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Abstract—We consider two-dimensional asymptotic formulas based on the Maslov canonical
operator arising in stationary problems for differential and pseudodifferential equations. In the case
of Lagrangian manifolds invariant with respect to Hamiltonian flow with Hamiltonians of the form
F (x, |p|), we show how asymptotic formulas can be simplified by using the well-known (in classical
mechanics) Maupertuis–Jacobi correspondence principle to replace the Hamiltonians F (x, |p|) by
Hamiltonians of the form C(x)|p| arising, in particular, in geometric optics and related to the Finsler
metric. As examples, we consider Hamiltonians corresponding to the Schrödinger equation, the
two-dimensional Dirac equation, and the pseudodifferential equations for surface water waves.
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1. INTRODUCTION

The Maupertuis–Jacobi principle [1]–[3] allows us to pass from one Hamiltonian system to another;
it can be used, for example, in constructing and analyzing the trajectories. It was shown in [4], [5] that
this principle is helpful in constructing certain compact Lagrangian manifolds and the corresponding
asymptotic eigenvalues and eigenfunctions (quasimodes) for self-adjoint differential and pseudodiffer-
ential operators. In this paper, we wish to show how to use this principle also for the construction of
noncompact Lagrangian manifolds arising in the scattering problem and the problem of the asymptotics
of the Green function. We consider the case in which the original classical Hamiltonian depends on
the modulus of the momentum, i.e., is of the form F (x, |p|), while the second Hamiltonian has the
form C(x)|p| arising, in particular, in geometric optics and related to the Finsler metric (see [6], [7]).
Our main observation is that, for several reasons, it is more convenient to use the Hamiltonian C(x)|p|
in practical situations than the original Hamiltonian F (x, |p|). In this paper, we use the recently obtained
new formulas for the Maslov canonical operator in a neighborhood of focal points (see [8]). We restrict
our consideration to the two-dimensional case and study examples related to the Schrödinger equation,
the Dirac equation, and the pseudodifferential equation for surface water waves.
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2. INVARIANT LAGRANGIAN MANIFOLDS, EIKONAL COORDINATES
AND THE MAUPERTUIS–JACOBI CORRESPONDENCE PRINCIPLE

Consider a smooth function F (x, z), x ∈ R
2, z ∈ [0,∞) and a parameter E. Suppose that, for some

value of the parameter E, the equation F (x, z) = E has a unique solution z = 1/C(x,E), where C(x,E)
is a bounded function bounded away from zero: C(x,E) ≥ c0(E) > 0. Also let

∣
∣
∣
∣

∂F

∂z

(

x,
1

C(x,E)

)∣
∣
∣
∣
≥ c1(E) > 0

for positive constants c0(E), c1(E). Consider the Hamiltonians

H(x, p,E) = F (x, |p|) − E, H(x, p,E) = C(x,E)|p| − 1, p ∈ R
2,

and the corresponding Hamiltonian systems

(a)
dp

dt
= −Hx,

dx

dt
= Hp, (b)

dp

dτ
= −Hx,

dx

dτ
= Hp. (1)

Let Q = R or Q = R/2πZ and Q → T ∗
R
2, and let ϕ �→ (P 0(φ,E),X0(φ,E)) be a smooth embed-

ding with image Λ1 = {p = P 0(φ,E), x = X0(φ,E)} in the phase space R
4
p,x lying on the zero-level

surface of the Hamiltonians

H(X0(φ,E), P 0(φ,E), E) = 0, where |P 0(φ,E)|C(X0(φ,E)) = 1.

Consider the solutions (P(t, φ,E),X (t, φ,E)) and (P (τ, φ,E),X(τ, φ,E)) of systems (1) (a) and (b),
respectively, with initial data on the curve Λ1. By the general properties of Hamiltonian systems, we have

H(X (t, φ,E),P(t, φ,E), E) = 0 and |P (τ, φ,E)|C(X(τ, φ,E)) = 1.

By the Maupertuis–Jacobi principle, the trajectories

(P(t, φ,E),X (t, φ,E)), (P (τ, φ,E),X(τ, φ,E))

can be expressed in terms of each other. Namely,

dP
dt

= −Hx(P,X ) = −R(X )Hx(P,X ) = R(X )
dP

dτ
,

dX
dt

= Hp(P,X ) = R(X )Hp(P,X ) = R(X )
dX

dτ
, (2)

where

R(x) = lim
z→1/C(x,E)

F (x, z)− E

zC(x,E)− 1
= z

∂F

∂z
(x, z)z=1/C(x,E) =

1

C(x,E)

∂F

∂z

(

x,
1

C(x,E)

)

.

Replacing the time t by the time τ = τ(t, φ,E) using the equation

dτ

dt
= R(X (t, φ,E)), τ |t=0 = 0, (3)

we establish the correspondence of the solutions

(P(t, φ,E),X (t, φ,E)) = (P (τ, φ,E),X(τ, φ,E))|τ=τ(t,φ,E) .

Inverting the equality τ = τ(t, φ,E), we obtain the function t = t(τ, φ,E) and

(P (τ, φ,E),X(τ, φ,E)) = (P(t, φ,E),X (t, φ,E))|t=t(τ,φ,E) .

In the four-dimensional space R
4
p,x, the families of solutions

(P (τ, φ,E),X(τ, φ,E)) and (P(t, φ,E),X (t, φ,E))

define the set
Λ2 = {(p, x) = (P(t, φ,E),X (t, φ,E)), φ ∈ Q, t ∈ (−∞,∞)}

= {(p, x) = (P (τ, φ,E),X(τ, φ,E)), φ ∈ Q, τ ∈ (−∞,∞)}. (4)
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Suppose that Λ2 is a smooth manifold. Then it is Lagrangian (see [9]), and (t, φ) and (τ, φ) are
just different coordinate systems on Λ2. Denote the phase flows corresponding to the Hamiltonian
systems (1) (a) and (b), respectively, by gtH and gtH . Then

Λ2 =
⋃

−∞<t<∞
gtHΛ

1 =
⋃

−∞<τ<∞
gτHΛ1.

By construction, the Lagrangian manifold Λ2 is invariant with respect to these flows. The parameters t
and τ are called proper times on Λ2.

The following statement shows the advantage of passing to mathematical objects related to the
Hamiltonian H(p, x).

Lemma. The following relations hold:
1) The Jacobians for passing from (t, φ) to (τ, φ) and conversely are

det
∂(τ(t, φ,E), φ)

∂(t, φ)
=

dτ

dt
= R(X (t, φ,E)), (5)

det
∂(t(τ, φ,E), φ)

∂(τ, φ)
=

dt

dτ
=

1

R(X(τ, φ,E))
. (6)

Thus, the Jacobians in the coordinates (t, φ) and (τ, φ) are related by

J ≡ det
∂(X )

∂(t, φ)
= JR(X (t, φ,E)) ≡ R(X (t, φ,E)) det

∂(X)

∂(τ, φ)

∣
∣
∣
∣
τ=τ(t)

.

2) The action (eikonal) on the manifold Λ2 is

s(t, φ) ≡
ˆ (t,φ)

(0,0)
P(t, φ,E) dX (t, φ,E) = s0(φ) + τ, s0(φ) =

ˆ φ

0
P 0(φ,E) dX0(φ,E). (7)

3) The pair (τ ′ = s0(φ) + τ, φ) specifies the so-called eikonal coordinates on Λ2 (see [8]).
4) For the Jacobian J = det(∂(X)/∂(τ, φ)), the following relation holds:

|J | = C(X(τ, φ))|Xφ|, (8)

which implies that, for the Jacobian J = det(∂(X )/∂(t, φ)),

|J | = R(X (t, φ))C(X (t, φ))|Xφ |.

Proof. The first two equalities are obtained from the equalities ∂φ/∂τ = ∂φ/∂t = 0. Formula (7)
follows from the relations

s(t, φ) =

ˆ (t,φ)

(0,0)
P(t, φ,E) dX (t, φ,E) =

ˆ (τ,φ)

(0,0)
P (τ, φ,E) dX(τ, φ,E)

=

ˆ φ

0
P 0(φ,E) dX0(φ,E) +

ˆ τ

0
P (τ, φ,E)

dX

dτ
(τ, φ,E) dτ

=

ˆ φ

0
P 0(φ,E) dX0(φ,E) +

ˆ τ

0
|P (τ, φ,E)|C(X(τ, φ,E), E) dτ = s0(φ) + τ.

Assertion 3) follows from 1) and 2). Formula (8) was proved in [8], [10].

Let us now consider two examples of Λ1 that are important for applications: the straight line

Λ1
s = {p1 = 0, p2 = k, x1 = φ, x2 = a, φ ∈ R},

arising in scattering problems and the circle

Λ1
G = {p1 = b cosφ, p2 = b sinφ, x1 = a1, x2 = a2, φ ∈ S},
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related to the problem of the construction of the asymptotics of the Green function. It is easy to
verify that, for these curves, s0(φ) = 0, and the action on Λ2 is τ ′ = τ . For an illustration of a
Lagrangian manifold with caustic, see the figure. In the figure, the Lagrangian manifold is given in
the phase space (in coordinates (x1, x2, p1) ⊂ R

4
x,p) and in the projection on the configuration space R2

x.
The Lagrangian manifold Λ2 =

⋃
gtHΛ1 corresponds to the scattering problem with the initial curve

Λ1 = {p = (0, 2), x = (φ, 0), φ ∈ R}, the Hamiltonian is

H(x, p) =
|p|

E − U(x)
− 1, where E = 2, U(x) = e(x)e−(x1−5)2−(x2−3)2 ,

and e(x) is the cut-off function

e(x) = 0, x2 ≤ 0, e(x) = 1, x2 ≥ 1.

Figure: Lagrangian manifold, characteristics (thin lines) and the cycle of singularities (the dotted line).

3. APPLICATION TO THE MASLOV CANONICAL OPERATOR

Consider the Lagrangian manifold Λ2 (constructed above) with measure dμ = dt ∧ dφ and a smooth
function A(t, φ) on it. Consider the function constructed in the form of the Maslov canonical operator

ψ = Kh
Λ2A(t, φ). (9)

In Kh
Λ2A(t, φ), we wish to pass from some initial coordinates (t, φ) to the eikonal coordinates (τ, φ),

preserving the measure dμ.

Theorem. The following equalities hold:

ψ = Kh
Λ2

[

A(t(τ, φ), φ)
/

√

det
∂(τ, φ)

∂(t, φ)

]

= Kh
Λ2

[
A(t(τ, φ), φ)
√

R(X(τ, φ))

]

=
1

√

R(x)
Kh

Λ2 [A(t(τ, φ), φ)](1 +O(h)). (10)

Proof. The proof immediately follows from equality (5) and the commutation formula for the pseudod-
ifferential operator Q̂ = Q(x,−ih∂/∂x) with the canonical operator [9], [11]:

Q̂Kh
Λ2 [A(t, φ)] = Kh

Λ2 [Q(x, p)|Λ2A(t, φ)](1 +O(h)).
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Recall that the canonical operator has different representations in a neighborhood of regular (nonsin-
gular) points (where J = det(∂X/∂(τ, φ)) �= 0) and in a neighborhood of singular (focal) points (where
J = det(∂X/∂(τ, φ)) = 0). By equality (8), the point (P (τ, φ),X(τ, φ)) ∈ Λ2 is focal if Xφ(τ, φ) = 0.
As proved in [8], under the condition that the eikonal coordinates exist in a neighborhood of the focal
points, the determinant det(P,Pφ) �= 0 does not vanish (here the 2× 2 matrix (P,Pφ) is composed of
the column vectors P and Pφ). This implies that the Lagrangian manifold can be covered by nonsingular

charts Ωreg
j in which Xφ(τ, φ) �= 0 and by singular charts Ωsing

j in which det(P,Pφ) �= 0. Let the

functions {ej(τ, φ)} constitute the partition of unity related to the charts Ωreg
j and Ωsing

j . By the lemma,
the contribution of the regular charts to the canonical operator can be calculated by the formula

ψj =
e−(iπ/2)mj

√

R(x)C(x)|Xφ|
eiτ/hA(τ, φ)ej(τ, φ)|(τ,φ)=(τj (x),φj(x)), (11)

where (τj(x), φj(x)) is the solution of the (vector) equation X(τ, φ) = x in the chart Ωreg
j and mj is the

Maslov index of the nonsingular chart Ωreg
j (see below). The contribution of the singular charts is given

by summands of the form [8]

ψj =
e−(iπ/2)ms

j eiπ/4
√

2πhR(x)

ˆ
R

eiτ/h
√

|det(P,Pφ)|A(τ, φ)ej(τ, φ)|τ=τj (x,φ) dφ, (12)

where τj(x, φ) is the solution of the scalar equation 〈P (τ, φ), x−X(τ, φ)〉 = 0 in the singular chart Ωsing
j

and ms
j is the Maslov index of the singular chart Ωsing

j .

By [8] the Maslov index mj coincides with the Morse index of the trajectory issuing from the point
(P,X) with coordinates (τ = +0, φ) and ending at the point (P (τ, φ),X(τ, φ)) in the nonsingular
chart Ωreg

j : the index is equal to the number of zeros of the Jacobian J = det(∂X/∂(τ, φ))(τ ′, φ) (or

the function Xφ(τ
′, φ)) for τ ′ ∈ (+0, τ). To find the Maslov index ms

j of the singular chart Ωsing
j , it is

necessary to consider an arbitrary regular point (P (τ, φ),X(τ, φ)) ∈ Ωsing
j and compare the signs of the

Jacobians J = det(∂X/∂(τ, φ)) and det(P,Pφ) at this point. If the signs coincide, then ms
j is equal to

the Morse index of this point (P (τ, φ),X(τ, φ)); otherwise, the Maslov index of the focal chart is greater
than the Morse index by 1.

Finally, in order to obtain the canonical operator, we must sum all the functions ψj (see [9], [11]).
Note that the integral (12) can be calculated in terms of the Airy or Pearcey functions (explicit formulas
are given in [8]), assuming that the corresponding subset of the cycle of singularities on the Lagrangian
manifold {(P (τ, φ),X(τ, φ))|Xφ=0} is in general position ([1], [9]).

Let us consider an example. The manifold presented in the figure has two caustics (shown by dotted
lines). The Lagrangian manifold over the domain of the configuration space located “inside the caustic”
is folded into three sheets and there we must sum three functions of the form (11). Over the domain
“outside the caustics” we have the unique sheet of the manifold, the equation X(τ, φ) = x is uniquely
solvable and the canonical operator consists of one function of the form (11). In a neighborhood of the
arcs of the caustics (singularity A2-fold), the canonical operator consists of the sum of the regular (11)
and nonregular (12) parts, while, near caustic cusps (singularity A3), it is sufficient to consider one
singular chart.

4. EXAMPLES

Let us present a few examples of the application of the Maupertuis–Jacobi correspondence principle
to the construction of the Maslov canonical operator. We shall not consider further applications to the
construction of semiclassical asymptotics for equations of mathematical physics, which can be found in
other papers.
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Example 1 (arising from the Schrödinger equation; see [12], [13]). Consider a smooth bounded
potential U(x), U(x) < E, and the Hamiltonian

H(x, p) = F (x, |p|) − E =
p2

2
+ U(x)− E.

The necessary functions are

C(x,E) =
1

√

2(E − U(x))
, R(x) = z2|z=1/C(x) = 2(E − U(x)), (13)

and the canonical operator is of the form

ψ(x) =
1

√

2(E − U(x))
Kh

Λ2 [A(t(τ, φ), φ)]. (14)

Example 2 (arising in the two-dimensional Dirac equation for graphene; see [14]). Consider smooth
bounded functions U(x), m(x) and the effective Hamiltonians

H±(x, p) = F (x, |p|)− E = U(x)±
√

p2 +m(x)2 .

Here

C(x,E) =
1

√

(E − U)2 −m2
, R = ± z2

√

z2 +m(x)2

∣
∣
∣
∣
z=1/C

=
(E − U(x))2 −m2(x)

E − U(x)
, (15)

ψ =

√

E − U(x)
√

(E − U(x))2 −m(x)2
Kh

Λ2 [A(t(τ, φ), φ)]. (16)

Example 3 (arising in the theory of linear surface water waves; see [15], [16]). Consider a smooth
positive function D(x) > 0 and the effective Hamiltonian

H(x, p,E) = F (x, |p|, E) − E =
√

|p| tanh(|p|D(x)) − E.

It is easy to see that there exists a unique smooth positive solution y(E) of the equation
√

y tanh(y) = E =
√

D(x)E,

and thus

C(x,E) =
D(x)

y(E
√

D(x))
,

R = z
Dz/ cosh2(zD) + tanh(zD)

2
√

z tanh(zD(x))

∣
∣
∣
∣
z=1/C

=
(y2 − y2 tanh2(y)) + y tanh(y))

2
√
D
√

y tanh(y)

∣
∣
∣
∣
y=y(

√
D(x)E)

=
y2 −D(x)2E4 +D(x)E2

2D(x)E

∣
∣
∣
∣
y=y(

√
D(x)E)

.

(17)

The Hamiltonian system with Hamiltonian H(x, p,E) = C(x,E)|p| is of the form

dp

dτ
= −|p| ∂

∂x

(
D(x)

y(E
√

D(x))

)

,
dx

dτ
=

p

|p|
D(x)

y(E
√

D(x) )
. (18)

This equation contains the function y(E) and its derivative y′, which is not very convenient, because its
determination involves the inversion of the equation. Let us show how this system can be rewritten so
as to get rid of y(E).
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Along the trajectories (P,X) of the Hamiltonian system, the following relations hold:

H(X,P,E) = 0 ⇐⇒ C(X,E)|P | = 1 =⇒ y(E
√

D(X) ) =
D(X)

C(X,E)
= D(X)|P |. (19)

Differentiating the equation
√

y tanh(y) = E
for y(E) with respect to E , we obtain

y′(E)(tanh y + y(1− tanh2 y)) = 2
√

y tanh y , (20)

which implies that

y′(E
√

D(X) ) =
2yE

y2 + E2 − E4

∣
∣
∣
∣
(P,X)

=
2|P |

√

D(X)E

D(X)|P |2 + E2 −D(X)E4
(21)

on the solutions (P,X) of the Hamiltonian system. Substituting expressions (19) and (21) into the
Hamiltonian system, we obtain

dp

dτ
= − p2 − E4

D(x)p2 + E2 −D(x)E4
· ∂D(x)

∂x
,

dx

dτ
=

p

p2
. (22)

To write the expression for the canonical operator, we also need to substitute y|(P,X) into expres-
sion (17) for R:

R|(P,X) ≡ R(X,P,E) =
D(X)P 2 −D(X)E4 +E2

2E
. (23)

Taking into account the resulting expression for R, as well as C(X) = 1/|P |, we rewrite formula (11) for
the canonical operator in a neighborhood of the nonsingular point as

ψj(x) =
eiτ/he−(iπ/2)mj

√

|Xφ(τ, φ)|

√

2E|P (τ, φ)|
D(X(τ, φ))P 2 −D(X(τ, φ))E4 +E2

×A(τ, φ)ej(τ, φ)|(τ,φ)=(τj (x),φj(x)). (24)

Since R = R(x, p,E) depends on p, it is better not to place the (pseudodifferential) operator
1/
√

R(x, p̂, E) before the canonical operator, but write the answer in a neighborhood of the focal point
as

ψj(x) = e−(iπ/2)ms
j eiπ/4

×
√
2E√
2πh

ˆ
R

√

|det(P (τ, φ), Pφ(τ, φ))|eiτ/hA(τ, φ)ej(τ, φ)
√

D(X(τ, φ))P 2(τ, φ)−D(X(τ, φ))E4 + E2

∣
∣
∣
∣
τ=τj(x,φ)

dφ. (25)

Example 4 (arising in the theory of water waves with the consideration of surface tension; see [4], [15],
[16]). Let us modify the Hamiltonian from Example 3 as follows:

H(x, p) = F (x, |p|)− E =
√

|p| tanh(|p|D(x))(1 + μ(x)|p|2)− E, x ∈ R
2.

where μ(x) > 0 is the smooth function determining the surface tension of the water. Set ν(x) = E(μ(x))1/4

and E(x) = E(D(x))1/2. The equality H(x, p) = 0 can be rewritten as f(y, E , ν) = 0, where

f(y, E , ν) = y tanh(y)− E2

(

1 +
y2ν4

E4

)−1

is a smooth function on R
3
+. Since ∂f/∂y(y, E , ν) > 0, it follows that, by the implicit-function theorem,

the equality f(y, E , ν) = 0 can be inverted: y = Y (E , ν), where Y is a smooth function in (E , ν) ∈ R2
+.

Just as above, the Hamiltonian system with Hamiltonian C(x,E)|p| is of the form

dp

dτ
= −|p| ∂

∂x

(
D(x)

Y (E
√

D(x) , Eμ(x)1/4)

)

,
dx

dτ
=

p

|p|
D(x)

Y (E
√

D(x) , Eμ(x)1/4)
(26)
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and can be simplified to the form
dp

dτ
= −|p|

(
1

y

∂D

∂x
− D(x)

y2
dY

dx

)∣
∣
∣
∣
y=D(x)|p|

,
dx

dτ
=

p

p2
. (27)

Here dY/dx is determined by differentiating the equation y = Y (E(x), ν(x)):
dY

dx
= −

(
∂f

∂y

)−1(∂f

∂E
∂E
∂x

+
∂f

∂ν

∂ν

∂x

)

,

∂f

∂y
= tanh(y) + y(1− tanh2(y)) + 2yE−2ν4

(

1 + y2
ν4

E4

)−2

> 0.

Substituting these derivatives into (27) and taking the equality y(E
√

D(X)) = |P |D(X) into account,
we obtain a system, similar to (22). Also we can write an expression for R, which is similar to (23), and
thus obtain a representation for the Maslov canonical operator just as in (24) and (25).
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