space E = (0, 1, 2, . . . ) and infinitesimal matrix Q = (qij).

Now let us describe how the process U(t) affects the server. Whenever U(t) switches into a state
i ∈ E, the server breaks down with probability αi if it is up and resumes operation with probability βi if
it is down. Thus, the server breakdowns and resumptions can only occur at the switching times of the
process U(t).

This model can describe various situations. For example, if U(t) is the number of requests in
an M/M/1 system and

α1 = 1, β0 = 1, αi = 0, i �= 1, βi = 0, i �= 0,

then we actually deal with an absolute priority queue. There are requests of two types, A(t) being
the input flow of requests of the first type, while requests of the second type arrive in accordance with
a Poisson flow and have exponentially distributed service time. Requests of second type have absolute
priority, so that a request of the first type can only be serviced if there are no requests of the second type
in the system.

Another situation occurs if the server being up or down depends on random external factors. The set
of states U(t) is represented as the union E = E+ ∪ E− of two sets, and

{
αi > 0,

βi = 0
if i ∈ E− and

{
αi = 0,

βi > 0
if i ∈ E+.

Thus, the device can break down for states in E− and resume operation for states in E+.
We assume that the following condition holds.

Condition 2. The process U(t) has states i0 and i1 such that αi0 > 0 and βi1 > 0.
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ERGODIC THEOREM FOR A QUEUE WITH UNRELIABLE SERVER 823

Without loss of generality, we set i1 = 0.

Since all states are connected with each other, it follows that the time intervals on which the server is
up (or down) are finite with probability 1 in view of Condition 2.

If the server breaks down when servicing a request, then servicing is continued at the resumption
instant exactly from the point where it has been interrupted, so that the total uptime used to service the
request has the distribution function B(x).

Our model has three features distinguishing it from the one considered in [2]. In [2], the input flow is
Poisson (i.e., an M/G/1/∞ system is considered), and the up- and downtime are independent random
variables. Moreover, it is assumed that the uptime has exponential distribution and that the server can
only break down when servicing a request. These conditions do not hold in our model in general. Note
also that the up- and downtime intervals are independent if, say, there exist j0 and j1 such that

αj0 > 0, αj = 0 for j �= j0,

βj1 > 0, βj = 0 for j �= j1;

i.e., the server can break down or resume operation only for a single state U(t).

We define a random medium for the system by using the process N(t) = {e(t), U(t)}, where e(t) = 1
is the server is up at time t and e(t) = 0 otherwise. Obviously, N(t) is a continuous-time Markov chain
with state space {0, 1} × E, and the entries of its infinitesimal matrix have the form (for i �= j)

q(0,i)(0,j) = qij(1− βj), q(0,i)(1,j) = qijβj ,

q(1,i)(0,j) = qijαj, q(1,i)(1,j) = qij(1− αj),

q(k,i)(k,i) = qii, q(k,i)(1−k,i) = 0.

(2)

The ergodicity of U(t) implies that of N(t). We set

p0i = lim
t→∞

P(e(t) = 0, U(t) = i), p1i = lim
t→∞

P(e(t) = 1, U(t) = i),

π = lim
t→∞

P(e(t) = 1) =
∑

i∈E
p1i .

(3)

The steady-state probabilities p0i , p1i are a solution of the system

p0i =
∑

j∈E
(p0jp(0,j)(0,i) + p1jp(1,j)(0,i)), p1i =

∑

j∈E
(p0jp(0,j)(1,i) + p1jp(1,j)(1,i)),

where

p(k,j)(l,i) =
q(k,j)(l,i)

−q(k,j)(k,j)
, k, l ∈ {0, 1}, i, j ∈ E,

and q(k,j)(l,i) can be found from (2).

3. ERGODIC THEOREM

Consider the process W (t) representing the total remaining service time for the requests that are in
the system at time t assuming that the server does not break down after time t.

Theorem 1. Let U(t) be an ergodic Markov chain, and let Conditions 1 and 2 be satisfied. Set
ρ = λb/π. Then

• W (t)
a.s.−−−→
t→∞

∞ if ρ > 1.

• W (t)
P−−−→

t→∞
∞ if ρ = 1.
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• For ρ < 1 and for an arbitrary initial state W (0), there exists a limit

lim
t→∞

P(W (t) ≤ x) = F (x),

and F (x) is a distribution function independent of W (0).

Proof. Let us introduce the stochastic process

Y (t) =

ˆ t

0
1(e(s) = 1) ds,

which is the total server uptime on the interval [0, t). Then (e.g., see [11])

W (t) = sup
0≤s≤t

[W (0) + Z(t), Z(t)− Z(s)], (4)

where Z(t) = X(t) − Y (t).
Note that Y (t) has nondecreasing trajectories and is a regenerative flow. Its regeneration times form

a subsequence {Ti}∞i=1 of {θi}∞i=1 such that

e(Ti + 0) = 1, U(Ti + 0) = 0.

Since X(t) and Y (t) are independent, we see that the Ti are also regeneration times of X(t). This follows
from the properties of regenerative flows (independent sifting) [7]. Without loss in generality, we assume
that P(U(0) = 0, e(0) = 1) = 1. Then the sequence {τ ′k = Tk − Tk−1}∞k=1 consists of independent
identically distributed random variables.

Lemma 1. If Condition 2 is satisfied, then Eτ ′k < ∞.

Proof. Set

νk = min{j > νk−1 : U(θj) = 0, e(θj) = 1}, ν0 = 0,

so that Tk = θνk . Then {νk − νk−1}∞k=1 is a sequence of independent identically distributed random
variables, and {νk}∞k=0 is a regeneration process. By the Blackwell theorem, the regeneration function

h(j) =

∞∑

k=1

P(νk = j) = P(U(θj) = 0, e(θj) = 1)

has a limit

lim
j→∞

h(j) =
1

Eν1
.

Since {U(t), e(t)} is an ergodic Markov chain and the processes X(t) and {U(t), e(t)} are independent,
we have (Eν1)

−1 = p10 > 0, and so Eν1 < ∞. By Wald’s identity, Eτ ′1 = Eτ1Eν1, and we conclude that
Eτ ′1 < ∞.

Denote

xn = X(Tn)−X(Tn−1), yn = Y (Tn)− Y (Tn−1).

Since {Tn}∞n=1 is a sequence of regeneration points common for X(t) and Y (t), it follows that
the sequence {xn, yn}∞n=1 consists of independent identically distributed random vectors, and we
have Exn < ∞ and Eyn < ∞ by Lemma 1.

Let μ(t) be the number of regenerations on (0, t]; i.e., μ(t) = max{k : Tk < t}.
We introduce the embedded process

Wn = W (Tn − 0)

and two auxiliary processes W−
n and W+

n by setting

W−
n = [W−

n−1 + xn − yn]
+, W−

0 = W (0),
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W+
n = [W+

n−1 − yn]
+ + xn, W+

0 = W (0).

Then for each integer n ≥ 0 we almost surely have

W−
n ≤ Wn ≤ W+

n . (5)

It is well known (e.g., see [11]) that

W−
n

a.s.−−−→
n→∞

∞ if E(xn − yn) > 0,

W−
n

P−−−→
n→∞

∞ if E(xn − yn) = 0 and P{xn = yn} < 1.

Let us proceed to the case of Exn < Eyn. It was shown in [6] that the process W+
n is stochastically

bounded in this case. It follows from (5) that so is Wn. Note that W (t) and Wn are regeneration
processes with regeneration times T̃n given by

T̃n = min{Tk > T̃n−1 : W (Tk) = Wk = 0}, T̃0 = 0.

By Theorem 1 in [12], the stochastic boundedness of W (t) implies its ergodicity under the following
conditions.

Condition 3. P(Wn+1 = 0 | Wn = 0) > 0.

Condition 4. For each x < ∞, x ∈ R, there exists positive integers m(x) and δ(x) such that

P(Wn+m(x) = 0 | Wn = y) ≥ δ(x)

for all y ≤ x.

Let us prove that these conditions are satisfied in our case.

Lemma 2. It follows from Conditions 1 and 2 that Conditions 3 and 4 are satisfied.

Proof. Assume for now that the first term in (1) is positive, P{ξ1 = 0, τ1 > 0} > 0. Then there exist
h1 > 0, h2 > 0, and δ1 > 0 such that

P{ξ1 = 0, h1 < τ1 < h2} > δ1. (6)

Since {e(t), U(t)} is a Markov chain, it follows that the time spent in the state {1, 0} is exponentially
distributed with parameter γ0 =

∑
j �=0 q0j . In view of (6), we find that

P{Wn+1 = 0 | Wn = 0} > e−γ0h2δ1. (7)

For a given x > 0, take m(x) = [x/h1] + 1. Then Condition 4 holds with δ(x) = e−γ0m(x)h2δ
m(x)
1 .

Let the second term in (1) be positive. There exist h̃1 > 0, h̃2 > 0, and δ̃1 > 0 such that

P{ξ1 = 1, η1 + t1 + h̃1 < τ1 < h̃2} > δ̃1.

Hence (7) obviously holds with h2 replaced by h̃2 and δ1 replaced by δ̃1. To prove that condition 4 is
satisfied, it suffices to take m̃(x) = [x/h̃1] + 1. Then

P{Wn+m̃(x) = 0 | Wn = y} ≥ (e−γ0˜h2 δ̃1)
m̃(x) > 0

for y ≤ x.

It remains to express the system service factor ρ = Ex1/Ey1 via the original parameters.

Lemma 3. The following equalities hold:

Ex1
Ey1

=
λb

π
= ρ.
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Proof. We have

lim
t→∞

X(t)

t
= lim

t→∞
μ(t)

t

1

μ(t)

μ(t)∑

n=1

xn.

Next,

μ(t)

t

a.s.−−−→
t→∞

1

Eτ ′1

by reconstruction theory and

1

μ(t)

μ(t)∑

n=1

xn
a.s.−−−→

t→∞
Ex1

by the law of large numbers. Thus,

X(t)

t

a.s.−−−→
t→∞

Ex1
Eτ ′1

.

Likewise, we find that

Y (t)

t

a.s.−−−→
t→∞

Ey1
Eτ ′1

.

Next, since

X(t)

t
=

1

t

A(t)∑

n=1

ηn
a.s.−−−→

t→∞
λb,

it follows that Ex1 = λbEτ ′1. For the process

Y (t) =

ˆ t

0
1(e(s) = 1) ds,

we have

lim
t→∞

t−1EY (t) = lim
t→∞

t−1

ˆ t

0
P(e(s) = 1) ds = π.

Thus, Ey1 = πEτ ′1, and consequently

Ex1
Ey1

=
λb

π
,

where π is defined in (3).

The proof of the theorem is complete.

4. EXAMPLES

Example 1. Consider the above-mentioned prioritized system. There are two types of requests arriving
in a single server queuing system, requests of the second type having absolute priority over those of the
first. The input flows Ai(t), i = 1, 2, are independent, A1(t) is a regenerative flow with arrival rate λ1,
and A2(t) is a Poisson flow with parameter λ2. The service times for type 1 requests are independent
identically distributed random variables with distribution function B(x) and expectation b, and the
service times for type 2 requests are distributed exponentially with parameter μ2. Type 1 requests are
only serviced when there are no type 2 requests in the system, and the interrupted service of a type 1
request is continued as soon as all type 2 requests leave the system.
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Let U(t) be the number of type 2 requests at time t. This is a Markov chain, and if ρ2 = λ2/μ2 < 1,
then it has a steady-state distribution; moreover,

Rj = lim
t→∞

P(U(t) = j) = (1− ρ2)ρ
j
2.

The server interrupts servicing type 1 requests when type 2 requests arrive in the system; i.e., α0 = 0,
β0 = 1, and αi = 1 and βi = 0 for i ≥ 1, so that π = R0 (see (3)) and the service factor has the form
ρ1 = λ1b/(1 − ρ2). If A1(t) is a Poisson process, then we obtain the well-known ergodicity conditions
(e.g., see [13]).

Example 2. Consider a Reg/G/1/∞ system operating in a random medium U(t), where U(t) is
the number of requests in an M/M/1/∞ system with Poisson input flow of intensity λ1 and with
exponentially distributed service time with parameter μ1. It is well known [6] that U(t) is ergodic if
λ1 < μ1. The infinitesimal matrix for U(t) has the form

qii+1 = λ1, i = 0, 1, . . . , qii−1 = μ1, i = 1, 2, . . . , qij = 0, |i− j| > 1. (8)

As U(t) switches into an arbitrary state, the server breaks down with probability α if it is up and
resumes operation with probability β if it is down. That is, αi = α and βi = β for i ∈ {0, 1, . . . }. We
point out that the up- and downtime intervals are not independent in this system.

We introduce the notation

Pj = lim
t→∞

P(U(t) = j, e(t) = 1), P (z) =

∞∑

j=1

zjPj ,

Qj = lim
t→∞

P(U(t) = j, e(t) = 0), Q(z) =

∞∑

j=1

zjQj ,

Rj = Pj +Qj, R(z) =

∞∑

j=1

zjRj, ρ1 =
λ1

μ1
.

Now, to find the ergodicity condition for this system, we should find

π = lim
t→∞

P(e(t) = 1) =

∞∑

j=0

Pj .

To this end, we use the fact that

Rj = lim
t→∞

P(U(t) = j) = (1− ρ1)ρ
j
1

and write out the following system of equations using (8):

λ1P0 = (1− α)μ1P1 + βμ1Q1,

(λ1 + μ1)Pj = (1− α)λ1Pj−1 + (1− α)μ1Pj+1 + βλ1Qj−1 + βμ1Qj+1, j = 1, 2, . . . .

By setting c = 1− α− β, we obviously obtain the relation

P (z)(−cρ1z
2 + (1 + ρ1)z − c) =

1− ρ1
1− ρ1z

β(1 + ρ1z
2) + P0(z − c)− β(1− ρ1) (9)

for the generating function P (z). Hence

P (z) =
(1− ρ1)β(1 + ρ1z

2) + (1− ρ1z)(P0(z − c)− β(1 − ρ1))

(−cρ1z2 + (1 + ρ1)z − c)(1 − ρ1z)
.

To express P0, we find the roots

z1,2 =
(1 + ρ1)±

√
(1 + ρ1)2 − 4c2ρ1
2cρ1
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of the equation

g(z) = z2 − 1 + ρ1
ρ1c

z +
1

ρ1
= 0.

Of these two roots, we take z2, because z2 ∈ (−1, 1) and hence P (z) is analytic at that point. In view
of this, we use (9) and obtain

P0 =
βρ1(1− ρ1)z2(1 + z2)

(c− z2)(1− z2ρ1)
, P (1) =

P0

1 + ρ1
+

2βρ1
(1− c)(1 + ρ1)

.

Since

P (1) =
∞∑

j=0

Pj ,

it follows that the service factor of the system is

ρ =
λb(α+ β)(1 + ρ1)

(α + β)P0 + 2βρ1
,

where λ is the arrival rate and b is the expectation of the service time.

Example 3. In this example, one cannot construct a Markov process U(t) determining whether the
server is up. However, one can find a sufficient ergodicity condition in an auxiliary model that operates in
a Markov random medium and majorizes the original system. This condition is close to being necessary
in the sense that if the system is not ergodic, then the condition is violated.

The model consists of two systems S1 and S2 arranged in a series (see the figure).

Figure.

Here S1 is a single server queue with Poisson input flow with parameter λ1. The service time is
exponentially distributed with parameter ν1. (Thus, S1 is an M/M/1/∞ system).

The system S2 is a single server queue with two input flows. The first flow is formed by the requests
that arrive from the system S1. The second flow is Poisson with parameter λ2. We assume that a request
from the second flow is accepted by S2 if the server is free and denied service otherwise. The service time
in the system S2 is exponentially distributed with parameter ν2.

There is a buffer with k− 1 cells, k < ∞, between S1 and S2. Accordingly, S1 stops servicing requests
as soon as the buffer is full, i.e., as soon as there are k requests in the system S2.

Let qi(t) be the number of requests in Si at time t, i = 1, 2. By virtue of our assumptions,
Q(t) = (q1(t), q2(t)) is an irreducible Markov chain; since q2(t) ≤ k < ∞, it follows that it is ergodic
if and only if the process q1(t) is stochastically bounded [12].

Consider an auxiliary system (S̃1, S̃2) assuming that there are backup requests in S̃1 which arrive in
service as soon as the server does not have to service the main request arriving at the rate λ1. If a main
request arrives when the server is busy with a backup request, the server switches to the main request
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immediately. Since we assume that there are as many backup requests as desired, we see that the input
flow of S̃2 is Poisson with parameter ν2. Of course, there will be delays if the buffer is full.

Let q̃1(t) be the number of requests in S̃1 at time t, and let q̃2(t) be the process q2(t) for S̃2. The q̃2(t)
is a Markov chain, and for the same initial conditions one has the stochastic inequality

q1(t) ≤ q̃1(t) as t ≥ 0. (10)

We can treat q̃2(t) as a random medium for S̃1. Then

α0 = · · · = αk−1 = 0, αk = 1, β0 = · · · = βk−1 = 1, βk = 0.

We conclude that the server in S̃1 is idle if q̃2(t) = k. By Theorem 1, the service ratio for S̃1 is given by

ρ̃ =
λ1

ν1(1− R̃k)
, where R̃k = lim

t→∞
P(q̃2(t) = k).

For the steady-state distribution R̃j = limt→∞ P(q̃2(t) = j), we have the system of equations

(ν1 + λ2)R̃0 = ν2R̃1,

(ν1 + ν2)R̃1 = (ν1 + λ2)R̃0 + ν2R̃2,

(ν1 + ν2)R̃j = ν1R̃j−1 + ν2R̃j+1, 1 < j < k,

ν2R̃k = ν1R̃k−1.

Hence we find that

R̃k =
νk−1
1 (ν1 + λ2)(ν2 − ν1)

νk2 (ν2 − ν1) + (ν1 + λ2)(ν
k
2 − νk1 )

.

Thus, the service ratio is

ρ̃ =
λ1

ν1ν2
· ν

k+1
2 − νk+1

1 + λ2(ν
k
2 − νk1 )

νk2 − νk1 + λ2(ν
k−1
2 − νk−1

1 )
.

If ν1 = ν2, the R̃k = (ν1 + λ2)/(ν1(k + 1) + kλ2) and the service ratio is

ρ̃ =
λ1

ν1
· ν1(k + 1) + kλ2

kν1 + λ2(k − 1)
.

Assume that ρ̃ < 1; i.e., the process q̃1(t) is ergodic and hence stochastically bounded. It follows from
(10) that q1(t) is stochastically bounded and hence ergodic.

Assume that Q(t) is not ergodic. Then q1(t) is stochastically unbounded, and so is q̃1(t) by (10). It
follows that ρ̃ ≥ 1.

Corollary 1. If ρ̃ < 1, then Q(t) is ergodic. If Q(t) is not ergodic, then ρ̃ ≥ 1.
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