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Consider the integral equation

x(t) :/0 K(t—s)z(s)ds + f(t). (0.1)

We study the asymptotics of solutions of Eq. (0.1) in the case where the free term is of the form
f=> eet),
1=1

where u; = aq + i, o, 5 € R, ¢ € Ay, R is the set of real numbers, and A,,[0,00) is the set of
functions continuous on [0, 00) and admitting the expansion

B Tz o(1)
z(t)_kzzo(t+k1)’f+(t+l)m’ t — oo.

[t suffices to consider the case in which Re j; = « for all [, because if Rey < Re py, then et = o(et?).

Let I?(z) denote the Laplace transform of the kernel K, and let K * = denote the convolution

/Ot K(t — s)x(s)ds.

Let P,(t) be a polynomial of degree < ~.

Further, we assume that Re u > 0, because, for Re u = 0, the asymptotics of Eq. (0.1) was well
studied (see, for example, [1]).

We shall need the following statements.

Proposition (see[1, p. 24]). Suppose that B > 0, k,r > 0 are integers, and Re A > 0. Then

B+k int
; Mt € O(1) :
( ewi)/d’ e = IOF % Uppap T A7
t+ =
ceM(t+1)"H=8 1 et (1), A =i7.
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Lemma. Suppose that m > 0,y > 0is an integer, A, u are complex numbers, and Re X > 0. Then,
for ¢ € A,,, the convolution t7eM x et (t) is of the form

Pty et (3 G of Re i < Re A
’Y( )6 +e <j:0 (t—|—1)] +(t+1)m ’ EU = REA,

7N x etlo(t) = m W
pt % ? Re /. > Re A
(;)(t—kl)j—i—(t—kl)m)’ epn > ReA.
Proof. Let Rep < ReA. Then
et 4 o = Pa,(t)e(’\_“)t.

Further, for k > 1, by Lemma 3 [1, p. 24], we have

~ 1 S o(1)
Y (A=)t _ (= utP
e i =°© +l§:; t+1 Tt ym
Finally,
0 S + 1
t— )\ n)(t—s)
+/t ¢ =a)’ <(s+1 )
< A=pt /OO —(A=w)0 g
< Py(t)e < 4 1ym > ; 67 do.
Thus,

Let Reyu = Re A. Then
t t
M x et(t) = / (t — s)7 et p(s) ds = / (t — )TNt rls=t) bt () ds
0 0

t
= e“t/ (t— s)”elm()‘_“)(t_s)qb(s) ds = e)‘t(tyelm(A_“)t * O(t)).
0
In view of the proof of the theorem given in[1, p. 82], we can write

o(1)

PO (1) = Py(t)e™O T 4 Z t+ 1) T+ nym

j= 0
Therefore, the convolution t7eM % e#¢(t) is of the form
v At ut - 0(1)
e x el p(t) = < +]z::0 t—l—l t+1)m .
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398 LOBANOVA, TSALYUK
Let 0 < Re A < Rep. Denote H(t) = t7e =Mt Then
e eMo(t) = et /t(t — 8)76()‘_”)“_8)(;5(8) ds = e“t(tve()‘_“)t xo(t)) = e (H x ¢)(t).
Since 0
/Ooo U H () dt = /OOO e A1t g < o0,

we have t™H € L1[0,00). Therefore, for ¢ € A,,, the assumptions of Lemma 4 from[1, p. 65] hold, and

. . o o " Cj 0(1)
N x et p(t) = e (H x ¢(t)) = X (;0 (t+1)J t (t + 1)m>’

Finally, we obtain

)\t ut “ (1) R < Re A
te (z_% t+1 T m > PR = REA
e x eMo(t) = m = )
it o
e <Z t+1 -+ t+1)m>’ Rep > Re .

Let K be the kernel of Eq. (0.1), let R(t) be its resolvent, and let t" K € L for some m. Consider
two cases.

Case 1. The kernel K is stable. This means that R(¢) € Ly. Since t"K € Ly, we also have
t"R(t) € Lq[1]. In addition, stability means that the equation K (z) = 1 has no roots forRez > 0[1].

Theorem 1. Let

F=Ye"et)
=1

where u; = a+ 10y, B € R, and ¢; € A,,. Then the solution of Eq. (0.1)is of the form

T = Z e‘”tfl(t)
=1

where §(t) € Ap,.
Proof. The solution of Eq. (0.1) can be expressed as x(t) = f(t) + R * f(t), where

F=) i), m=a+if, g€ A
Consider the convolution R * e#t¢(t) forl = 1,.

R*e“ltqbl —e‘”t/ R(t )e —Ht=s <;$l( ) ds.

Denote H(t) = R(t)e *. Then
Rx el gy(t) = e (H ¢y (t)).
Since t™R(t) € L1]0,00), it follows that t"™"H € L1[0,00) and, by the corollary of Lemma 4 from [1,

p. 70], H x ¢y (t) € App,.
Therefore,

m

Zw(z RENEIAG > Zemt& where  g(t) € A

=0
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Case 2. Now consider the case of an unstable kernel.

Theorem 2. [ef the equation 1 — I?(z) = 0 have roots A1, Aa, ..., Ak, ... of multiplicity my, in the
half-plane Re z > 0 such that Re Ay > ReXy > --- > Re A > ... . Thenif

f=Y et
=1

where = a+ 106, a, f; € R, and ¢; € Ay, then, ast — oo, Eq.(0.1) has a solution of the form

put < o(1) ReAr > ReAgyr = ---
Ze <Z (t+1)7 +(t+1)m ’ @>ReAp ZReAREL Z 000,

l‘(t) = me-—l

S i 0(1)>
4+ emt .+ , a<Rel <Reli_
| <§u+w NIRRT

IN

Proof. Leta > Re Ay > ReApy1 > -+, and let 7y satisfy the chain of inequalities
a>7>Rel > Redgp1 >

—I—/O R(t — s)K(s) ds,

t
R(t)e " = e "K(t) + / e MIR(t — s)K (s)e " ds.
0

Since
we have

Denote K;(t) = e " K (t) and Ry(t) = e " R(t). Then
t
Ri(t) = K1 (t) +/ Ri(t —s)Ki(s)ds,
0
Ki(z) = / e e MK () dt = / e CTNK () dt = K (2 4 7).
0 0

Therefore, the equation 1 — IA(l(z) = 0 has no roots for Re z > 0, i.e., the kernel K7 is stable. Then,
by Theorem 1, the solution of the equation

0=AKW—$M®%+ﬁm

is of the form

Z el= t& where & € A,
=1
and hence the solution of Eq. (0.1) can be written as
z(t) ie’”t<§mz ' o(l) > t — oo
o S+ () '

Nowletaa < Re A < ReAdg_1 <---,andlety < . Sincey < Repy < ReAp <ReNp_1 <--- and

—I-/O R(t — s)K(s) ds,
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400 LOBANOVA, TSALYUK
it follows that

¢
R(t)e " = e MK (1) —I—/ e T R(t — s)K (s)e™ 7 ds.
0
Denoting K (t) = e " K (t) and Ry (t) = e "' R(t), we obtain
t 0o
Ri(t) = K1(t) +/ Ri(t —s)Ki(s)ds, Ki(z) = / e Fle MK (t)dt = K(z + )
0 0

just as above. Hence the equation 1 — I?l(z) = 0 has roots of the form A\; — v such that Re(A\; —~) > 0,
j < k. For j > k, this equation has no roots.
t
+/ R(t—s)f(s)ds
0

In view of the equation
denoting x1(t) = e "x(t) and f1(t) = e f(t), we obtain

+ /Ot Ri(t —s)fi(s)ds

F="eMie(t)
=1

Since
we have

and the solution is of the form

s

t
Ze—('y )t ¢l _|_Z/ —y(t—s) s)e(ﬂl—ﬁ)s(ﬁl(s) ds
=170

In view of the remark to Theorem 2 from [1, p. 46], we can write

Ri(t) = Ra(t) + Q * Ra(t),

where

k
= Z Pm]_l(t)e(AJ _V)t
j=1
and " Ry (t) € L1]0,00). Since
t 0o 0o
/ (t — ) M=) Ry(s) ds = eAt/ (t —s)le ™ Ry(s)ds + / (t — ) M%) Ry(s) ds,
0 0 t

and

/ tm/ e ReA= (s — )| Ry(s)| ds dt < / |R2(S)|sm/ rlem ReM dr ds < o0,
0 t 0 0
it follows that

k
= P, —1(t)eY " 4 Ry(t),

where t™R3(t) € L]0, 00).
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By the lemma, the convolution t7ei—Mt s e(i=1tg,  where g = 1,. .. ,mj—1,1=1,...,s and
j=1,...,k,is of the form

( Pq(t)e(’\j -t

+e(uz—v)t<z( € o+ 0(1)m>, Re p; < Re Ag;
j=

11 =Nty o=t — — (t+1)  (+1)

(N~ G o(1) Re i > Re A
‘ (JZO(t—I—l) T ) CH > R
Hence
(=) P (/\ -7t (= S . o(1)
Qxe Z m—1(t)e +Z ( t—|—1 Tutm
=1 ]ZO
Further,

t

t
Ry % =Mty = / e(uz—v)(t—S)qgl(t — 5)R3(s)ds = e(uz—v)t/ e_(”l_V)ng(s)qbl(t —s)ds
0

= el e M Ry (1) 5 gy (1)) = i (t), G € Am
(see[l, p. 69]). This yields

o

Ry * = t¢l Z Pr,—1(t) Aj—u)t e(l/«l—’Y)tqbl(t)'

Therefore,

k .
1)
_ P 1 ( A]t it =¥ o( " '
2l +Ze <Z (t+1p @) T

Combining these results, we obtain the solution of Eq. (0.1) in the form

et “ o(l) Re, > Re g >
Ze (Z (t+1)7 Jr(1t+1)m ’ a>ReAr Z ReAgy1 2 -0

z(t) = mej—l(t)e/\jt
=1

(Al o(1) <Red, <Redp_y < -
e ( t+1 Tt ym > &= ROk = HEAR-L =
=1 ]:0
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