Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point

A. S. Sadullaev^{1*}, S. A. Imomkulov^{2**}, and K. Kh. Rakhimov^{1***}

¹National University of Uzbekistan, Tashkent, Uzbekistan

²Navoi State Pedagogical Institute, Navoi, Uzbekistan Received October 26, 2013; in final form, March 4, 2014

Abstract—It is proved that the restriction of a bounded subharmonic function in a domain $D \subset \mathbb{C}$ to any real line $l \subset \mathbb{C}$ possesses the Lebesgue property at each point of $l \cap D$.

DOI: 10.1134/S0001434614110388

Keywords: subharmonic function, Lebesgue property, Lebesgue point, thin set, thin point, Borel set, Diophantine number, logarithmic capacity.

1. INTRODUCTION

Let $\varphi(x)$ be a summable function defined on $(a,b) \subset \mathbb{R}$. A point $x_0 \in (a,b)$ is called a *Lebesgue* point of the function φ if

$$\lim_{h \to 0} \frac{1}{h} \int_{x_0}^{x_0 + h} |\varphi(x) - \varphi(x_0)| \, dx = 0.$$
(1.1)

Obviously, any point of continuity of the function $\varphi(x)$ is a Lebesgue point. In the general case, almost all (with respect to Lebesgue measure) points of a summable function are Lebesgue points. If $x_0 \in (a, b)$ is a Lebesgue point of the function φ , then the function

$$f(x) = \int_{a}^{x} \varphi(t) \, dt$$

has, at this point, the derivative $f'(x_0) = \varphi(x_0)$. Note that functions of one real variable y = f(x) having derivatives at each point $x \in (a, b)$ possess many important properties. In particular, if the derivative f'(x) of such a function is summable, then this derivative completely defines the function itself:

$$f(x) = f(a) + \int_a^x f'(t) dt.$$

2. MAIN RESULT

Theorem 1. Suppose that u(z) is a bounded subharmonic function in a domain $D \subset \mathbb{C}$, $u(z) \in \operatorname{sh}(D) \cap L^{\infty}(D)$, and l is an arbitrary fixed real line whose intersection with D is nonempty. Then, for the restriction $\varphi = u|_l$, each point $x \in l \cap D$ is its Lebesgue point.

^{*}E-mail: sadullaev@mail.ru

^{**}E-mail: sevdiyor_i@mail.ru

^{****}E-mail: karimjon1705@gmail.com

In order to prove the theorem, we use the well-known notion of thinness and Wiener's criterion (see, for example, [1, Chap. VII] and [2, Chap. V]). A set *E* is said to be *thin* at a point $z_0 \in \overline{E}$ if, in a neighborhood *U* of the point z_0 , there exists a subharmonic function $u(z) \in \operatorname{sh}(U)$ such that

$$\overline{\lim}_{z \to z_0, z \in E \setminus \{z_0\}} u(z) < u(z_0)$$

For convenience, the points $z_0 \notin \overline{E}$ are also assumed thin points of the set *E*.

Wiener's criterion. A Borel set $E \subset \mathbb{C}$ is thin at a point $z_0 \in \overline{E}$ if and only if

$$\sum_{n=1}^{+\infty} \frac{n}{\ln(1/C(E_n))} < \infty, \tag{2.1}$$

where

$$E_n = E \cap \{ z : q^{n+1} \le |z - z_0| \le q^n \}, \qquad 0 < q < 1,$$

and $C(E_n)$ is the logarithmic capacity of the set E_n .

Since, for Borel sets $E \subset l \subset \mathbb{C}$, the following inequality holds:

$$C(E) \ge \frac{1}{4} \operatorname{mes}(E),$$

it follows from (2.1) that, for a thin point $x_0 \in \overline{E}$, the following inequality holds:

$$\sum_{n=1}^{+\infty} \frac{n}{\ln(1/\operatorname{mes}(E_n))} < \infty.$$
(2.2)

For example, for a set $E \subset l \subset \mathbb{C}$ to be thin at a point $x_0 \in \overline{E}$, it is necessary that the following relation be valid:

$$\overline{\lim_{n \to \infty} \frac{\operatorname{mes}(E_n)}{q^n}} = 0, \tag{2.3}$$

because, otherwise, the common term of the series (2.2) does not tend to zero.

Proof of the theorem. Suppose that u(z) is a bounded subharmonic function in the domain D. Without loss of generality, we can assume that $l = \{z = x + iy : y = 0\}$ and $l \cap D = (a, b) \subset \mathbb{R}$. It follows from (2.3) that a thin point $x_0 \in \mathbb{R}$ of the set E is a point of density 0, i.e., the following equality holds:

$$\lim_{h \to 0} \frac{\max E \cap \{ |x - x_0| < h \}}{2h} = 0.$$
(2.4)

Let $\varphi(t)$ be the restriction of u to the interval (a, b). Choose an arbitrary point $x \in (a, b)$ and consider the integral

$$J(x,h) = \frac{1}{h} \int_x^{x+h} |\varphi(t) - \varphi(x)| dt \quad \text{for all} \quad h: \quad |h| < 1, \quad x+h \in (a,b).$$

Let us fix an arbitrary number $\varepsilon > 0$ and set

$$I(\varepsilon) = \{t \in (a,b) : |\varphi(t) - \varphi(x)| > \varepsilon\}.$$

Obviously, the set $I(\varepsilon)$ is thin at the point x. By (2.4), the density of the set $I(\varepsilon)$ at the point x is zero, i.e.,

$$\lim_{h \to 0} \frac{\max I(\varepsilon) \cap [x - h, x + h]}{2h} = \lim_{h \to 0} \frac{1}{2h} \int_{I(\varepsilon) \cap [x - h, x + h]} dt = 0.$$

MATHEMATICAL NOTES Vol. 96 No. 6 2014

The last equality and the fact that the function φ is bounded imply that

$$\lim_{h \to 0} \frac{1}{2h} \int_{I(\varepsilon) \cap [x-h,x+h]} |\varphi(t) - \varphi(x)| \, dt = 0.$$

$$(2.5)$$

Since $|\varphi(t) - \varphi(x)| \le \varepsilon$ for any $t \in (a, b) \setminus I(\varepsilon)$, combining this inequality with (2.5), we obtain

$$\overline{\lim_{h \to 0}} \frac{1}{h} \int_{x}^{x+h} |\varphi(t) - \varphi(x)| \, dt \le \varepsilon.$$

Since the number ε is arbitrary, we obtain (1.1), i.e., the point $x \in (a, b)$ is a Lebesgue point.

The theorem (proved above) for subharmonic functions in the space \mathbb{R}^m , $m \ge 2$, holds in the following statement.

Theorem 2. Let $D \subset \mathbb{R}^m$, and let $u(z) \in \operatorname{sh}(D) \cap L^{\infty}(D)$. Then, for any hyperplane

$$P \subset \mathbb{R}^m, \quad \dim P = m - 1, \quad P \cap D \neq \emptyset,$$

each point $x^0 \in P \cap D$ is a Lebesgue point of the restriction $\varphi = u|_P$, i.e.,

$$\lim_{h \to 0} \frac{1}{h^{m-1}} \int_{P \cap B(x,h)} |\varphi(x) - \varphi(x^0)| \, dV_P = 0,$$

where dV_P is an area element in the hyperplane P.

Note that, for a plane of smaller dimension, Theorem 2, in general, is not valid.

3. APPLICATIONS

Koepke (see [3]) constructed a function f(x) defined on the interval (a, b) for which there exists a derivative f'(x) for all $x \in (a, b)$ and the set of zeros $Z_f = \{x \in (a, b) : f'(x) = 0\}$ and the complement $(a, b) \setminus Z_f$ are everywhere dense in the interval (a, b). Subsequent modifications of Koepke's example were given in the papers [4] of Pompeiu and [5] of Denjoy. Recently, Kalyabin [6] proved that, for any countable set $X = \{x_k\}_{k=1}^{\infty} \subset [0, 1]$, the function

$$\varphi(x) = \inf_{k \in \mathcal{N}} |x - x_k|^{1/k}$$

possesses the following properties:

- 1) $\varphi(x)$ is upper semicontinuous on the closed interval [0, 1];
- 2) $\varphi(x_k) = 0$ for all $k \in \mathbb{N}$ and $\varphi(x) > 0$ at almost all points $x \in [0, 1]$;
- 3) each point $x \in [0, 1]$ is a Lebesgue point for φ .

Theorem 1 proved in Sec. 2 allows us to assert that, for each complete polar set $X \subset \mathbb{R}$, there exists a function $\varphi(x)$ possessing the following properties:

- 1) $\varphi(x)$ is upper semicontinuous;
- 2) $\varphi(x) = 0$ for any $x \in X$ and $\varphi(x) > 0$ outside X;
- 3) each point $x \in \mathbb{R}$ is a Lebesgue point for φ .

Thus, for all $x \in \mathbb{R}$, the function $\varphi(x)$ is the derivative of its antiderivative:

$$f(x) = \int_0^x \varphi(t) dt, \qquad f'(x) = \varphi(x) \qquad \text{for all} \quad x \in \mathbb{R}$$

In addition, by 2), the function f(x) is monotone increasing on \mathbb{R} .

In order to prove 1)-3), it suffices to note that, in view of the fact that the set X is complete and polar, there exists a function $\vartheta(z) \in \operatorname{sh}(\mathbb{C})$ such that $X = \{z \in \mathbb{C} : \vartheta(z) = -\infty\}$. Now it suffices to apply Theorem 1 to the locally bounded subharmonic function $u(z) = e^{\vartheta(z)}$ and to the restriction of u to the line $l = \mathbb{R} \subset \mathbb{C}$.

Example. Consider a countable set of rational numbers

$$X = \{p_k/q_k\}_{k=1}^{\infty} \subset \left[-\frac{1}{2}, \frac{1}{2}\right], \qquad q_k \ge 1,$$

everywhere dense on the closed interval $[-1/2, 1/2] \subset \mathbb{R}$ and construct the following function in the plane:

$$u(z) = \sum_{k=1}^{\infty} \frac{\ln|z - p_k/q_k|}{q_k^{2+\sigma}}, \qquad \sigma > 0.$$
(3.1)

Then

$$u(z) \in \operatorname{sh}(\mathbb{C}), \qquad u|_X \equiv -\infty, \qquad u(0) = \sum_{k=1}^{\infty} \frac{\ln |p_k/q_k|}{q_k^{2+\sigma}} \neq -\infty.$$

Therefore, the set $\widehat{X} = \{z \in \mathbb{C} : u(z) = -\infty\}$ is a polar Borel set of type G_{δ} and $X \subset \widehat{X} \subset [-1/2, 1/2]$. Since X is not a set of type G_{δ} , it follows that $\widehat{X} \neq X$.

Note that the subharmonic function constructed in (3.1) is related to Diophantine numbers: if the point x^0 is a Diophantine number, then $u(x^0) \neq -\infty$ (recall that a real number $\alpha \in \mathbb{R}$ is said to be *Diophantine* if there exist numbers c > 0, $\mu > 0$ such that $|\alpha - p/q| \ge c/q^{\mu}$ for all $p, q \in \mathbb{N}$). The set of all Diophantine numbers has full Lebesgue measure; moreover, its complement has zero Hausdorff dimension.

Applying Theorem 1 to the function $\exp u$, we find that the restriction

$$\varphi(x) = \exp u|_{y=0} = \exp \sum_{k=1}^{\infty} \frac{\ln |x - p_k/q_k|}{q_k^{2+\sigma}},$$

possesses the following properties:

- a) $\varphi(x)$ is upper semicontinuous on the closed interval [-1/2, 1/2], it is continuous at all points of the set \widehat{X} , which is everywhere dense in [-1/2, 1/2];
- b) $\varphi(x) = 0$ for all $x \in \widehat{X}$;
- c) $\varphi(x) > 0$ for any Diophantine number $x \in [-1/2, 1/2]$.

REFERENCES

- 1. M. Brelot, Eléments de la théorie classique du potentiel (Paris, 1961; Mir, Moscow, 1964).
- 2. N. S. Landkof, *Foundations of Modern Potential Theory* (Nauka, Moscow, 1966; Springer-Verlag, New York-Heidelberg, 1972).
- 3. A. M. Bruckner, *Differentiation of Real Functions*, in *Lecture Notes in Math.* (Springer-Verlag, Berlin, 1978), Vol. 659.
- 4. D. Pompeiu, "Sur les fonctions dérivées," Math. Ann. 63 (3), 326-332 (1907).
- 5. A. Denjoy, "Sur les fonctions dérivées sommables," Bull. Soc. Math. France 43, 161-248 (1915).
- 6. G. A. Kalyabin, "New examples of Pompeiu functions," in *International Conference "The Theory of Functions and Functional Analysis"*, Abstracts (Astana, 2012), pp. 47–48 [in Russian].

MATHEMATICAL NOTES Vol. 96 No. 6 2014