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1. INTRODUCTION

Denote the set of formal power series without free term with coefficients in a commutative associative
ring R by xR[[x]]. Consider the binary operation of composition on the set xR[[x]]; to the series
f(x) =

∑
i>0 aix

i and g(x) =
∑

i>0 bix
i this operation assigns the series

f(g(x)) =
∑

i>0

ci(a, b)x
i

in which

ci(a, b) = a1bi + aib
i
1 +Hi(a1, . . . , ai−1, b1, . . . , bi−1),

ci(a, b) ∈ Z[a1, . . . , ai, b1, . . . , bi].

This operation equips xR[[x]] with the structure of an associative monoid.

Denote by J(R) the set of formal power series with coefficients in R and without free term in which
the coefficient at x is invertible as an element of the ring R. The operation of composition defines the
structure of a group on J(R). We refer to this group as the group of jets.

By a proalgebraic group with countable base [1] one means a group scheme which is the projective
limit of a projective system consisting of countably many algebraic groups. Every proalgebraic group is
equipped with the natural topology obtained as the projective limit of the Zariski topology on each of the
groups entering the projective system from which the group itself is constructed. In what follows, all
algebraic and proalgebraic group are regarded with this very topology. By a regular homomorphism of
proalgebraic groups one means a morphism of these groups as group schemes. For the case in which
R = k is a field, the group of jets is the group of k-points of the proalgebraic group scheme J which is
the projective limit of the sequence of groups

J1 ← J2 ← J3 ← · · · ,
where

Jn(k) = Aut(k[x]/(xn+1) : k) and Jn+l → Jn
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4 ABRAMOV

are the natural factorization homomorphisms. The group J(k) can be obtained as follows:

J(k) = Autcont(k[[x]] : k) = Autcont(k((x)) : k),

where Autcont stands for the group of automorphisms continuous in the x-adic topology on k[[x]]
and k((x)).

The group of jets contains the normal subgroup

N(k) =

{

x+
∑

i>1

aix
i

}

,

which is referred to as the Nottingham group (after Nottingham University, where this group was
intensively studied).

Everywhere below, the field k is assumed to be algebraically closed with char k = p > 0. The
group N(Fp) with the profinite topology on it admits a closed embedding in N(k). As is well known,
every pro-p-group with countable base admits a closed embedding in N(Fp) [2]. The problem of
what commutative subgroups can be contained in N(Fp) has been studied intensively during the last
years [3]–[9].

The main result of this paper is the following theorem.

Theorem. Let k be an algebraically closed field of positive characteristic p. Then every closed
finite-dimensional commutative connected subgroup of the Nottingham group N(k) can be
isomorphic only to (k,+)m.

Before passing to the proof of the theorem, recall the needed information on commutative connected
algebraic groups in characteristic p.

2. WITT VECTORS

2.1. Definition and Main Properties of Witt Vectors

Let Z(p) be the ring of integer p-adic numbers. Write

wn(X) = wn(X0, . . . ,Xn) =

n∑

i=0

Xpn−i

i pi. (1)

Obviously, there are polynomials Ψn(X0, . . . ,Xn) with rational coefficients such that

Xn = Ψn(w0(X), . . . , wn(X)).

Write

sn(X,Y ) = sn(X0, . . . ,Xn, Y0, . . . , Yn) = Ψn(w0(X) + w0(Y ), . . . , wn(X) + wn(Y )),

mn(X,Y ) = mn(X0, . . . ,Xn, Y0, . . . , Yn) = Ψn(w0(X)w0(Y ), . . . , wn(X)wn(Y )).

Theorem 2.1 (Witt, [10]). We have

si(X0, . . . ,Xi, Y0, . . . , Yi) ∈ Z[X0, . . . ,Xi, Y0, . . . , Yi],

mi(X0, . . . ,Xi, Y0, . . . , Yi) ∈ Z[X0, . . . ,Xi, Y0, . . . , Yi].

Let K be an arbitrary field of characteristic p > 0. Introduce binary operations +W and ·W on the
sequence space K

Z≥0 as follows:

(X0, . . . ,Xn, . . . ) +W (Y0, . . . , Yn, . . . ) = (s0(X,Y ), . . . , sn(X,Y ), . . . ),

(X0, . . . ,Xn, . . . ) ·W (Y0, . . . , Yn, . . . ) = (m0(X,Y ), . . . ,mn(X,Y ), . . . ).

Theorem 2.2 (Witt, [10]). The operations ·W and +W define on K
Z≥0 the structure of a commuta-

tive associative local ring with unit, without zero divisors, and of characteristic 0.
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ARTIN–HASSE EXPONENTIAL MAPPING 5

Following [10], we refer to the ring defined on the set KZ≥0 as the ring of Witt p-vectors and denote
it by Wp∞(K).

Example 2.1. We have Wp∞(Fp) = Z(p).

Let us also define on K
n+1 the binary operations +W and ·W by

(X0, . . . ,Xn) +W (Y0, . . . , Yn) = (s0(X,Y ), . . . , sn(X,Y )),

(X0, . . . ,Xn) ·W (Y0, . . . , Yn) = (m0(X,Y ), . . . ,mn(X,Y )).

Theorem 2.3 (Witt, [10]). The operations ·W and +W define on K
n+1 the structure of a commuta-

tive associative local ring with unit.

Following [10], we refer to the ring defined on the set Kn+1 as the ring of truncated Witt p-vectors
and denote it by Wpn+1(K).

Example 2.2. We have Wpn(Fp) = Z/pnZ.

The groups of truncated Witt vectors, with respect to addition, are commutative unipotent algebraic
groups that are remarkable due to the following fact.

Theorem 2.4 (Serre, [11]). Every connected commutative unipotent group over k is isomorphic to
( N∏

i=1

(Wpni (k),+W )

)

/G,

where (Wpni (k),+W ) is the additive group of truncated Witt vectors and G is the final subgroup
in the above product.

2.2. Classification of the Additive Homomorphisms of Witt Vectors to Witt Vectors

In what follows, we need a complete classification of the regular homomorphisms from the
group WpN (k) to the group WpM (k) for N ≥ M . Let us present several examples of endomorphisms of
the group WpN+1(k).

Example 2.3. We have a ∈ k, â : (X0,X1, . . . XN ) �→ (aX0, a
pX1, . . . , a

pNXN ).

Example 2.4. We have V : (X0,X1, . . . ,XN ) �→ (0,X0, . . . ,XN−1).

Example 2.5. We have F : (X0,X1, . . . ,XN ) �→ (Xp
0 ,X

p
1 , . . . ,X

p
N ).

Lemma 2.1. FV = V F , and this composition is the multiplication by p in the ring Wpn(k).

Lemma 2.2 ([10]). The maximal order of an element of (WpN (k),+W ) is equal to pN .

Example 2.6. An example of a homomorphism WpN (k) → WpM (k) is given by the factorization QNM

by the subgroup V N−M (WpN (k)).

Theorem 2.5. Every regular homomorphism from WpN (k) to WpM (k) for N ≥ M is of the form
∑

n,m

ân,mFnV mQNM ,

where ân,m is as in Example 2.3, F as in Example 2.4, V as in Example 2.5, and QNM as in
Example 2.6.
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6 ABRAMOV

Corollary 2.1. Every regular endomorphism of WpN (k) is of the form
∑

i,j

âijF
iV j.

Corollary 2.2. Every homomorphism WpN (k) → WpM (k), N ≥ M , can be lifted to a homomor-
phism WpN (k) → WpK (k), where N ≥ K ≥ M , and is given by the rule

∑

nm

ân,mFnV mQNK .

Proof of Theorem 2.5. Let

H : X = (X0, . . . ,XN−1) �→ (H0(X), . . . ,HM−1(X))

be a regular homomorphism from the groupWpN (k) to the groupWpM (k). Recall that the maximal order
of an element of the group WpN (k) is equal to pN . Moreover, under a homomorphism, the order of the
image of an element cannot exceed the order of the element itself. The composition of the homomorphism

H : WpN (k) → WpM (k)

and the projection

QMi : WpM (k) → Wpi(k)

takes the elements of the subgroup V i+1(WpN (k)) to 0 (because these are the pi+1th powers of elements
of the group (WpN (k),+W )). Therefore, Hi(X) depends only on X0, . . . ,Xi.

Let us prove the assertion of the theorem by induction on M .
For M = 0, the mapping X0 �→ H0(X0) is a regular endomorphism of the additive group of the field,

and hence it is of the form H0(X0) =
∑

j=0 bjX
pj

0 . Let us now make the passage from M − 1 to M .
Write

H ′ = H −
∑

b̂jF
jQNM .

Let

H ′ : X = (X0, . . . ,XN−1) �→ (H ′
0(X), . . . ,H ′

M−1(X)).

It is clear that H ′
0(X) = 0. Thus, ImH ′ belongs to V (WpM (k)) ∼= WpM−1(k). This completes the

induction.

2.3. Artin–Hasse Exponential Mapping

Definition 2.1 (see [12]). By the Artin–Hasse exponential function one means the expression

Ep(T ) = exp

(∑

i≥0

T pi

pi

)

∈ Q[[T ]].

For the following results, see, e.g., [12].

Theorem 2.6. Ep(T ) ∈ Z(p)[[T ]], i.e., the denominators of all coefficients of this series are not
divisible by p.

Theorem 2.7. (Ep(T ))
p ≡ Ep(T

p) (mod p).

Theorem 2.8. There is an Artin–Hasse logarithm

Lp(1 + T ) ∈ TZ(p)[[T ]]

such that Lp(Ep(T )) = T and Ep(Lp(1 + T )) = 1 + T .
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ARTIN–HASSE EXPONENTIAL MAPPING 7

By an upper niltriangle matrix we mean an upper triangular matrix with zeros on the main diagonal.
By an upper unitriangle matrix we mean an upper triangular matrix with identity elements on the main
diagonal. Note that, if N is an upper niltriangular matrix over the field k of characteristic p, then Ep(N)
is an upper unitriangular matrix over the same field.

Definition 2.2 (see [11]). Write

Ep(X,T ) = Ep((X0, . . . ,Xn, . . . ), T ) = Ep(X0T )Ep(X1T
p) · · ·Ep(XnT

pn) · · ·

= exp

(∑

n≥0

T pn
n∑

i=0

Xpi

n−i

pi

)

= exp

(∑

n≥0

T pn wn(X)

pn

)

,

where wn(X) are defined in (1).

Obviously,

Ep(X ⊕ Y, T ) = Ep(X,T )Ep(Y, T ).

Theorem 2.9 (see [13]). Set

Ep(X,T ) = 1 +
∑

n>0

cn(X)T n.

Then

1) ci(X) = Xi
0/i!, 0 < i < p;

2) ci(X) ∈ Z(p)[X0, . . . Xj−1], 0 < i < pj ;

3) cpj (X)−Xj ∈ Z(p)[X0, . . . ,Xj−1].

Everywhere below, denote by U∞(k) the group of infinite upper unitriangular matrices. As we shall
see in part 3.1 of the present text, this group can be equipped with the structure of a proalgebraic group.

Theorem 2.10 (see [13]). For an infinite upper niltriangular matrix N over k, the image of the
mapping

(X0, . . . ,Xn, . . . ) �→ Ep(X,N)

is contained in U∞(k), and the mapping by itself,

Ep( · , N) : Wp∞(k) → U∞(k),

is a regular group homomorphism.

3. CLASSIFICATION OF ALL REGULAR HOMOMORPHISMS OF THE WITT GROUP
TO THE GROUP OF INFINITE UNITRIANGULAR MATRICES

3.1. Reduction of Homomorphisms

Let H : Wp∞(k) → U∞(k) be an arbitrary regular homomorphism of the group of Witt vectors to
the group of infinite upper unitriangular matrices. Let us define the operation of reduction of such a
homomorphism as follows.
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8 ABRAMOV

On the group U∞(k), consider an infinite filtration by normal subgroups of the form

Un =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0 0 0 . . . 0 ∗ ∗ ∗ . . . ∗ . . .

0 1 0 . . . 0 0 0 . . . 0 ∗ ∗ ∗ . . . ∗ . . .

0 0 1 . . . 0 0 0 . . . 0 ∗ ∗ ∗ . . . ∗ . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0 0 . . . 0 ∗ ∗ ∗ . . . ∗ . . .

0 0 0 . . . 0 1 0 . . . 0 0 ∗ ∗ . . . ∗ . . .

0 0 0 . . . 0 0 1 . . . 0 0 ∗ ∗ . . . ∗ . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0 0 . . . 1 0 ∗ ∗ . . . ∗ . . .

0 0 0 . . . 0 0 0 . . . 0 1 ∗ ∗ . . . ∗ . . .

0 0 0 . . . 0 0 0 . . . 0 0 1 ∗ . . . ∗ . . .

0 0 0 . . . 0 0 0 . . . 0 0 0 1 . . . ∗ . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where a triangle of zeros formed by m columns in succession is placed above the diagonal. In the
next column with the index (m+ 2), there can be k zeros placed in succession over the diagonal, and
the other elements are arbitrary. Thus, the total number of fixed zeros over the diagonal is equal to
n = m(m+ 1)/2 + k, where k < m+ 2. Note that

Un/Un+1
∼= (k,+).

Remark. This filtration is a partial case of Serre’s filtration [14].

Let ImH be completely contained in Un and not completely contained in Un+1. Then there is a
regular homomorphism of the group of the Witt vectors to the quotient group

H/Un+1 : Wp∞(k) → Un/Un+1
∼= k.

This homomorphism is of the form

H/Un+1 : X �→ f(X0) =

n0∑

i=0

a0iX
pi

0 .

By Corollary 2.2, one can lift the homomorphism Wp∞(k) → k in question to a homomorphism
S : Wp∞(k) → Wp∞(k),

S(X) =

n0∑

i=0

â0iF
i(X)

(let us use a lifting in the very form used in the proof of Theorem 2.5; below this is of importance in
our constructions). Let u0 ∈ ImH , and let the coset of u0 in Un/Un+1

∼= k be equal to 1 in the field k.
Note that the analytic function of an element of the commutative subgroup of U∞(k) commutes with
all elements of this subgroup. Therefore, Ep(X,Lp(u0)) commutes with every element of ImH for any
X ∈ Wp∞(k). Write

H1(X) = H(X) · Ep(S(X), Lp(u0))
−1,
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ARTIN–HASSE EXPONENTIAL MAPPING 9

where

S(X) =

n0∑

i=0

â0iF
i(X).

Then H1 is a group homomorphism, because it is the ratio of homomorphisms for which every element in
the image of the first homomorphism commutes with every element in the image of the other. Here ImH1

is entirely contained in Un+1. The homomorphism H1 thus constructed is referred to as the reduction of
the homomorphism H .

If, using this reduction, we pass from H1 and H2, then from H2 to H3, etc., then we obtain the
following result.

Theorem 3.1. Every regular homomorphism H : Wp∞(k) → U∞(k) is of the form

H(X) =

n∏

i=0

Ep(σi(X), Ni),

where n is a positive integer or infinity,

σi ∈ End(Wp∞(k)), σi =
∑

j

âijF
j ,

and {Ni}i is a family, linearly independent over k, of infinite upper niltriangular matrices such
that 1 +Ni ∈ Uni \ Uni+1 and ni ∈ N increase.

Thus, we have described not only all homomorphisms Wp∞(k) → U∞(k), but also all homomor-
phisms WpN (k) → U∞(k).

3.2. Tangent Algebra to the Image of a Homomorphism

For the definition of tangent algebra Lie(G) of a group scheme G over the field k and of tangent vector
to a scheme over k, see [15].

Let us describe the tangent algebra to the image of the group Wp∞(k) under the homomorphism H

from Theorem 3.1. We have σi(X)0 =
∑

j aijX
pj

0 . We may assume that ai0 �= 0 for at least one i;
otherwise, by the construction of σi, the homomorphism H depends on Xp

0 rather than on X0, i.e., H is
the composition of another homomorphism H̃ and the Frobenius homomorphism, and we can replace H
by H̃ .

Then
∂

∂X0

∏

i

Ep(σi(X), Ni)
∣
∣
X=0

=
∑

i

∂

∂X0
Ep(σi(X), Ni)

∣
∣
X=0

=
∑

i

ai0Ni.

Let us take
∑

i ai0Ni for the first tangent vector at the identity to the image of Wp∞(k). Note that the
operation of taking to the power p in the additive group of Witt vectors is the compositionF ◦V = V ◦F .
The image of this endomorphism is a subgroup of codimension 1. Here

(∏

i

Ep(σi(X), Ni)

)p

=
∏

i

Ep(F (V (σi((X))), Ni) =
∏

i

Ep(F (σi((X)), Np
i ).

Take
∑

i a
p
i0N

p
i as the second tangent vector to the image of Wp∞(k). By analogy, one can also construct

the tangent vectors
∑

i a
pj

i0N
pj

i . Since codimW
pN

(V (WpN )) = 1, these vectors span the entire tangent
algebra, and the nonzero vectors among them form a basis of the algebra. Thus, the following assertion
holds.

Theorem 3.2. The tangent algebra of every closed subgroup of U∞(k) which is a quotient of the
group Wp∞(k) has a basis of the form {Npi} for some element N of this tangent algebra.
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4. COMMUTATIVE SUBGROUPS OF THE NOTTINGHAM GROUP
4.1. Proof of the Main Result

Suppose the contrary. As follows from Theorem 2.4, there must be an n > 1 such that some
homomorphism Wpn(k) → N(k) has at most a discrete kernel. The group N(k) admits the following
natural regular embedding in U∞(k). The action r(x) �→ r(g−1) embeds N(k) in the infinite lower
triangular unitriangular matrices. The mapping A �→ (AT )−1 isomorphically takes the lower triangular
matrices to the upper triangular ones.

The tangent algebra N(k), regarded as a subalgebra of Lie(U∞(k)), is of the form
{∑

i>1

aix
i d

dx

}

with the bracket
[

r(x)
d

dx
, q(x)

d

dx

]

= (rq′ − r′q)
d

dx
= r2

(
q

r

)′ d

dx
.

The centralizer of the tangent vector r(x)d/dx is of the form
{

g(xp)r(x)
d

dx

∣
∣
∣ g(x) ∈ k((x)), r(x)g(xp) ∈ x2k[[x]]

}

.

Lemma 4.1. Let g(x)d/dx be a tangent vector to N(k). Then (g(x)d/dx)p is also a tangent vector
to N(k). It is of the form g(x)h(xp)d/dx, h(x) ∈ k[[x]].

Proof. Indeed, the pth power of any derivation D of an arbitrary algebra over the field of characteristic p
is also a derivation of the algebra,

Dp(fg) =

p∑

j=0

⎛

⎝
p

j

⎞

⎠Dj(f)Dp−j(g) = Dp(f)g + fDp(g).

Dp commutes with D, and the least n such that xnd/dx enters the representation of Dp with nonzero
coefficient is not less than that for D and, therefore, Dp has the desired form.

Let us now continue the proof of the theorem. By Theorem 3.2, some derivations Dpi, i = 0, . . . , n,
are tangent vectors to the connected commutative subgroup in question. Thus, there is a derivation D

of the algebra k[[x]] such that Dpn �= 0 and Dpn+1
= 0. Let

Dpn−1
= f(x)

d

dx
.

Then

Dpn = f(x)h(xp)
d

dx
�= 0.

Note that the operator of multiplication by h(xp) commutes with the operator d/dx. Therefore,

Dpn+1
= f(x)h(xp)p+1 d

dx
�= 0,

which contradicts our assumption. Hence, a connected commutative subgroup of N(k) can be only of
the form k

n/G, where G is a finite subgroup. The theorem now results from the following lemma.

Lemma 4.2. Let G be a finite subgroup of (k,+)l. Then (k,+)l/G ∼= (k,+)l.

Proof. Note that G ∼= (Z/pZ)m. Therefore, it suffices to prove the assertion for G ∼= Z/pZ. Choose a
generating element e in G. To this element, there corresponds some vector v in k

n. Including v into
some basis, we obtain k

l/G ∼= (k/(Z/pZ))⊕ k
l−1 (after this linear change, v becomes 1 in the field k).

At the same time, M : x → xp − x is an endomorphism of k whose kernel is precisely Z/pZ and the
image is the entire k, as was to be proved.
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4.2. Open Questions

The question of what are the numbers n for which the Nottingham group contains a subgroup
isomorphic to k

n remains open. For n = 1, these subgroups exist; they are subgroups of the form

fλ,l(x) =
l

√
xl

1 + λxl
, λ ∈ k, l ∈ N, (l, p) = 1, fλ,l ◦ fμ,l = fλ+μ,l.

The question of what infinite-dimensional connected Abelian subgroups are in the Nottingham group
also remains open. Is the group Wp∞(k) realizable in the Nottingham group? Are some its quotient
groups by prodiscrete subgroups realizable?

For example, N(k) has a closed subgroup isomorphic to the group ({1 +
∑∞

i=1 aiT
i | ai ∈ Fp}, · )

and realizable in the form {x+
∑

aix
pi | ai ∈ Fp} in the Nottingham group (see [16]). It has infinite

order, but it is not connected.
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