Asymptotics of Solutions of Volterra Integral Equations with Difference Kernel

M. S. Lobanova* and Z. B. Tsalyuk

Kuban State University, Krasnodar, Russia Received November 2, 2012

Abstract—The paper deals with the asymptotics of solutions of the Volterra integral equation with difference kernel in the case where the free term has exponential growth.

DOI: 10.1134/S0001434615030104

Keywords: Volterra integral equation, Laplace transform, (un)stable kernel, convolution of functions.

Consider the integral equation

$$x(t) = \int_0^t K(t - s)x(s) \, ds + f(t). \tag{0.1}$$

We study the asymptotics of solutions of Eq. (0.1) in the case where the free term is of the form

$$f = \sum_{l=1}^{s} e^{\mu_l t} \phi_l(t),$$

where $\mu_l = \alpha_l + i\beta_l$, $\alpha_l, \beta_l \in \mathbb{R}$, $\phi_l \in A_m$, \mathbb{R} is the set of real numbers, and $A_m[0, \infty)$ is the set of functions continuous on $[0, \infty)$ and admitting the expansion

$$z(t) = \sum_{k=0}^{m} \frac{z_k}{(t+1)^k} + \frac{o(1)}{(t+1)^m}, \quad t \to \infty.$$

It suffices to consider the case in which $\operatorname{Re}\mu_l=\alpha$ for all l, because if $\operatorname{Re}\gamma<\operatorname{Re}\mu_l$, then $e^{\gamma t}=o(e^{\mu_l t})$.

Let $\widehat{K}(z)$ denote the Laplace transform of the kernel K, and let K*x denote the convolution

$$\int_0^t K(t-s)x(s)\,ds.$$

Let $P_{\gamma}(t)$ be a polynomial of degree $\leq \gamma$.

Further, we assume that $\operatorname{Re} \mu > 0$, because, for $\operatorname{Re} \mu = 0$, the asymptotics of Eq. (0.1) was well studied (see, for example, [1]).

We shall need the following statements.

Proposition (see [1, p. 24]). Suppose that $\beta > 0$, $k, r \ge 0$ are integers, and $\operatorname{Re} \lambda \ge 0$. Then

$$\frac{e^{i\gamma t}}{(t+1)^{\beta}} * t^r e^{\lambda t} = \begin{cases} e^{\lambda t} P_r(t) + \sum_{l=\beta}^{\beta+k} c_l \frac{e^{i\gamma t}}{(t+1)^l} + \frac{O(1)}{(t+1)^{k+\beta+1}}, & \lambda \neq i\gamma, \\ ce^{i\gamma t} (t+1)^{r+1-\beta} + e^{i\gamma t} P_r(t), & \lambda = i\gamma. \end{cases}$$

^{*}E-mail: mary140388@mail.ru, dif@math.kubsu.ru

Lemma. Suppose that m > 0, $\gamma \ge 0$ is an integer, λ , μ are complex numbers, and $\operatorname{Re} \lambda > 0$. Then, for $\phi \in A_m$, the convolution $t^{\gamma}e^{\lambda t} * e^{\mu t}\phi(t)$ is of the form

$$t^{\gamma} e^{\lambda t} * e^{\mu t} \phi(t) = \begin{cases} P_{\gamma}(t) e^{\lambda t} + e^{\mu t} \left(\sum_{j=0}^{m} \frac{c_{j}}{(t+1)^{j}} + \frac{o(1)}{(t+1)^{m}} \right), & \text{Re } \mu \leq \text{Re } \lambda, \\ e^{\mu t} \left(\sum_{j=0}^{m} \frac{c_{j}}{(t+1)^{j}} + \frac{o(1)}{(t+1)^{m}} \right), & \text{Re } \mu > \text{Re } \lambda. \end{cases}$$

Proof. Let Re μ < Re λ . Then

$$t^{\gamma} e^{(\lambda - \mu)t} * c_0 = P_{\gamma}(t) e^{(\lambda - \mu)t}.$$

Further, for $k \ge 1$, by Lemma 3 [1, p. 24], we have

$$t^{\gamma} e^{(\lambda - \mu)t} * \frac{1}{(t+1)^k} = e^{(\lambda - \mu)t} P_{\gamma}(t) + \sum_{l=k}^m \frac{c_l}{(t+1)^l} + \frac{o(1)}{(t+1)^m}.$$

Finally,

$$\begin{split} t^{\gamma}e^{(\lambda-\mu)t}*\frac{o(1)}{(t+1)^m} &= e^{(\lambda-\mu)t}\int_0^{\infty} (t-s)^{\gamma}e^{-(\lambda+\mu)s}o\bigg(\frac{1}{(s+1)^m}\bigg)\,ds\\ &+ \int_t^{\infty} (t-s)^{\gamma}e^{(\lambda-\mu)(t-s)}o\bigg(\frac{1}{(s+1)^m}\bigg)\,ds\\ &\leq P_{\gamma}(t)e^{(\lambda-\mu)t} + o\bigg(\frac{1}{(t+1)^m}\bigg)\int_0^{\infty}e^{-(\lambda-\mu)\theta}\theta^{\gamma}\,d\theta. \end{split}$$

Thus,

$$t^{\gamma}e^{\lambda t} * e^{\mu t}\phi(t) = e^{\mu t} \int_0^t (t-s)^{\gamma} e^{(\lambda-\mu)(t-s)}\phi(s) ds$$

$$= e^{\mu t} \left(P_{\gamma}(t)e^{(\lambda-\mu)t} + \sum_{j=0}^m \frac{c_j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right)$$

$$= P_{\gamma}(t)e^{\lambda t} + e^{\mu t} \left(\sum_{j=0}^m \frac{c_j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right).$$

Let $\operatorname{Re} \mu = \operatorname{Re} \lambda$. Then

$$t^{\gamma}e^{\lambda t} * e^{\mu t}\phi(t) = \int_{0}^{t} (t-s)^{\gamma}e^{\lambda(t-s)}e^{\mu s}\phi(s) ds = \int_{0}^{t} (t-s)^{\gamma}e^{\lambda(t-s)}e^{\mu(s-t)}e^{\mu t}\phi(s) ds$$
$$= e^{\mu t}\int_{0}^{t} (t-s)^{\gamma}e^{\text{Im}(\lambda-\mu)(t-s)}\phi(s) ds = e^{\lambda t}(t^{\gamma}e^{\text{Im}(\lambda-\mu)t} * \phi(t)).$$

In view of the proof of the theorem given in [1, p. 82], we can write

$$t^{\gamma} e^{\text{Im}(\lambda - \mu)t} * \phi(t) = P_{\gamma}(t) e^{\text{Im}(\lambda - \mu)t} + \sum_{j=0}^{m} \frac{c_j}{(t+1)^j} + \frac{o(1)}{(t+1)^m}.$$

Therefore, the convolution $t^{\gamma}e^{\lambda t} * e^{\mu t}\phi(t)$ is of the form

$$t^{\gamma} e^{\lambda t} * e^{\mu t} \phi(t) = e^{\lambda t} \left(P_{\gamma}(t) + \sum_{j=0}^{m} \frac{c_j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right).$$

Let $0 < \operatorname{Re} \lambda < \operatorname{Re} \mu$. Denote $H(t) = t^{\gamma} e^{(\lambda - \mu)t}$. Then

$$t^{\gamma}e^{\lambda t} * e^{\mu t}\phi(t) = e^{\mu t} \int_0^t (t-s)^{\gamma}e^{(\lambda-\mu)(t-s)}\phi(s) \, ds = e^{\mu t}(t^{\gamma}e^{(\lambda-\mu)t} * \phi(t)) = e^{\mu t}(H*\phi)(t).$$

Since

$$\int_0^\infty t^m H(t) \, dt = \int_0^\infty t^{m+\gamma} e^{(\lambda-\mu)t} \, dt < \infty,$$

we have $t^m H \in L_1[0,\infty)$. Therefore, for $\phi \in A_m$, the assumptions of Lemma 4 from [1, p. 65] hold, and

$$t^{\gamma}e^{\lambda t} * e^{\mu t}\phi(t) = e^{\mu t}(H * \phi(t)) = e^{\mu t} \left(\sum_{j=0}^{m} \frac{c_j}{(t+1)^j} + \frac{o(1)}{(t+1)^m}\right).$$

Finally, we obtain

$$t^{\gamma} e^{\lambda t} * e^{\mu t} \phi(t) = \begin{cases} P_{\gamma}(t) e^{\lambda t} + e^{\mu t} \left(\sum_{j=0}^{m} \frac{c_{j}}{(t+1)^{j}} + \frac{o(1)}{(t+1)^{m}} \right), & \operatorname{Re} \mu \leq \operatorname{Re} \lambda, \\ e^{\mu t} \left(\sum_{j=0}^{m} \frac{c_{j}}{(t+1)^{j}} + \frac{o(1)}{(t+1)^{m}} \right), & \operatorname{Re} \mu > \operatorname{Re} \lambda. \end{cases}$$

Let K be the kernel of Eq. (0.1), let R(t) be its resolvent, and let $t^m K \in L_1$ for some m. Consider two cases.

Case 1. The kernel K is stable. This means that $R(t) \in L_1$. Since $t^m K \in L_1$, we also have $t^m R(t) \in L_1$ [1]. In addition, stability means that the equation $\widehat{K}(z) = 1$ has no roots for $\operatorname{Re} z \geq 0$ [1].

Theorem 1. Let

$$f = \sum_{l=1}^{s} e^{\mu_l t} \phi_l(t),$$

where $\mu_l = \alpha + i\beta_l$, $\beta_l \in R$, and $\phi_l \in A_m$. Then the solution of Eq. (0.1) is of the form

$$x = \sum_{l=1}^{s} e^{\mu_l t} \xi_l(t),$$

where $\xi_l(t) \in A_m$.

Proof. The solution of Eq. (0.1) can be expressed as x(t) = f(t) + R * f(t), where

$$f = \sum_{l=1}^{s} e^{\mu_l t} \phi_l(t), \qquad \mu_l = \alpha + i\beta_l, \qquad \phi_l \in A_m.$$

Consider the convolution $R * e^{\mu_l t} \phi_l(t)$ for $l = 1, \ldots, s$:

$$R * e^{\mu_l t} \phi_l(t) = e^{\mu_l t} \int_0^t R(t - s) e^{-\mu_l(t - s)} \phi_l(s) \, ds.$$

Denote $H(t) = R(t)e^{-\mu_l t}$. Then

$$R * e^{\mu_l t} \phi_l(t) = e^{\mu_l t} (H * \phi_l(t)).$$

Since $t^m R(t) \in L_1[0,\infty)$, it follows that $t^m H \in L_1[0,\infty)$ and, by the corollary of Lemma 4 from [1, p. 70], $H * \phi_l(t) \in A_m$.

Therefore,

$$x(t) = \sum_{l=1}^{s} e^{\mu_l t} \left(\sum_{i=0}^{m} \frac{c_l i}{(t+1)^i} + \frac{o(1)}{(t+1)^m} \right) = \sum_{l=1}^{s} e^{\mu_l t} \xi_l(t), \quad \text{where} \quad \xi_l(t) \in A_m. \quad \Box$$

Case 2. Now consider the case of an unstable kernel.

Theorem 2. Let the equation $1 - \widehat{K}(z) = 0$ have roots $\lambda_1, \lambda_2, \dots, \lambda_k, \dots$ of multiplicity m_k in the half-plane $\operatorname{Re} z \geq 0$ such that $\operatorname{Re} \lambda_1 \geq \operatorname{Re} \lambda_2 \geq \dots \geq \operatorname{Re} \lambda_k \geq \dots$. Then if

$$f = \sum_{l=1}^{s} e^{\mu_l t} \phi_l(t),$$

where $\mu_l = \alpha + i\beta_l$, $\alpha, \beta_l \in R$, and $\phi_l \in A_m$, then, as $t \to \infty$, Eq. (0.1) has a solution of the form

$$x(t) = \begin{cases} \sum_{l=1}^{s} e^{\mu_l t} \left(\sum_{j=0}^{m} \frac{c_l j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right), & \alpha > \operatorname{Re} \lambda_k \ge \operatorname{Re} \lambda_{k+1} \ge \cdots, \\ \sum_{l=1}^{k} P_{m_j - 1}(t) e^{\lambda_j t} \\ + \sum_{l=1}^{s} e^{\mu_l t} \left(\sum_{j=0}^{m} \frac{c_l j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right), & \alpha \le \operatorname{Re} \lambda_k \le \operatorname{Re} \lambda_{k-1} \le \cdots. \end{cases}$$

Proof. Let $\alpha > \operatorname{Re} \lambda_k \ge \operatorname{Re} \lambda_{k+1} \ge \cdots$, and let γ satisfy the chain of inequalities

$$\alpha > \gamma > \operatorname{Re} \lambda_k \ge \operatorname{Re} \lambda_{k+1} \ge \cdots$$
.

Since

$$R(t) = K(t) + \int_0^t R(t-s)K(s) ds,$$

we have

$$R(t)e^{-\gamma t} = e^{-\gamma t}K(t) + \int_0^t e^{-\gamma(t-s)}R(t-s)K(s)e^{-\gamma s} ds.$$

Denote $K_1(t) = e^{-\gamma t}K(t)$ and $R_1(t) = e^{-\gamma t}R(t)$. Then

$$R_1(t) = K_1(t) + \int_0^t R_1(t-s)K_1(s) \, ds,$$

$$\widehat{K}_1(z) = \int_0^\infty e^{-zt} e^{-\gamma t} K(t) \, dt = \int_0^\infty e^{-(z+\gamma)t} K(t) \, dt = \widehat{K}(z+\gamma).$$

Therefore, the equation $1 - \widehat{K}_1(z) = 0$ has no roots for $\operatorname{Re} z \geq 0$, i.e., the kernel K_1 is stable. Then, by Theorem 1, the solution of the equation

$$x_1(t) = \int_0^t K_1(t-s)x_1(s) ds + f_1(1)$$

is of the form

$$x_1(t) = \sum_{l=1}^{s} e^{(\mu_l - \gamma)t} \xi_l(t), \quad \text{where} \quad \xi_l \in A_m,$$

and hence the solution of Eq. (0.1) can be written as

$$x(t) = \sum_{l=1}^{s} e^{\mu_l t} \left(\sum_{j=0}^{m} \frac{c_l j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right), \quad t \to \infty.$$

Now let $\alpha \leq \operatorname{Re} \lambda_k \leq \operatorname{Re} \lambda_{k-1} \leq \cdots$, and let $\gamma < \alpha$. Since $\gamma < \operatorname{Re} \mu \leq \operatorname{Re} \lambda_k \leq \operatorname{Re} \lambda_{k-1} \leq \cdots$ and

$$R(t) = K(t) + \int_0^t R(t-s)K(s) ds,$$

it follows that

$$R(t)e^{-\gamma t} = e^{-\gamma t}K(t) + \int_0^t e^{-\gamma(t-s)}R(t-s)K(s)e^{-\gamma s} ds.$$

Denoting $K_1(t) = e^{-\gamma t}K(t)$ and $R_1(t) = e^{-\gamma t}R(t)$, we obtain

$$R_1(t) = K_1(t) + \int_0^t R_1(t-s)K_1(s) ds, \qquad \widehat{K}_1(z) = \int_0^\infty e^{-zt}e^{-\gamma t}K(t) dt = \widehat{K}(z+\gamma)$$

just as above. Hence the equation $1 - \widehat{K}_1(z) = 0$ has roots of the form $\lambda_j - \gamma$ such that $\operatorname{Re}(\lambda_j - \gamma) > 0$, j < k. For $j \ge k$, this equation has no roots.

In view of the equation

$$x(t) = f(t) + \int_0^t R(t-s)f(s) ds,$$

denoting $x_1(t) = e^{-\gamma t}x(t)$ and $f_1(t) = e^{-\gamma t}f(t)$, we obtain

$$x_1(t) = f_1(t) + \int_0^t R_1(t-s)f_1(s) ds.$$

Since

$$f = \sum_{l=1}^{s} e^{\mu_l t} \phi_l(t),$$

we have

$$f_1(t) = \sum_{l=1}^{s} e^{(\mu_l - \gamma)t} \phi_l(t)$$

and the solution is of the form

$$x_1(t) = \sum_{l=1}^{s} e^{-(\gamma - \mu_l)t} \phi_l(t) + \sum_{l=1}^{s} \int_0^t e^{-\gamma(t-s)} R(t-s) e^{(\mu_l - \gamma)s} \phi_l(s) ds.$$

In view of the remark to Theorem 2 from [1, p. 46], we can write

$$R_1(t) = R_2(t) + Q * R_2(t),$$

where

$$Q(t) = \sum_{j=1}^{k} P_{m_j - 1}(t)e^{(\lambda_j - \gamma)t}$$

and $t^m R_2(t) \in L_1[0,\infty)$. Since

$$\int_0^t (t-s)^l e^{\lambda(t-s)} R_2(s) \, ds = e^{\lambda t} \int_0^\infty (t-s)^l e^{-\lambda s} R_2(s) \, ds + \int_t^\infty (t-s)^l e^{\lambda(t-s)} R_2(s) \, ds,$$

and

$$\int_0^\infty t^m \int_t^\infty e^{-\operatorname{Re}\lambda(s-t)} (s-t)^l |R_2(s)| \, ds \, dt \le \int_0^\infty |R_2(s)| s^m \int_0^s \tau^l e^{-\operatorname{Re}\lambda\tau} \, d\tau \, ds < \infty,$$

it follows that

$$R_1(t) = \sum_{j=1}^{k} P_{m_j - 1}(t)e^{(\lambda_j - \gamma)t} + R_3(t),$$

where $t^m R_3(t) \in L_1[0,\infty)$.

By the lemma, the convolution $t^q e^{(\lambda_j - \gamma)t} * e^{(\mu_l - \gamma)t} \phi_l$, where $q = 1, \dots, m_j - 1$, $l = 1, \dots, s$, and $j = 1, \dots, k$, is of the form

$$t^{q} e^{(\lambda_{j} - \gamma)t} * e^{(\mu_{l} - \gamma)t} \phi_{l} = \begin{cases} P_{q}(t) e^{(\lambda_{j} - \gamma)t} \\ + e^{(\mu_{l} - \gamma)t} \left(\sum_{j=0}^{m} \frac{c_{j}}{(t+1)^{j}} + \frac{o(1)}{(t+1)^{m}} \right), & \operatorname{Re} \mu_{l} < \operatorname{Re} \lambda_{k}; \\ e^{(\mu_{l} - \gamma)t} \left(\sum_{j=0}^{m} \frac{c_{j}}{(t+1)^{j}} + \frac{o(1)}{(t+1)^{m}} \right), & \operatorname{Re} \mu_{l} > \operatorname{Re} \lambda_{k}. \end{cases}$$

Hence

$$Q * e^{(\mu_l - \gamma)t} \phi_l(t) = \sum_{j=1}^k P_{m_j - 1}(t) e^{(\lambda_j - \gamma)t} + \sum_{l=1}^s e^{(\mu_l - \gamma)t} \left(\sum_{j=0}^m \frac{c_l j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right).$$

Further,

$$R_3 * e^{(\mu_l - \gamma)t} \phi_l = \int_0^t e^{(\mu_l - \gamma)(t - s)} \phi_l(t - s) R_3(s) ds = e^{(\mu_l - \gamma)t} \int_0^t e^{-(\mu_l - \gamma)s} R_3(s) \phi_l(t - s) ds$$
$$= e^{(\mu_l - \gamma)t} [e^{-(\mu_l - \gamma)t} R_3(t) * \phi_l(t)] = e^{(\mu_l - \gamma)t} \widetilde{\phi}_l(t), \qquad \widetilde{\phi}_l \in A_m$$

(see [1, p. 69]). This yields

$$R_1 * e^{(\mu_l - \gamma)t} \phi_l(t) = \sum_{i=1}^k P_{m_j - 1}(t) e^{(\lambda_j - \mu_l)t} + e^{(\mu_l - \gamma)t} \phi_l(t).$$

Therefore,

$$x(t) = \sum_{l=1}^{k} P_{m_j - 1}(t)e^{\lambda_j t} + \sum_{l=1}^{s} e^{\mu_l t} \left(\sum_{j=0}^{m} \frac{c_l j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right), \qquad t \to \infty.$$

Combining these results, we obtain the solution of Eq. (0.1) in the form

$$x(t) = \begin{cases} \sum_{l=1}^{s} e^{\mu_l t} \left(\sum_{j=0}^{m} \frac{c_l j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right), & \alpha > \operatorname{Re} \lambda_k \ge \operatorname{Re} \lambda_{k+1} \ge \dots, \\ \sum_{l=1}^{k} P_{m_j - 1}(t) e^{\lambda_j t} \\ + \sum_{l=1}^{s} e^{\mu_l t} \left(\sum_{j=0}^{m} \frac{c_l j}{(t+1)^j} + \frac{o(1)}{(t+1)^m} \right), & \alpha \le \operatorname{Re} \lambda_k \le \operatorname{Re} \lambda_{k-1} \le \dots. \quad \Box \end{cases}$$

REFERENCES

1. V. A. Derbenev and Z. B. Tsalyuk, *Asymptotics of the Solutions of Linear Volterra Equations with Difference Kernel* (Izd. Kubansk. Gos. Univ., Krasnodar, 2001) [in Russian].