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1. INTRODUCTION

Let ϕ(x) be a summable function defined on (a, b) ⊂ R. A point x0 ∈ (a, b) is called a Lebesgue
point of the function ϕ if

lim
h→0

1

h

ˆ x0+h

x0

|ϕ(x)− ϕ(x0)| dx = 0. (1.1)

Obviously, any point of continuity of the function ϕ(x) is a Lebesgue point. In the general case,
almost all (with respect to Lebesgue measure) points of a summable function are Lebesgue points. If
x0 ∈ (a, b) is a Lebesgue point of the function ϕ, then the function

f(x) =

ˆ x

a
ϕ(t) dt

has, at this point, the derivative f ′(x0) = ϕ(x0). Note that functions of one real variable y = f(x) having
derivatives at each point x ∈ (a, b) possess many important properties. In particular, if the derivative
f ′(x) of such a function is summable, then this derivative completely defines the function itself:

f(x) = f(a) +

ˆ x

a
f ′(t) dt.

2. MAIN RESULT

Theorem 1. Suppose that u(z) is a bounded subharmonic function in a domain D ⊂ C,
u(z) ∈ sh(D)∩L∞(D), and l is an arbitrary fixed real line whose intersection with D is nonempty.
Then, for the restriction ϕ = u|l, each point x ∈ l ∩D is its Lebesgue point.
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In order to prove the theorem, we use the well-known notion of thinness and Wiener’s criterion
(see, for example, [1, Chap. VII] and [2, Chap. V]). A set E is said to be thin at a point z0 ∈ E if, in
a neighborhood U of the point z0, there exists a subharmonic function u(z) ∈ sh(U) such that

lim
z→z0, z∈E\{z0}

u(z) < u(z0).

For convenience, the points z0 /∈ E are also assumed thin points of the set E.

Wiener’s criterion. A Borel set E ⊂ C is thin at a point z0 ∈ E if and only if

+∞∑

n=1

n

ln(1/C(En))
< ∞, (2.1)

where

En = E ∩ {z : qn+1 ≤ |z − z0| ≤ qn}, 0 < q < 1,

and C(En) is the logarithmic capacity of the set En.

Since, for Borel sets E ⊂ l ⊂ C, the following inequality holds:

C(E) ≥ 1

4
mes(E),

it follows from (2.1) that, for a thin point x0 ∈ E, the following inequality holds:

+∞∑

n=1

n

ln(1/mes(En))
< ∞. (2.2)

For example, for a set E ⊂ l ⊂ C to be thin at a point x0 ∈ E, it is necessary that the following relation
be valid:

lim
n→∞

mes(En)

qn
= 0, (2.3)

because, otherwise, the common term of the series (2.2) does not tend to zero.

Proof of the theorem. Suppose that u(z) is a bounded subharmonic function in the domain D.
Without loss of generality, we can assume that l = {z = x+ iy : y = 0} and l ∩D = (a, b) ⊂ R. It
follows from (2.3) that a thin point x0 ∈ R of the set E is a point of density 0, i.e., the following equality
holds:

lim
h→0

mesE ∩ {|x− x0| < h}
2h

= 0. (2.4)

Let ϕ(t) be the restriction of u to the interval (a, b). Choose an arbitrary point x ∈ (a, b) and consider
the integral

J(x, h) =
1

h

ˆ x+h

x
|ϕ(t) − ϕ(x)| dt for all h: |h| < 1, x+ h ∈ (a, b).

Let us fix an arbitrary number ε > 0 and set

I(ε) = {t ∈ (a, b) : |ϕ(t)− ϕ(x)| > ε}.
Obviously, the set I(ε) is thin at the point x. By (2.4), the density of the set I(ε) at the point x is zero,
i.e.,

lim
h→0

mes I(ε) ∩ [x− h, x+ h]

2h
= lim

h→0

1

2h

ˆ
I(ε)∩[x−h,x+h]

dt = 0.
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The last equality and the fact that the function ϕ is bounded imply that

lim
h→0

1

2h

ˆ
I(ε)∩[x−h,x+h]

|ϕ(t)− ϕ(x)| dt = 0. (2.5)

Since |ϕ(t) − ϕ(x)| ≤ ε for any t ∈ (a, b) \ I(ε), combining this inequality with (2.5), we obtain

lim
h→0

1

h

ˆ x+h

x
|ϕ(t)− ϕ(x)| dt ≤ ε.

Since the number ε is arbitrary, we obtain (1.1), i.e., the point x ∈ (a, b) is a Lebesgue point.

The theorem (proved above) for subharmonic functions in the space Rm, m ≥ 2, holds in the following
statement.

Theorem 2. Let D ⊂ R
m, and let u(z) ∈ sh(D) ∩ L∞(D). Then, for any hyperplane

P ⊂ R
m, dimP = m− 1, P ∩D �= ∅,

each point x0 ∈ P ∩D is a Lebesgue point of the restriction ϕ = u|P , i.e.,

lim
h→0

1

hm−1

ˆ
P∩B(x,h)

|ϕ(x)− ϕ(x0)| dVP = 0,

where dVP is an area element in the hyperplane P .

Note that, for a plane of smaller dimension, Theorem 2, in general, is not valid.

3. APPLICATIONS

Koepke (see [3]) constructed a function f(x) defined on the interval (a, b) for which there exists a
derivative f ′(x) for all x ∈ (a, b) and the set of zeros Zf = {x ∈ (a, b) : f ′(x) = 0} and the complement
(a, b) \ Zf are everywhere dense in the interval (a, b). Subsequent modifications of Koepke’s example
were given in the papers [4] of Pompeiu and [5] of Denjoy. Recently, Kalyabin [6] proved that, for any
countable set X = {xk}∞k=1 ⊂ [0, 1], the function

ϕ(x) = inf
k∈N

|x− xk|1/k

possesses the following properties:

1) ϕ(x) is upper semicontinuous on the closed interval [0, 1];

2) ϕ(xk) = 0 for all k ∈ N and ϕ(x) > 0 at almost all points x ∈ [0, 1];

3) each point x ∈ [0, 1] is a Lebesgue point for ϕ.

Theorem 1 proved in Sec. 2 allows us to assert that, for each complete polar set X ⊂ R, there exists
a function ϕ(x) possessing the following properties:

1) ϕ(x) is upper semicontinuous;

2) ϕ(x) = 0 for any x ∈ X and ϕ(x) > 0 outside X;

3) each point x ∈ R is a Lebesgue point for ϕ.
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Thus, for all x ∈ R, the function ϕ(x) is the derivative of its antiderivative:

f(x) =

ˆ x

0
ϕ(t) dt, f ′(x) = ϕ(x) for all x ∈ R.

In addition, by 2), the function f(x) is monotone increasing on R.
In order to prove 1)–3), it suffices to note that, in view of the fact that the set X is complete and

polar, there exists a function ϑ(z) ∈ sh(C) such that X = {z ∈ C : ϑ(z) = −∞}. Now it suffices to
apply Theorem 1 to the locally bounded subharmonic function u(z) = eϑ(z) and to the restriction of u to
the line l = R ⊂ C.

Example. Consider a countable set of rational numbers

X = {pk/qk}∞k=1 ⊂
[
−1

2
,
1

2

]
, qk ≥ 1,

everywhere dense on the closed interval [−1/2, 1/2] ⊂ R and construct the following function in the
plane:

u(z) =

∞∑

k=1

ln |z − pk/qk|
q2+σ
k

, σ > 0. (3.1)

Then

u(z) ∈ sh(C), u|X ≡ −∞, u(0) =
∞∑

k=1

ln |pk/qk|
q2+σ
k

�= −∞.

Therefore, the set X̂ = {z ∈ C : u(z) = −∞} is a polar Borel set of type Gδ and X ⊂ X̂ ⊂ [−1/2, 1/2].
Since X is not a set of type Gδ, it follows that X̂ �= X.

Note that the subharmonic function constructed in (3.1) is related to Diophantine numbers: if the
point x0 is a Diophantine number, then u(x0) �= −∞ (recall that a real number α ∈ R is said to be
Diophantine if there exist numbers c > 0, μ > 0 such that |α− p/q| ≥ c/qμ for all p, q ∈ N). The set
of all Diophantine numbers has full Lebesgue measure; moreover, its complement has zero Hausdorff
dimension.

Applying Theorem 1 to the function expu, we find that the restriction

ϕ(x) = expu|y=0 = exp

∞∑

k=1

ln |x− pk/qk|
q2+σ
k

,

possesses the following properties:

a) ϕ(x) is upper semicontinuous on the closed interval [−1/2, 1/2], it is continuous at all points of
the set X̂, which is everywhere dense in [−1/2, 1/2];

b) ϕ(x) = 0 for all x ∈ X̂ ;

c) ϕ(x) > 0 for any Diophantine number x ∈ [−1/2, 1/2].
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