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Abstract—For gradient-like flows without heteroclinic intersections of the stable and unstable
manifolds of saddle periodic points all of whose saddle equilibrium states have Morse index 1 or
n− 1, the notion of consistent equivalence of energy functions is introduced. It is shown that the
consistent equivalence of energy functions is necessary and sufficient for topological equivalence.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let Mn be a smooth closed orientable manifold. A twice differentiable function ϕ : Mn → R is called
a Morse function if all of its critical points are nondegenerate, i.e., for any critical point p ∈ Mn the
determinant of the Hessian matrix (∂2ϕ/(∂xi∂xj))|p at this point is nonzero. According to Morse’s
lemma (see [1, Lemma 2.2]), in a neighborhood of a nondegenerate critical point p, there exist local
coordinates y1, . . . , yn, called Morse coordinates, in which the function ϕ has the form

ϕ(y1, . . . , yn) = ϕ(p)− y21 − · · · − y2k + y2k+1 + · · ·+ y2n.

The number k ∈ {0, . . . , n} does not depend on the choice of the local coordinates and is called the index
of the point p. We denote the index of a critical point p by ind(p).

The smooth flow induced by the vector field X = − gradϕ is called a gradient flow. If ϕ is a Morse
function, then the gradient flow has no closed orbits, all of its equilibrium states are hyperbolic, the set
of equilibrium states coincides with the set of critical points of ϕ, and the dimension of the unstable
manifold W u

p of any equilibrium state p (Morse index) equals ind(p).

According to Smale’s results in [2] (Theorem A), a gradient flow can be arbitrarily closely approxi-
mated (in the C1-topology) by a Morse–Smale flow.

Recall that a smooth flow f t is called a Morse–Smale flow if its nonwandering set Ω(f t) consists
of finitely many hyperbolic equilibrium states and finitely many hyperbolic closed orbits; the stable and
unstable manifolds of singular points and of periodic solutions intersect transversally. A Morse–Smale
flow without closed orbits is called a gradient-like flow.

It follows from results of [2] (Theorem B) that, for any gradient-like flow f t on Mn, there exists a
self-indexing energy function, i.e., a function ϕ : Mn → [0, n] with the following properties:

(1) ϕ is a Morse function;

(2) the critical point set of ϕ coincides with Ω(f t);
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(3) ϕ(f t(x)) < ϕ(x) for any x /∈ Ω(f t) and any t > 0;

(4) ϕ(p) = ind(p) for any p ∈ Ω(f t).

Moreover, Smale noticed in [2] that there exists a metric on Mn with respect to which the flow f t is
the gradient flow for its energy function ϕ.

Meyer [3] generalized Smale’s result by constructing, for any Morse–Smale flows on Mn, a
Morse–Bott energy function, i.e., a Morse function whose Hessian at each critical point is nondegener-
ate in the normal direction to the critical level set. Moreover, it follows from results of Meyer’s paper that
the self-indexing energy function can be used for the topological classification of gradient-like flows. To
give the precise statement of this result, we recall that flows f t and f ′t on a manifold Mn are said to
be topologically equivalent if there exists a homeomorphism h : Mn → Mn taking the orbits of f t to
orbits of f ′t and preserving the orientation of orbits. In classifying the Morse–Smale flows according to
the topological equivalence relation by using a self-indexing energy function, we employ the following
definition of the topological equivalence of functions due to Thom [4].

Definition 1. Two smooth functions ϕ : Mn → R and ϕ′ : Mn → R are said to be topologically
equivalent if there exist orientation-preserving homeomorphisms H : Mn → Mn and χ : R → R for
which ϕ′H = χ ϕ.

Meyer proved that the topological equivalence of self-indexing energy functions is a necessary
condition for the topological equivalence of the corresponding Morse–Smale flows, and in the case of
gradient-like flows on manifolds of dimension n = 2, this condition is also sufficient.1

Employing energy functions in solving the topological classification problem turns out to be useful
in mathematical modeling, when the energy function is known from physical considerations, e.g., as the
energy function of a dissipative system in mechanics, the potential of an electrostatic field, etc.

The purpose of this paper is to obtain necessary and sufficient conditions in terms of energy functions
for the topological equivalence of systems in the class G(Mn), n > 2, which consists of gradient-like
flows without heteroclinic intersections all of whose saddle equilibrium states have Morse index 1 or
n− 1.

Given a flow f t ∈ G(Mn), we denote the set of fixed points of Morse index i ∈ {0, 1, n − 1, n} by
Ωi and the cardinality of Ωi by |Ωi|. The topology of the manifold Mn and the structure of the set of
equilibrium states of the flow f t are described by the following proposition.

Proposition 1. Let f t ∈ G(Mn). Then

g =
|Ω1 ∪ Ωn−1| − |Ω0 ∪ Ωn|+ 2

2

is a nonnegative integer and the following assertions hold:

(1) if g = 0, then Mn is the sphere Sn;

(2) if g > 0, then Mn is homeomorphic to a connected sum2 of g copies of Sn−1 × S
1.

1It was stated in [3, Proposition] that a self-indexing energy function is a complete topological invariant for Morse–Smale
flows on orientable surfaces. Oshemkov and Sharko [5] gave an example of topologically nonequivalent Morse–Smale
flows (with closed orbits) on the torus which have equivalent self-indexing energy functions and mentioned that Meyer’s
result remains valid only for gradient-like flows.

2A connected sum Mn
1 �M

n
2 of two orientable connected n-manifolds Mn

1 and Mn
2 is defined as the manifold Mn

1 �M
n
2

obtained by removing balls Bn
1 ⊂ Mn

1 and Bn
2 ⊂ Mn

2 from Mn
1 and Mn

2 and attaching the remaining manifolds with
boundary to each other by means of a homeomorphism φ : ∂Bn

1 → ∂Bn
2 reversing the natural orientation of ∂Bn

1 .
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Figure: The phase portraits of topologically nonequivalent flows f t, f ′t ∈ G(S3) with equivalent
self-indexing energy functions.

Proposition 1 is proved by the same algorithm as similar statements in [1] (the theorem) and [7]
(Theorem 1).

Unlike the two-dimensional situation, for n ≥ 3, the class G(Mn) contains topologically nonequiv-
alent flows with equivalent self-indexing energy functions. Examples of the phase portraits of such
flows f t and f ′t belonging to the class G(S3) are given in the figure. The critical level sets of
the self-indexing energy functions ϕ and ϕ′ (the dotted lines in the figure represent the level sets
corresponding to the values 1 and 2) of the flows f t and f ′t are ambient homeomorphic, which implies the
topological equivalence of the functions ϕ and ϕ′. The flows f t and f ′t are not topologically equivalent,
because the sink equilibrium state ω3 of f t contains four unstable separatrices of saddle equilibrium
states in its basin, while the basin of any sink of f ′t contains at most two separatrices.

The presence of such examples leads to the necessity of introducing additional invariants distin-
guishing between topologically nonequivalent flows with equivalent energy functions. To describe
the invariant that we propose in this paper, we represent the manifold Mn as the union of three
connected sets, the attractor A = W u

Ω1∪Ω0
, the repeller R = W s

Ωn−1∪Ωn
, and the set V = Mn \ (A ∪R)

of wandering orbits of f t going fromA to R. Following [6], we refer to V as the characteristic manifold.
Let ϕ : Mn → [0, n] be a self-indexing energy function for f t. We refer to a hypersurface Σ of level

c ∈ (1, n− 1) as a characteristic section (it intersects each orbit of the characteristic space in precisely
one point).

Definition 2. We say that self-indexing energy functions ϕ and ϕ′ for flows f, f ′t ∈ G(Mn) are
consistently equivalent if there exist orientation-preserving homeomorphisms H : Mn → Mn and
χ : [0, n] → [0, n] with the properties

(1) ϕ′H = χ ϕ and

(2) H(W s
Ω1

∩ Σ) = W s
Ω′

1
∩H(Σ), H(W u

Ωn−1
∩ Σ) = W u

Ω′
n−1

∩H(Σ) for some characteristic sec-

tion Σ.

The main result of this paper is the following theorem.

Theorem 1. Flows f t, f ′t ∈ G(Mn) are topologically equivalent if and only if their energy
functions are consistently equivalent.

In Sec. 3, we define a class G0(M
n) ⊂ G(Mn) of flows for which the equivalence of self-indexing

functions implies consistent equivalence and, thereby, the self-indexing energy function is a complete
topological invariant. The class G0(M

n) consists of flows all of whose saddle equilibrium states have
Morse index 1. Theorem 1 in [7] implies the following proposition.
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Proposition 2. For any flow f t ∈ G0(M
n), the nonwandering set Ω(f t) contains precisely one

source, k ≥ 0 saddles, and k + 1 sinks, and the ambient manifold Mn is diffeomorphic to the
n-sphere.

The main result of Sec. 3 is the following theorem.

Theorem 2. Flows f t, f ′t ∈ G0(M
n) are topologically equivalent if and only if their self-indexing

energy functions are equivalent.

The topological classification problem for Morse–Smale flows on manifolds of dimension three and
higher was attacked, in particular, in [8]–[11]. Fleitas [9] obtained a topological classification of polar
flows3 on manifolds of dimensions 2 and 3 by using Heegaard diagrams. Umanskii [8] obtained a
topological classification of Morse–Smale flows on 3-manifolds with finitely many heteroclinic orbits.
He used a combinatorial invariant describing the mutual arrangement of singular orbits of a flow,
which is similar to the dynamical system scheme introduced by Leontovich and Mayer to classify
flows with finitely many equilibrium states on the sphere S2. Pilyugin [10] observed that, in the
case Mn = Sn, n ≥ 3, the class G(Sn) coincides with the class of all gradient-like flows with no
heteroclinic intersections of stable and unstable manifolds of saddle periodic points and obtained a
complete topological classification of such flows by using the Smale diagram. Prishlyak [11] obtained
a complete topological classification of Morse–Smale flows on three-dimensional manifolds. The
invariant introduced in [11], as well as the Fleitas invariant, contains information on the traces of
two-dimensional separatrices on the characteristic section.4 Thus, Theorem 1 is in fact a generalization
of results of the papers mentioned above to the case of flows in the class G(Mn).

2. PROOF OF THEOREM 1

First, we prove necessity. Let ϕ and ϕ′ be self-indexing energy functions of topologically equivalent
Morse–Smale flows f t and f ′t from G(Mn), and let h : Mn → Mn be a homeomorphism taking the
orbits of f t to orbits of f ′t. It follows from the definition of a self-indexing function and properties of the
homeomorphism h that, for any equilibrium state p of the flow f t, we have ϕ(p) = ϕ′(h(p)). Thus, we
use the identity map as the homeomorphism χ and shall construct a homeomorphism H satisfying the
conditions in Definition 2 as follows.

Let x ∈ Mn be any point which is not an equilibrium state of the flow f t. We denote the orbit of f t (of
f ′t) passing through x by lx and the equilibrium state which is the α-limit (respectively, the ω-limit) of
the set of orbits lx by α(lx) (respectively, by ω(lx)). For x′ = h(x), we have lx′ = h(lx). It follows from
properties of the homeomorphism h that

α(lx′) = h(α(lx)), ω(lx′) = h(ω(lx)).

Moreover,

ϕ(α(lx)) = ϕ′(α(lx′)), ϕ(ω(lx)) = ϕ′(ω(lx′)).

Let

c ∈ (ϕ(ω(lx)), ϕ(α(lx))), Σc = ϕ−1(c) (Σ′
c = (ϕ′)−1(c)).

Note that, by the definition of an energy function, the intersection Σc ∩ lx (Σ′
c ∩ lx′) consists of only

one point. Thus, the map ˜H taking each point y = Σc ∩ lx to the point y′ = Σ′
c ∩ lx′ is well defined on

Mn \ Ω(f t). By construction, ˜H is a homeomorphism between

Mn \ Ω(f t) and Mn \ Ω(f ′t),

3A polar flow is a gradient-like flow for which the set of equilibrium states contains precisely one source, one sink, and any
finite number of saddles.

4Prishlyak and Fleitas did no use the term characteristic section, but the secant surface which they used to define their
invariants was essentially the characteristic section in our terminology.
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which transforms the orbits of f t and the set of regular levels of the function ϕ into orbits of f ′t and the
set of regular levels of ϕ′.5 Since

ϕ(α(lx)) = ϕ′(α(lx′), ϕ(ω(lx)) = ϕ′(ω(lx′)

for any point xwhich is not an equilibrium state, it follows that the homeomorphism ˜H constructed above
can be uniquely extended to a homeomorphism H with the required properties satisfying the conditions
ϕ(x) = ϕ′(H(x)) and

H(W s
Ω1

∩Σ) = W s
Ω′

1
∩H(Σ), H(W u

Ωn−1
∩ Σ) = W u

Ω′
n−1

∩H(Σ)

for any characteristic section Σ.

Let us prove sufficiency.

Suppose that the self-indexing energy functions ϕ and ϕ′ are consistently equivalent, i.e., there exist
orientation-preserving homeomorphisms

H : Mn → Mn and χ : [0, n] → [0, n]

such that ϕ′H = χϕ and

H(W s
Ω1

∩Σ) = W s
Ω′

1
∩H(Σ), H(W u

Ωn−1
∩ Σ) = W u

Ω′
n−1

∩H(Σ)

for some characteristic section Σ. For any point x ∈ Σ, we set x′ = H(x) and denote the orbits of the
flows f t and f ′t passing through x and x′ by lx and lx′ , respectively. For c ∈ [0, n], we set Σc = ϕ−1(c).
Consider the homeomorphism HV : V → V ′ defined by

HV (y) = lx′ ∩H(Σc)

for any y = lx ∩ Σc, c ∈ (0, n).

Since H|Σ takes the traces of the (n− 1)-dimensional invariant manifolds of the saddle points of f t

on Σ to the traces of similar objects of f ′t on H(Σ) and the closure of any separatrix of dimension n− 1
of a saddle fixed point σ of f t consists of the point σ and a source or sink of f t (depending on the index
of σ), it follows that the homeomorphism HV can be uniquely extended to the sets Ω0, Ω1, Ωn−1, and Ωn.
We keep the notation HV for the homeomorphism thus obtained and extend this homeomorphism to the
one-dimensional separatrices of the saddle fixed points.

To this end, we see that, for any c ∈ (0, 1), we have

HV (Σc \W u
Ω1
) = H(Σc) \W u

Ω′
1
,

and the sets W u
Ω1

∩ Σc and W u
Ω′

1
∩H(Σc) are finite unions of equally many points. It follows that the

homeomorphism HV extends by continuity to a homeomorphism H1 : W
u
Ω1

→ W u
Ω′

1
. The homeomor-

phism

Hn−1 : W
s
Ωn−1

→ W s
Ω′

n−1

is constructed in a similar way. The required homeomorphism h : Mn → Mn is defined by

h(x) =

⎧

⎪

⎨

⎪

⎩

HV (x) if x ∈ Mn \ (W u
Ω1

∪W s
Ωn−1

),

H1(x) if x ∈ W u
Ω1
,

Hn−1(x) if x ∈ W s
Ωn−1

.

This completes the proof of the theorem.

5By a regular level of a Morse function we mean a level containing no critical points.
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3. THE ENERGY FUNCTION AS A COMPLETE TOPOLOGICAL INVARIANT
OF FLOWS IN THE CLASS G0(M

n)

This section is devoted to the proof of Theorem 2, which is a direct corollary of Theorem 1 and the
following lemma.

Lemma 1. Let ϕ and ϕ′ be self-indexing energy functions of flows f t, f ′t ∈ G0(M
n), respectively.

Then the functions ϕ and ϕ′ are consistently equivalent if and only if they are equivalent.

Proof. It suffices to show that, for flows f t, f ′t ∈ G0(M
n), the equivalence of the corresponding

self-indexing functions ϕ and ϕ′ implies the consistent equivalence of these functions. We set

Σc = ϕ−1(c), Mc = ϕ−1([0, c])

for each c ∈ [0, n]. Since the Lyapunov function decreases along the wandering orbits of a flow, we have
M1 ∩W s

Ω1
= Ω1. It follows that, for each connected component Q of M1 \Ω1, there exists a unique

sink ωQ ∈ Ω0 such that Q ⊂ W s
ωQ

. Let x ∈ Q. Then the orbit lx of f t passing through x has an ω-limit
point ωQ and an α-limit point α (by Proposition 2, the set Ωn consists of a single source α). Moreover,
for any c ∈ (0, n), the intersection Σc ∩ lx consists of only one point.

We set x′ = H(x). For the objects related to f ′t similar to those introduced above for f t, we use
the same notation with primes. For any characteristic section Σ, the homeomorphism H induces a
homeomorphism

h : Σ \W s
Ω1

→ H(Σ) \W s
Ω′

1

taking y = lx ∩ Σ to h(y) = lx′ ∩ h(Σ).
According to Morse theory, the hypersurfaces Σ′ = H(Σ) of level Σ are smooth n− 1-spheres.

Since ϕ (ϕ′) is the energy function of f t (of f ′t), it follows that the set

C = Σ ∩W s
Ω1

(C ′ = Σ′ ∩W s
Ω′

1
)

consists of k (n− 2)-spheres (one sphere on each stable manifold of W s
Ω1

(of W s
Ω′

1
)). According to the

annulus theorem6, there exists a homeomorphism ˜h : Σ → Σ with the following properties:

(a) ˜h(C) = C ′;

(b) the set C has a neighborhood V (C) for which ˜h|Σ\V (C) = h|Σ\V (C).

The homeomorphism ˜h extends to a homeomorphism ˜HV : V → V ′ taking

y ∈ lx ∩ Σc to ˜HV (y) = lx′ ∩H(Σc), c ∈ (0, n).

The homeomorphism ˜HV is extended to the required homeomorphism ˜H : Mn → Mn in the same way
as in the proof of the necessity part of Theorem 1.
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6The annulus theorem can be stated as follows: If hi : S
n−1 → R

n, i ∈ {1, 2}, n ≥ 2, is a topological embedding
and Kn ⊂ R

n is the open domain bounded by the spheres h1(S
n−1) and h1(S

n−1), then the closure of Kn is
homeomorphic to the direct product Sn−1 × [0, 1]. The validity of the annulus conjecture in the case n = 2 follows from
Antoine’s 1921 theorem and in the case n = 3, from Sanderson’s 1960 theorem; for n > 4, the conjecture was proved by
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