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Abstract—For the classes Lr
2(R), r ∈ Z+, we establish the upper and lower bounds for the

quantities

χσ,k,r,μ,p(ψ, t) := sup

{
Aσ(f

(r−μ))
/ (ˆ t

0

ωp
k(f

(r), τ)ψ(τ) dτ

)1/p

: f ∈ Lr
2(R)

}
,

where μ, r ∈ Z+, μ ≤ r, k ∈ N, 0 < p ≤ 2, 0 < σ < ∞, 0 < t ≤ π/σ, and ψ is a nonnegative,
measurable function summable on the closed interval [0, t] and not equivalent to zero. In the cases
χσ,k,r,μ,p(1, t), where μ ∈ N, 1/μ ≤ p ≤ 2, and χσ,k,r,μ,2/k(1, t), where 0 < t ≤ π/(2σ), we obtain
the exact values of these quantities. We also obtain the exact values of the average ν-widths of
classes of functions defined in terms of the modulus of continuity ω∗ and the majorant Ψ.
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1. INTRODUCTION

Let L2(R), where R := {x : −∞ < x < −∞}, be the space of all measurable real functions f on the
real axis whose modulus is Lebesgue square-integrable on any finite interval and the norm is finite:

‖f‖ :=

{ˆ ∞

−∞
|f(x)|2 dx

}1/2

< ∞.

By Lr
2(R), where r ∈ N, we mean the class of functions f ∈ L2(R) whose (r− 1)th derivatives (f (0) ≡ f )

are locally absolutely continuous and rth derivatives f (r) belong to the space L2(R). Here Lr
2(R) is a

Banach space with norm ‖f‖+ ‖f (r)‖. We set L0
2(R) ≡ L2(R). By Bσ,2, where 0 < σ < ∞, we denote

the set of restrictions on R of all entire functions of exponential type σ belonging to the space L2(R). For
an arbitrary function f ∈ L2(R), the quantity

Aσ(f) := inf{‖f − g‖ : g ∈ Bσ,2}, 0 < σ < ∞
is called the value of the best approximation of f by elements of the subspace Bσ,2 in the metric
of L2(R). For any class M ⊂ L2(R), we set

Aσ(M) := sup{Aσ(f) : f ∈ M}.

Recall that studies dealing with the approximation of functions defined on the whole real axis R were
initiated by Bernstein (see, for example, [1]) and the subspace of entire functions of finite exponential
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type served as an approximation tool. More recently, various aspects of the theory of approximation of
functions onR by entire functions of exponential type were studied in the papers of Akhiezer, A. F. Timan,
M. F. Timan, Nikol’skii, Ibragimov, Nasibov, Popov, Ligun, Babenko, Arestov, and others (see, for
example, [2]–[16]). Let us present some results dealing with the calculation of definitive (in a certain
sense) relations containing the values of best approximations Aσ(f) and the moduli of continuity of
the functions under consideration. Note that by the modulus of continuity of kth order of a function
f ∈ L2(R) we mean the quantity

ωk(f, t) := sup{‖Δk
h(f)‖ : |h| ≤ t}, where k ∈ N, 0 ≤ t < ∞,

while

Δk
h(f, x) :=

k∑
j=0

(−1)k−j

⎛
⎝k

j

⎞
⎠ f(x+ jh)

is the finite difference of kth order of the function f at the point x with step h.
Ibragimov and Nasibov [7] showed that, for any 0 < σ < ∞ and an arbitrary function f ∈ L2(R), the

following inequality holds:

Aσ(f) <
1√
2
ω1

(
f,

π

σ

)
, (1.1)

in which the constant 1/
√
2 is exact.

Popov noted in [8] that, for any function f ∈ Lr
2(R), where r ∈ Z+, and, for 0 < σ < ∞, the following

relation holds:

Aσ(f) <
1√
2σr

{
σ

2

ˆ π/σ

0
ω2
1(f

(r), t) sinσt dt

}1/2

. (1.2)

Here, for any fixed σ ∈ (0,∞), the constant 1/(
√
2σr) for the class Lr

2(R) is exact. For r = 0,
inequality (1.2) implies the upper bound in (1.1). In the same paper [8], for an arbitrary function
f ∈ L2(R), the following inequality was also obtained:

Aσ(f) < ησ,k

{ˆ 2π/σ

0
ω2
k(f, t)ϕσ(t) dt

}1/2

, (1.3)

where k ∈ N, 2 ≤ σ < ∞,

ϕσ(t) := sin

(
σ
t

2

)
+

1

2
sinσt, ησ,k :=

1

2

√
σ(Ck

2k)
−1;

in this inequality, the constant ησ,k is exact on L2(R) for all fixed values of k and σ > k. As a
consequence, from relation (1.3) we obtain the inequality

Aσ(f) < (Ck
2k)

−1ωk

(
f,

2π

σ

)
, (1.4)

in which the constant (Ck
2k)

−1 cannot also be decreased.
In connection with the result (1.4), note that an important relationship between the exact constants

in the L2-Jackson inequalities on the period and on the line was indicated in Arestov’s paper [13]. In
particular, it follows from the results of Vasil’ev [17] and Arestov [13] that, in inequality (1.4), the point
2π/σ in the argument of the highest modulus of continuity can be replaced by the smaller point 1, 4π/σ.

In the same direction of studies, Ligun and Doronin showed [11] that, for arbitrary numbers k ∈ N,
r ∈ Z+, 0 < σ < ∞, 0 < t ≤ π/σ and any nonnegative measurable summable (on [0, t]) function ψ not
equivalent to zero, the following two-sided inequality holds:

1

ασ,r,t,k(ψ)
≤ sup

f∈Lr
2(R)

A2
σ(f)´ t

0 ω
2
k(f

(r), τ)ψ(τ) dτ
≤ 1

inf{αu,r,t,k(ψ) : σ ≤ u < ∞} , (1.5)
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where

αu,r,t,k(ψ) := 2ku2r
ˆ t

0
(1− cos uτ)kψ(τ) dτ.

A number of definitive results was also obtained as a consequence of inequality (1.5) in [11].
The extremal relation

sup
f∈Lr

2(R)

σ2rA2
σ(f){´ t

0 ω
2/k
k (f (r), τ) dτ

}k
=

{
σ

2(σt− sinσt)

}k

, (1.6)

where 0 < σ < ∞, 0 < t ≤ π/(2σ), k ∈ N, r ∈ Z+, was obtained in the the author’s paper [14]. For
0 < t ≤ π/σ, the validity of the two-sided inequality

1

(σt)2kσ2r
≤ sup

f∈Lr
2(R)

A2
σ(f)

ω2
k(f

(r), t)
≤ 1

σ2r

{
1

(σt)2
+

1

2

}k

(1.7)

was also shown there. Note that, for r = 0, the upper bounds in relations (1.5)–(1.7) are calculated for
all functions f ∈ L2(R) not equivalent to zero. This also applies to inequalities (1.1)–(1.4) which, for
r = 0, also involve functions f ∈ L2(R) not equivalent to zero.

It should be noted that, in the case k = 1, the periodic analog of relations (1.6), (1.7) was established
earlier by Taikov in [18, Theorem 1]. In the case of approximation by entire functions of exponential type
on the line, inequalities (1.7) for r = 0 are contained in Arestov’s paper [13, Sec. 1.3]. The present paper
can be regarded as a continuation of the studies carried out earlier in [6]–[9], [11], [12], [14]–[16].

2. JACKSON-TYPE INEQUALITIES IN THE CASE OF BEST APPROXIMATION
BY ENTIRE FUNCTIONS OF EXPONENTIAL TYPE IN THE SPACE L2(R)

Let us present some preliminaries dealing with Fourier transforms (see, for example, [3, Chap. III,
pp. 170–173; Chap. IV, pp. 211–212]).

It follows from Plancherel’s theorem that, for any function f ∈ L2(R), the integral

1√
2π

ˆ ∞

−∞
f(t)

e−itx − 1

−it
dt

almost everywhere has the finite derivative

F(f, x) =
1√
2π

d

dx

ˆ ∞

−∞
f(t)

e−itx − 1

−it
dt, (2.1)

for which ˆ ∞

−∞
|F(f, x)|2 dx =

ˆ ∞

−∞
|f(x)|2 dx, (2.2)

f(x) =
1√
2π

d

dx

ˆ ∞

−∞
F(f, t)

eitx − 1

it
dt. (2.3)

The function F(f) is called the Fourier transform of the function f ∈ L2(R). In addition, as λ → ∞,
ˆ ∞

−∞

∣∣∣∣f(x)− 1√
2π

ˆ λ

−λ
F(f, t)eitx dt

∣∣∣∣
2

dx → 0.

For the case in which the function f (respectively, F(f)) in formula (2.1) (respectively, (2.3)) is
absolutely integrable on R, it can be differentiated under the sign of the integral. Then the Fourier
transform (2.1) (respectively, the transform (2.3)) takes the form

F(f, x) =
1√
2π

ˆ ∞

−∞
f(t)e−itx dt

(
respectively, f(x) =

1√
2π

ˆ ∞

−∞
F(f, t)eitx dt

)
. (2.4)

Formula (2.4) defines the Fourier transform for all functions absolutely integrable on R. Recall that, for
entire functions g ∈ Bσ,2, the following statement is valid.
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Theorem A (Paley, Wiener). A function g is an entire function of finite exponential type not
exceeding σ and satisfies the conditionˆ ∞

−∞
|g(x)|2 dx < ∞

if and only if it can be expressed as

g(x) =
1√
2π

ˆ σ

−σ
ϕ(t)eitx dt,

where ϕ is a square-integrable function on the closed interval [−σ, σ].

It is well known (see, for example, [19]) that if a function f and its first derivative f (1) belong to the
space L2(R) and f is locally absolutely continuous, then the Fourier transform (2.1) of f (1) is expressed
via the Fourier transform of the function f by the formulaF(f (1), x) = ixF(f, x). In the case f ∈ Lr

2(R),
r ∈ N, r ≥ 2, all of its intermediate derivatives f (r−μ), where 1 ≤ μ ≤ r− 1, will also be locally absolutely
continuous functions belonging to the space L2(R) (see [20, Chap. V, Sec. 4, Theorem 3]), and the
following relation holds:

F(f (r−μ), x) = (ix)(r−μ)F(f, x), (2.5)

where μ = 0, . . . , r − 1. In the connection with the above remarks, the study, along with that of Aσ(f),
also of the behavior of the values Aσ(f

(r−μ)) of best approximation of the intermediate derivatives f (r−μ),
where 1 ≤ μ ≤ r − 1, by the subspace Bσ,2 for the class Lr

2(R), r ∈ N, r ≥ 2, is of considerable interest.
This question will be dealt with in Theorem 1. Before its formulation, let us introduce the following
notation:

(1− cos x)∗ :=

{
1− cos x if |x| ≤ π,

2 if |x| ≥ π,
(2.6)

βu,k,μ,p(ψ, t) := 2k/2uμ
{ˆ t

0
(1− cos uτ)kp/2ψ(τ) dτ

}1/p

, (2.7)

χσ,k,r,μ,p(ψ, t) := sup
f∈Lr

2(R)

Aσ(f
(r−μ)){´ t

0 ω
p
k(f

(r), τ)ψ(τ) dτ
}1/p

, (2.8)

where μ, r ∈ Z+, μ ≤ r, k ∈ N, 0 < p ≤ 2, 0 < t, σ < ∞, and ψ is a nonnegative, measurable,
summable (on [0, t]) function not equivalent to zero. Note that, for r = 0, the upper bound in
relation (2.8) is calculated for all functions f ∈ L2(R) not equivalent to zero.

Note that, in the 2π-periodic case, extremal characteristics similar (in a certain sense) to (2.8) were
considered earlier, for example, in the papers of Chernykh [21] (k = 1, n ∈ N, r ∈ Z+, μ = r, p = 2,
t = π/n, ψ(t) = sinnt), Taikov [18] (k = 1, n ∈ N, r ∈ Z+, μ = r, p = 2, 0 < t ≤ π/n, ψ(t) ≡ 1),
Ligun [22] (k, n ∈ N, r ∈ Z+, μ = r, p = 2, 0 < t ≤ π/n, ψ is a nonnegative, measurable, summable
(on [0, π/n]) function, not identically zero), Shalaev [23] (k, n ∈ N, r ∈ Z+, μ = r, p = 2/k, t = π/n,
ψ(t) = sinnt), Vakarchuk [24] (k, n ∈ N, r ∈ Z+, μ = r, p = 2/k, 0 < t ≤ π/(2n), ψ(t) ≡ 1), and
Shabozov and Yusupov [25] (k, n ∈ N, r ∈ Z+, μ = r, 0 < p ≤ 2, 0 < t ≤ π/n, the weight function ψ
satisfies the conditions given in [22]).

Theorem 1. Let 0 < t ≤ π/σ, and let 0 < p ≤ 2. Then the following two-sided inequality holds:

1

βσ,k,μ,p(ψ, t)
≤ χσ,k,r,μ,p(ψ, t) ≤

1

inf{βu,k,μ,p(ψ, t) : σ ≤ u < ∞} . (2.9)

Proof. In [7], Ibragimov and Nasibov showed that, for a function f ∈ L2(R) having the Fourier
transform (2.1) in the sense of the space L2(R), the entire function

Λσ(f, x) :=
1√
2π

ˆ σ

−σ
F(f, τ)eixτ dτ,
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belonging to the subspace Bσ,2 is least deviating from the function f in the sense of the metric of L2(R)
i.e.,

Aσ(f) = ‖f − Λσ(f)‖ =

{ˆ
|τ |≥σ

|F(f, τ)|2 dτ
}1/2

.

Since the function f is real, it follows that the function |F(f)| is even. Therefore,

Aσ(f) =

{
2

ˆ ∞

σ
|F(f, τ)|2 dτ

}1/2

. (2.10)

The subsequent argument is carried out in two stages, in the first stage, we consider the case r = μ ∈ Z+

and, in the second, the case r ∈ N and μ ∈ Z+, where μ < r.
Let r = μ ∈ Z+. Consider an arbitrary function f ∈ Lr

2(R) not equivalent to zero if r = 0. Using the
fundamental properties of the Fourier transform [19] and, in particular, formula (2.5), where μ = 0, we
obtain

F(Δk
τ (f

(r)), u) = (iu)r(eiuτ − 1)kF(f, u). (2.11)

Since Δk
τ (f

(r)) ∈ L2(R), it follows that, by Plancherel’s theorem, F(Δk
τ (f

(r))) ∈ L2(R), and hence
these functions have identical norms by virtue of formula (2.2). Therefore, using equality (2.11), we
obtain

‖Δk
τ (f

(r))‖2 = 2

ˆ ∞

0
|F(f, u)|2u2r2k(1− cos τu)k du. (2.12)

Taking into account the definition of the modulus of continuity of kth order from (2.12), we see that

ω2
k(f

(r), τ) ≥ ‖Δk
τ (f

(r))‖2 ≥ 2

ˆ ∞

σ
|F(f, u)|2u2r2k(1− cos τu)k du. (2.13)

Setting

L(f ;u, τ) := 2(1+k)p/2|F(f, u)|purp(1− cosuτ)kp/2ψ(τ),

as well as using inequality (2.13), the generalized Minkowski inequality (see, for example, [5, Chap. 1,
Sec. 1.3]) and the notation (2.7), we obtain{ˆ t

0
ωp
k(f

(r), τ)ψ(τ) dτ

}1/p

≥
{ˆ t

0

[
2

ˆ ∞

σ
|F(f, u)|2u2r2k(1− cos uτ)k du

]p/2
ψ(τ) dτ

}1/p

=

{ˆ t

0

[ˆ ∞

σ
L2/p(f ;u, τ) du

]p/2
dτ

}1/p

≥
{ˆ ∞

σ

[ˆ t

0
L(f ;u, τ) dτ

]2/p
du

}(p/2)·(1/p)

=

{
2

ˆ ∞

σ
|F(f, u)|2

[
2kp/2urp

ˆ t

0
(1− cos uτ)kp/2ψ(τ) dτ

]2/p
du

}1/2

=

{
2

ˆ ∞

σ
|F(f, u)|2β2

u,k,r,p(ψ, t) du

}1/2

. (2.14)

Using formula (2.10) and relation (2.14), we can write
{ˆ t

0
ωp
k(f

(r), τ)ψ(τ) dτ

}1/p

≥ Aσ(f) inf{βu,k,r,p(ψ, t) : σ ≤ u < ∞}.

From this inequality and formula (2.8), we obtain the upper bound

χσ,k,r,r,p(ψ, t) ≤
1

inf{βu,k,r,p(ψ, t) : σ ≤ u < ∞} . (2.15)
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To find a lower bound for the extremal characteristic on the left-hand side of equality (2.15), we
consider an entire function λε of exponential type σ + ε, where ε ∈ (0, σ∗) is an arbitrary number,
σ∗ := min(σ, 1), and

λε(x) :=

√
2

π
(qσ+ε(x)− qσ(x)). (2.16)

Here qa(x) := (sin ax)/x, where a > 0. For x = 0, we set qa(0) = a. Since the Fourier transform of the
function qa has the form

F(qa, x) =

√
π

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |x| < a,

1

2
if |x| = a,

0 if |x| > a,

(see, for example, [26, Chap. 5]), it follows that, for the function λε, we have

F(λε, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if σ < |x| < σ + ε,

1

2
if |x| = σ or |x| = σ + ε,

0 if |x| > σ + ε or |x| < σ.

(2.17)

In view of formulas (2.2) and (2.5), where f := λε and μ := 0, the inclusion λε ∈ Lr
2(R) is obvious. It

follows from relations (2.10) and (2.17) that

Aσ(λε) =
√
2ε . (2.18)

Taking into account the equality F(λ
(r)
ε , x) = (ix)rF(λε, x) and using formulas (2.6), (2.12), and (2.17)

we can write

‖Δk
h(λ

(r)
ε )‖2 = 2k+1

ˆ σ+ε

σ
u2r(1− cos hu)k du ≤ 2k+1ε(σ + ε)2r(1− cos(σ + ε)h)k∗ ,

where |h| ≤ π/σ. Combining this with the definition of the modulus of continuity of kth order, we obtain
the inequality

ωp
k(λ

(r)
ε , τ) ≤ 2(k+1)p/2εp/2(σ + ε)rp(1− cos(σ + ε)τ)

kp/2
∗ , (2.19)

where 0 < τ ≤ π/σ. Multiplying both sides of inequality (2.19) by the function ψ and integrating both
sides of the resulting relation over τ from 0 to t, we obtain

ˆ t

0
ωp
k(λ

(r)
ε , τ)ψ(τ) dτ ≤ 2(k+1)p/2εp/2(σ + ε)rp

ˆ t

0
(1− cos(σ + ε)τ)

kp/2
∗ ψ(τ) dτ. (2.20)

Setting

β∗
σ+ε,k,r,p(ψ, t) := 2k/2(σ + ε)r

{ˆ t

0
(1− cos(σ + ε)τ)

kp/2
∗ ψ(τ) dτ

}1/p

(2.21)

and using formulas (2.8), (2.18), and (2.20), (2.21), for 0 < t ≤ π/σ we can write

χσ,k,r,r,p(ψ, t) ≥
Aσ(λε){´ t

0 ω
p
k(λ

(r)
ε , τ)ψ(τ) dτ

}1/p
≥ 1

β∗
σ+ε,k,r,p(ψ, t)

. (2.22)

It follows from relations (2.21) and (2.6) that the quantity β∗
σ+ε,k,r,p(ψ, t) decreases as ε → 0 + 0 while

the other parameters appearing in (2.21) are constant. Obviously,

lim
ε→0+0

β∗
σ+ε,k,r,p(ψ, t) = βσ,k,r,p(ψ, t) (2.23)
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and, for any arbitrarily small number δ > 0, we can chose a number ε̃ := ε(δ) ∈ (0, δ) for which, in view
of (2.23), we have

1

β∗
σ+ε̃,k,r,p(ψ, t)

>
1

βσ,k,r,p(ψ, t)
− δ. (2.24)

Using the definition of the upper bound of the set, from (2.24), we obtain

sup
ε∈(0,σ∗)

1

β∗
σ+ε,k,r,p(ψ, t)

=
1

βσ,k,r,p(ψ, t)
. (2.25)

Since the left-hand side of inequality (2.22) is independent of ε, calculating the upper bound with respect
to ε ∈ (0, σ∗) for its right-hand side, we have

χσ,k,r,r,p(ψ, t) ≥
1

βσ,k,r,p(ψ, t)
. (2.26)

For r = μ ∈ Z+, comparing the upper bound (2.15) with the lower bound (2.26), we obtain the two-sided
inequality

1

βσ,k,r,p(ψ, t)
≤ χσ,k,r,r,p(ψ, t) ≤

1

inf{βu,k,r,p(ψ, t) : σ ≤ u < ∞} . (2.27)

Passing to the second stage of the proof, we set r ∈ N, μ ∈ Z+, and μ < r. Since the function f (r−μ),
where f ∈ Lr

2(R), can be regarded as an element of the class Lμ
2 (R) and Lr

2(R) ⊂ Lμ
2 (R), it follows that,

using formulas (2.8) and (2.27), we obtain the following upper bound in the case under consideration:

χσ,k,r,μ,p(ψ, t) = sup
f∈Lr

2(R)

Aσ(f
(r−μ)){´ t

0 ω
p
k(f

(r), τ)ψ(τ) dτ
}1/p

≤ sup
F∈Lμ

2 (R)

Aσ(F ){´ t
0 ω

p
k(F

(μ), τ)ψ(τ) dτ
}1/p

= χσ,k,μ,μ,p(ψ, t) ≤
1

inf{βu,k,μ,p(ψ, t) : σ ≤ u < ∞} . (2.28)

To obtain a lower bound for the extremal characteristic written on the left-hand side of relation (2.28),
we consider the entire function λε ∈ Lr

2(R) given by formula (2.16). By formula (2.10), we have

Aσ(λ
(r−μ)
ε ) =

{
2

ˆ ∞

σ
|F(λ(r−μ)

ε , τ)|2 dτ
}1/2

. (2.29)

From equalities (2.5) and (2.17), we obtain

F(λ(r−μ)
ε , x) = (ix)(r−μ)F(λε, x) = (ix)r−μ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if σ < |x| < σ + ε,

1

2
if |x| = σ or |x| = σ + ε,

0, if |x| > σ + ε or |x| < σ.

(2.30)

Using equalities (2.29) and (2.30), we can write

Aσ(λ
(r−μ)
ε ) =

{
2

ˆ σ+ε

σ
τ2(r−μ) dτ

}1/2

≥
√
2ε σr−μ. (2.31)

Applying formulas (2.7), (2.8), (2.20), (2.21), and (2.31), we obtain

χσ,k,r,μ,p(ψ, t) ≥
Aσ(λ

(r−μ)
ε ){´ t

0 ω
p
k(λ

(r)
ε , τ)ψ(τ) dτ

}1/p
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≥ (1 + ε/σ)−r2−k/2σ−μ

{´ t
0 (1− cos(σ + ε)τ)

kp/2
∗ ψ(τ) dτ

}1/2
≥ 1

(1 + ε/σ)rβ∗
σ+ε,k,μ,p(ψ, t)

. (2.32)

It follows from relations (2.6) and (2.21) that the quantity (1 + ε/σ)rβ∗
σ+ε,k,μ,p(ψ, t) decreases as

ε → 0 + 0, and all the other parameters in expression (2.21) are constant. Further,

lim
ε→0+0

(
1 +

ε

σ

)r

β∗
σ+ε,k,μ,p(ψ, t) = βσ,k,μ,p(ψ, t).

Using arguments similar to those used at the end of the proof of the first stage of the theorem, we can
write

sup
ε∈(0,σ∗)

1

(1 + ε/σ)rβ∗
σ+ε,k,μ,p(ψ, t)

=
1

βσ,k,μ,p(ψ, t)
. (2.33)

Calculating the upper bound with respect to ε ∈ (0, σ∗) for the right-hand side of inequality (2.32) and
taking into account the fact that its left-hand side is independent of ε, we obtain the lower bound

χσ,k,r,μ,p(ψ, t) ≥
1

βσ,k,μ,p(ψ, t)
. (2.34)

For r ∈ N, μ < r, and μ ∈ Z+, comparing the upper bound (2.28) with the lower bound (2.34) for
χσ,k,r,μ,p(ψ, t), we obtain the two-sided inequality

1

βσ,k,μ,p(ψ, t)
≤ χσ,k,r,μ,p(ψ, t) ≤

1

inf{βu,k,μ,p(ψ, t) : σ ≤ u < ∞} . (2.35)

Combining the results (2.27) and (2.35), we obtain the required relations (2.9). Theorem 1 is proved.

Note that inequalities (1.5) obtained by Ligun and Doronin are a particular case of Theorem 1 for
μ = r and p = 2.

3. COROLLARIES OF THEOREM 1

Theorem 1 implies a number of corollaries that, in our opinion, are of interest in themselves.

Corollary 1. Suppose that ψ ≡ 1, μ, k, r ∈ N, μ ≤ r, 1/μ ≤ p ≤ 2, 0 < σ < ∞, 0 < t ≤ π/σ. Then
the following relation holds:

χσ,k,r,μ,p(1, t) =
1

βσ,k,μ,p(1, t)
. (3.1)

Proof. Consider the auxiliary function

θ(u) := {2−k/2βu,k,μ,p(1, t)}p = uμp
ˆ t

0
(1− cosuτ)kp/2 dτ

depending on one variable u and taking the values in the set [σ,∞). Obviously, if the function θ is
nondecreasing for σ ≤ u < ∞, then so is also the quantity βu,k,μ,p(1, t) with respect to the variable u for
fixed values of its other parameters. On the basis of these facts, we calculate the first derivative of the
function θ, obtaining

θ(1)(u) = μpuμp−1

ˆ t

0
(1− cosuτ)kp/2 dτ + uμp

ˆ t

0

∂

∂u
(1− cos uτ)kp/2 dτ. (3.2)

It is readily verified that the following equality holds:

1

τ

∂

∂u
(1− cos uτ)kp/2 =

1

u

∂

∂τ
(1− cos uτ)kp/2, (3.3)
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where the variables u and τ are nonzero. Using formulas (3.2) and (3.3), we can write

θ(1)(u) = uμp−1

{
μp

ˆ t

0
(1− cos uτ)kp/2 dτ +

ˆ t

0
τ
∂

∂τ
(1− cos uτ)kp/2 dτ

}
. (3.4)

Integrating by parts the second integral on the right-hand side of equality (3.4), we obtain

θ(1)(u) = uμp−1

{
t(1− cos ut)kp/2 + (μp− 1)

ˆ t

0
(1− cos uτ)kp/2 dτ

}
. (3.5)

For any σ ≤ u < ∞, taking into account the inequality p ≥ 1/μ and using formula (3.5), we see that
θ(1)(u) ≥ 0. Therefore,

inf{θ(u) : σ ≤ u < ∞} = θ(σ),

and this, in turn, implies

inf{βu,k,μ,p(1, t) : σ ≤ u < ∞} = βσ,k,μ,p(1, t). (3.6)

Using formulas (2.9) and (3.6), we obtain relation (3.1) in the case under consideration, which concludes
the proof of Corollary 1.

Corollary 1 can be complemented by the following corollary containing a number of possible cases of
variation of the parameters of the extremal characteristic (2.8).

Corollary 2. Suppose that ψ ≡ 1, k ∈ N, μ, r ∈ Z+, μ ≤ r, p = 2/k, 0 < σ < ∞, 0 < t ≤ π/(2σ).
Then the following equality holds:

sup
f∈Lr

2(R)

σμAσ(f
(r−μ)){´ t

0 ω
2/k
k (f (r), τ)ψ(τ) dτ

}k/2
=

{
σ

2(σt− sinσt)

}k/2

. (3.7)

Proof. Consider the quantity

θ̃(u) := βu,k,μ,2/k(1, t) = 2k/2uμ
{ˆ t

0
(1− cos uτ) dτ

}k/2

= (2t)k/2uμ
(
1− sinut

ut

)k/2

(3.8)

as a function of the independent variable u ∈ [σ,∞) for fixed values of the other parameters defining
relation (2.7). Taking into account the constraint 0 < t ≤ π/(2σ) and the behavior of the function
sin(x)/x (see, for example, [27, Sec. 1.2, pp. 129, 132]), we obtain

inf
σ≤u<∞

(
1− sinut

ut

)k/2

=

(
1− sup

σ≤u<∞

sinut

ut

)k/2

=

(
1− sinσt

σt

)k/2

. (3.9)

Using formulas (3.8), (3.9), we can write

inf
σ≤u<∞

θ̃(u) = θ̃(σ) = (2t)k/2σμ

(
1− sinσt

σt

)k/2

. (3.10)

The required equality (3.7) follows from relations (2.9) and (3.8), (3.10). Corollary 2 is proved.

It is necessary to note that, for μ = r, the the author’s result (1.6) is contained in formula (3.7).
Guseinov and Mukhtarov showed in [28, Chap. II, Sec. 1] that if ω is a modulus of continuity, then

the function

ω∗(t) :=
1

t

ˆ t

0
ω(τ) dτ , t > 0,

will also be a modulus of continuity. Since, as was noted in [28], limt→0+0 ω
∗(t) = 0, it is assumed that

ω∗(0) = 0. It follows from the above that, for an arbitrary element f ∈ L2(R), the function

ω∗(f, t) :=
1

t

ˆ t

0
ω1(f, τ) dτ (3.11)

is also a modulus of continuity of first order and can be used along with the classical modulus of
continuity ω1(f) for solving extremal problems of approximation theory in the space L2(R).
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Corollary 3. Suppose that μ, r ∈ N and μ ≤ r, 0 < σ < ∞, 0 < t ≤ π/σ. Then the following
equality holds:

sup
f∈Lr

2(R)

σμ−1Aσ(f
(r−μ))

ω∗(f (r), t)
=

t

4(1− cos(σt/2))
. (3.12)

Proof. Using equality (3.1), in which we set k := 1, p := 1, and formula (2.8), we can write

χσ,1,r,μ,1(1, t) = sup
f∈Lr

2(R)

Aσ(f
(r−μ))´ t

0 ω1(f (r), τ) dτ
=

1

βσ,1,μ,1(1, t)
=

σ−μ

√
2
´ t
0 (1− cos στ)1/2 dτ

. (3.13)

Carrying out necessary calculations on the right-hand side of (3.13) and using formula (3.11), we obtain
the required equality (3.12), which concludes the proof of the corollary.

4. INEQUALITIES CONTAINING THE BEST APPROXIMATION
AND THE MODULUS OF CONTINUITY IN L2(R)

Along with the study of the behavior of the extremal characteristic (2.8), the study of the extremal
characteristic

χ̃σ,k,r,μ(t) := sup
f∈Lr

2(R)

Aσ(f
(r−μ))

ωk(f (r), t)
, (4.1)

where μ, r ∈ Z+, μ ≤ r, k ∈ N, 0 < t, σ < ∞, is also of interest. Recall that, for r = 0, the upper bound
in relation (4.1) is calculated for all functions f ∈ L2(R) not equivalent to zero. The following theorem
deals with this question.

Theorem 2. Let 0 < t ≤ π/σ. Then the following two-sided inequality holds:

1

σμ(σt)k
≤ χ̃σ,k,r,μ(t) ≤

1

σμ

{
1

2
+

1

(σt)2

}k/2

. (4.2)

Proof. From equalities (2.5) and (2.10), we obtain

Aσ(f
(r−μ)) =

{
2

ˆ ∞

σ
|F(f (r−μ), u)|2 du

}1/2

=

{
2

ˆ ∞

σ
u2(r−μ)|F(f, u)|2 du

}1/2

. (4.3)

Using relation (4.3), we can write

A2
σ(f

(r−μ))− 2

ˆ ∞

σ
u2(r−μ)|F(f, u)|2 cos τu du

= 2

ˆ ∞

σ
{ur−μ|F(f, u)|}2(1−1/k){ur−μ|F(f, u)|}2/k(1− cos τu) du. (4.4)

Applying Hölder’s inequality to the right-hand side of equality (4.4) and taking into account the
definition of the modulus of continuity of kth order and formulas (2.12) and (4.3), we obtain

A2
σ(f

(r−μ))− 2

ˆ ∞

σ
u2(r−μ)|F(f, u)|2 cos τu du

≤
{
2

ˆ ∞

σ
u2(r−μ)|F(f, u)|2 du

}1−1/k{
2

ˆ ∞

σ
u2(r−μ)|F(f, u)|2(1− cos τu)k du

}1/k

≤ A2(1−1/k)
σ (f (r−μ))

1

2σ2μ/k

{
2k+1

ˆ ∞

σ
u2r|F(f, u)|2(1− cos τu)k du

}1/k

≤ A2(1−1/k)
σ (f (r−μ))

ω
2/k
k (f (r), τ)

2σ2μ/k
. (4.5)
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Let us first integrate both sides of inequality (4.5) over the variable τ from 0 to v and then integrate the
resulting relation over v from 0 to t, where 0 < t ≤ π/σ. As a result, we have

t2

2
A2

σ(f
(r−μ)) ≤ 2

ˆ ∞

σ
u2(r−μ−1)|F(f, u)|2(1− cos tu) du

+
A2(1−1/k)

σ (f (r−μ))

2σ2μ/k

ˆ t

0

ˆ v

0
ω
2/k
k (f (r), τ) dτ dv. (4.6)

Using equalities (2.10) and (2.12) as well as the definition of the modulus of continuity of kth order and
Hölder’s inequality, we obtain the following upper bound for the first summand on the right-hand side of
equality (4.6):

2

ˆ ∞

σ
u2(r−μ−1)|F(f, u)|2(1− cos tu) du

≤ 2

σ2

ˆ ∞

σ
{ur−μ|F(f, u)|}2(1−1/k){ur−μ|F(f, u)|(1 − cos tu)k/2}2/k du

≤ 1

σ2

{
2

ˆ ∞

σ
u2(r−μ)|F(f, u)|2 du

}1−1/k{
2

ˆ ∞

σ
u2(r−μ)|F(f, u)|2(1− cos tu)k du

}1/k

≤ 1

σ2
A2(1−1/k)

σ (f (r−μ))

{
2

2kσ2μ

ˆ ∞

σ
2ku2r|F(f, u)|2(1− cos tu)k du

}1/k

≤ 1

2σ2(1+μ/k)
A2(1−1/k)

σ (f (r−μ))ω
2/k
k (f (r), t). (4.7)

Integrating by parts in the second summand on the right-hand side of inequality (4.6) and taking into
account relation (4.7), we can rewrite inequality (4.6) as

t2kA2
σ(f

(r−μ)) ≤ 1

σ2(k+μ)

{
ω
2/k
k (f (r), t) + σ2

ˆ t

0
(t− τ)ω

2/k
k (f (r), τ) dτ

}k

.

Hence we have

t2kA2
σ(f

(r−μ)) ≤ 1

σ2(k+μ)
ω2
k(f

(r), t)

{
1 +

(σt)2

2

}k

.

Therefore, for 0 < t ≤ π/σ, in view of formulas (4.1), we can write

χ̃σ,k,r,μ(t) ≤
1

σμ

{
1

2
+

1

(σt)2

}k/2

. (4.8)

To obtain the lower bound for the extremal characteristic (4.1), consider the function λε ∈ Lr
2(R)

given by formula (2.16). For it, we can write

χ̃σ,k,r,μ(t) ≥
Aσ(λ

(r−μ)
ε )

ωk(λ
(r)
ε , t)

. (4.9)

Setting

ξu,k,r(t) := ur(1− cos ut)k/2, (4.10)

ξ̃u,k,r(t) := ur(1− cos ut)
k/2
∗ (4.11)

and using formula (2.19), where p = 1, as well as formula (2.31), from inequality (4.9), we obtain

χ̃σ,k,r,μ(t) ≥
σr−μ

2k/2ξ̃σ+ε,k,r(t)
. (4.12)
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In the case u := σ + ε, it follows from formulas (4.11) and (2.6) that the quantity ξ̃σ+ε,k,r(t) decreases
as ε → 0 + 0, provided that the other parameters appearing in relation (4.11) are constant. Also,

lim
ε→0+0

ξ̃σ+ε,k,r(t) = ξσ,k,r(t).

Hence, using the definition of the upper bound, we obtain

sup
ε∈(0,σ∗)

1

ξ̃σ+ε,k,r(t)
=

1

ξσ,k,r(t)
. (4.13)

Calculating the upper bound for all ε ∈ (0, σ∗) from the right-hand side of inequality (4.12) and taking
into account formulas (4.13), (4.10), and (2.6), we can write

χ̃σ,k,r,μ(t) ≥
1

σμ(σt)k
. (4.14)

The required relation (4.2) is a consequence of inequalities (4.8) and (4.14). Theorem 2 is proved.

Note that, in the case μ := r, relation (4.2) yields the author’s result (1.7) obtained earlier.

5. MEAN ν-WIDTHS OF CLASSES OF FUNCTIONS
DEFINED ON THE WHOLE REAL AXIS

5.1. The definition of mean dimension was introduced by Magaril-Il’yaev (see, for example, [29], [30]);
it was a modification of the corresponding notion introduced earlier by Tikhomirov [31]; this allows us to
define the asymptotic characteristics of subspaces similar to widths, in which the role of dimension was
played by mean dimension. As a result, it became possible to compare the approximation properties
of the subspace Bσ,2 with similar characteristics of other subspaces from L2(R) of the same mean
dimension and to solve extremal problems of optimal approximation theory in L2(R).

Before introducing the required extremal characteristics, let us present a number of notions and
definitions from [29], [30]. Let BL2(R) be the unit ball in L2(R), let Lin(L2(R)) be the set of all linear
subspaces in L2(R),

Linn(L2(R)) := {L ∈ Lin(L2(R)) : dimL ≤ n}, n ∈ Z+,

and let

d(Q,A,L2(R)) := sup
{
inf{‖x− y‖ : y ∈ A} : x ∈ Q

}
be the best approximation of a set Q ⊂ L2(R) by the set A ⊂ L2(R). By AT , where T > 0, we mean
the restriction of a set A ⊂ L2(R) to the closed interval [−T, T ], and by LinC L2(R) we denote the set
of subspaces L ∈ Lin(L2(R)) for which the set (L ∩BL2(R))T is precompact in L2([−T, T ]) for any
T > 0.

If L ∈ LinC(L2(R)) and T , ε > 0, then there exist n ∈ Z+ and M ∈ Linn(L2(R)) for which [29]

d((L ∩BL2(R))T ,M, L2([−T, T ])) < ε.

Let

Dε(T,L, L2(R)) := min
{
n ∈ Z+ : there exists a M ∈ Linn(L2([−T, T ])) a such that

d((L ∩BL2(R))T ,M, L2([−T, T ])) < ε
}
.

This function is nondecreasing in T and nonincreasing in ε. The quantity

dim(L, L2(R)) := lim

{
lim inf

{
Dε(T,L, L2(R))

2T
: T → ∞

}
: ε → 0

}
,

where L ∈ LinC(L2(R)), is called the mean dimension of the subspace L in L2(R). It was shown in [29]
that

dim(Bσ,2, L2(R)) =
σ

π
. (5.1)
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Let Q be a centrally symmetric subset from L2(R), and let ν > 0 be an arbitrary number. Then by the
mean Kolmogorov ν-width of the set Q in L2(R) we mean the quantity

dν(Q,L2(R)) := inf
{
d(Q,L, L2(R)) : L ∈ LinC(L2(R)), dim(L, L2(R)) ≤ ν

}
.

The subspace on which the outer lower bound is attained is called extremal.
By the mean linear ν-width of the set Q in L2(R) we mean the quantity

δν(Q,L2(R)) := inf
{
sup{‖f − V (f)‖ : f ∈ Q} : (X,V )

}
,

where the lower bound is taken over all pairs (X,V ) such that X is a normed space directly embedded
in L2(R) and V : X → L2(R) is a continuous linear operator for which ImV ∈ LinC(L2(R)) and the
following inequality holds:

dim(ImV,L2(R)) ≤ ν, Q ⊂ X.

Here ImV is the image of the operator V . The pair on which the lower bound is attained is called
extremal.

The quantity

bν(Q,L2(R)) := sup
{
sup{ρ > 0 : L ∩ ρBL2(R) ⊂ Q} :

L ∈ LinC(L2(R)), dim(L, L2(R)) > ν, dν(L ∩BL2(R), L2(R)) = 1
}

is called the mean Bernstein ν-width of the set Q in L2(R). The last condition imposed on L in
calculating the outer upper bound means that we consider only subspaces for which the analog of
Tikhomirov’s theorem on the width of the ball is valid. This requirement is satisfied, for example, by
the subspace Bσ,2 if σ > νπ, i.e., dν(Bσ,2 ∩BL2(R), L2(R)) = 1.

For a set Q ⊂ L2(R) between its extremal characteristics (indicated above), the following inequalities
hold:

bν(Q,L2(R)) ≤ dν(Q,L2(R)) ≤ δν(Q,L2(R)). (5.2)

5.2. A continuous and nondecreasing function Ψ on the set [0,∞) is called a majorant if Ψ(0) = 0
(see, for example, [32, Chap. I, Sec. 2, Sec. 3]). Let Ψ be a majorant. By W r(ω∗,Ψ), where
r ∈ N, we denote the class of all functions f ∈ Lr

2(R) whose rth derivatives f (r) satisfy the condition
ω∗(f (r), t) ≤ Ψ(t) for any 0 ≤ t < ∞. The best approximation for this class by the subspace Bσ,2 will be
denoted by Aσ(W

r(ω∗,Ψ)), i.e.,

Aσ(W
r(ω∗,Ψ)) := sup{Aσ(f) : f ∈ W r(ω∗,Ψ)}.

Theorem 3. Let ν be an arbitrary finite positive number, and let Ψ be the majorant satisfying the
condition

Ψ(t)

Ψ(π/σ)
≥ π

2

⎧⎪⎪⎨
⎪⎪⎩

4

σt
sin2

(
σt

4

)
, if 0 < t ≤ π

σ
,

1− π − 2

σt
if

π

σ
≤ t < ∞,

(5.3)

for any finite value of σ, σ > νπ. Then the following equalities hold:

Πν(W
r(ω∗,Ψ), L2(R)) = Aνπ(W

r(ω∗,Ψ)) =
π1−r

4νr
Ψ

(
1

ν

)
, (5.4)

where Πν( · ) is any one of the mean ν-widths examined in Sec. 5.1. Further, the pair (Lr
2(R),Λνπ),

where Λνπ is the linear operator defined by the formula

Λνπ(f, x) =
1√
2π

ˆ νπ

−νπ
F(f, τ)eixτ dτ,

will be extremal for the mean linear ν-width δν(W
r(ω∗,Ψ), L2(R)), and the subspace Bνπ,2 will

be extremal for the Kolmogorov average ν-width dν(W
r(ω∗,Ψ), L2(R)). The set of majorants

satisfying condition (5.3) is not empty.
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Proof. Using formula (5.1), let us calculate the mean dimension of the subspace Bνπ,2 of entire
functions:

dim(Bνπ,2, L2(R)) = ν. (5.5)

For an arbitrary function f ∈ W r(ω∗,Ψ), using relation (3.12) in which t := π/σ, μ := r, we obtain the
following upper bound for the value of the best approximation:

Aσ(f) ≤
π

4σr
ω∗

(
f (r),

π

σ

)
≤ π

4σr
Ψ

(
π

σ

)
. (5.6)

Setting σ := νπ in formula (5.6) and using relation (5.2), the definition of the mean linear ν-width, and
formulas (5.5), (5.6), we obtain the following upper bounds:

Πν(W
r(ω∗,Ψ), L2(R)) ≤ δν(W

r(ω∗,Ψ), L2(R)) ≤ sup{‖f − Λνπ(f)‖ : f ∈ W r(ω∗,Ψ)}

= Aνπ(W
r(ω∗,Ψ)) ≤ π1−r

4νr
Ψ

(
1

ν

)
. (5.7)

Let us pass to the derivation of lower bounds for the average ν-widths. By Sec. 5.1, the subspace
of entire functions Bσ̂,2, where σ̂ := νπ(1 + ε), ε ∈ (0, 1), is an arbitrary number, satisfies all the
requirements imposed on subspaces appearing in the definition of the Bernstein average ν-width.
Further, by formula (5.1), we have dim(Bσ̂,2, L2(R)) = ν(1 + ε) and, in view of [29], [30], dν(Bσ̂,2 ∩
BL2(R), L2(R)) = 1.

Further, consider the set Bσ̂(ρ) resulting from the intersection of the ball ρεBL2(R) of radius

ρε :=
π

4(σ̂)r
Ψ

(
π

σ̂

)
(5.8)

with the subspace of entire functions Bσ̂,2 i.e.,

Bσ̂(ρε) := Bσ̂,2 ∩ ρεBL2(R) = {g ∈ Bσ̂,2 : ‖g‖ ≤ ρε}.

Let us show that the set Bσ̂(ρε) belongs to the class W r(ω∗,Ψ).
By the Paley–Wiener theorem, an arbitrary element g ∈ Bσ̂,2 can be expressed as

g(x) =
1√
2π

ˆ σ̂

−σ̂
ϕ(τ)eixτ dτ, (5.9)

where ϕ is a function whose modulus is Lebesgue square-integrable on the closed interval [−σ̂, σ̂].
Using formula (5.9), we can write

Δ1
h(g, x) = g(x+ h)− g(x) =

1√
2π

ˆ σ̂

−σ̂
(eiτh − 1)ϕ(τ)eixτ dτ. (5.10)

Using formulas (2.11), in which we set f := g, τ := h, r := 0, k := 1, as well as Plancherel’s theorem
and formula (5.9), from equality (5.10) we obtain

‖Δ1
h(g)‖2 = 2

ˆ σ̂

−σ̂
(1− cos τh)|ϕ(τ)|2 dτ. (5.11)

Since formula (2.6) and purely geometric considerations imply that, for any τ ∈ [−σ, σ], the following
inequality holds:

1− cos τh ≤ (1− cos σ̂h)∗,

it follows that, using the definition of the modulus of continuity of first order ω1, equality (5.11), and the
relation

‖g‖2 =

ˆ σ̂

−σ̂
|ϕ(τ)|2 dτ ,
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we obtain

ω1(g, t) ≤ 2

(
sin

σ̂t

2

)
∗
‖g‖. (5.12)

Here

(sin x)∗ :=

⎧⎪⎨
⎪⎩
sinx if 0 ≤ x ≤ π

2
,

1 if x ≥ π

2
.

By the definition of the modulus of continuity of ω∗ (given in Sec. 3) and inequality (5.12), we have

ω∗(g, t) ≤ 2

t
‖g‖

ˆ t

0

(
sin

σ̂τ

2

)
∗
dτ. (5.13)

Using Bernstein’s inequality for entire functions g ∈ Bσ̂,2, we can write (see, for example, [3], [5])

‖g(r)‖ ≤ (σ̂)r ‖g‖. (5.14)

For an arbitrary function g ∈ Bσ̂,2, from inequalities (5.13) and (5.14), we obtain

ω∗(g(r), t) ≤ 2

t
(σ̂)r‖g‖

ˆ t

0

(
sin

σ̂τ

2

)
∗
dτ. (5.15)

Further, let us show the validity of the inequality

ω∗(g(r), t) ≤ Ψ(t), t ≥ 0, (5.16)

for any element g ∈ Bσ̂(ρε). To do this, we consider the following two cases: 0 ≤ t ≤ π/σ̂ and π/σ̂ ≤
t < ∞.

First, let us consider the case 0 ≤ t ≤ π/σ̂. For an arbitrary function g ∈ Bσ̂(ρε), by using the
definition of the class W r(ω∗,Ψ), inequality (5.15), formula (5.8), and the first of the constraints on
the majorant Ψ in condition (5.3), in which σ is replaced by σ̂, we obtain

ω∗(g(r), t) ≤ 2

t
(σ̂)r‖g‖

ˆ t

0
sin

σ̂τ

2
dτ ≤ 2π

tσ̂
sin2

(
σ̂t

4

)
Ψ

(
π

σ̂

)
≤ Ψ(t). (5.17)

Further, we set π/σ̂ ≤ t < ∞. For any element g ∈ Bσ̂(ρε), using similar considerations and the
second constraint on the majorant Ψ in condition (5.3) we can write

ω∗(g(r), t) ≤ 2

t

{ˆ π/σ̂

0
sin

σ̂τ

2
dτ + t− π

σ̂

}
(σ̂)r‖g‖ ≤ 2

π

{
1− π − 2

σ̂t

}
Ψ

(
π

σ̂

)
≤ Ψ(t). (5.18)

Relations (5.17) and (5.18) imply inequality (5.16), which means that the set Bσ̂(ρε) belongs to the
class W r(ω∗,Ψ).

Using the definition of the Bernstein average ν-width and formula (5.8), we can write

bν(W
r(ω∗,Ψ), L2(R)) ≥ bν(Bσ̂(ρε), L2(R)) ≥

π1−r

4νr
K1+ε(Ψ, ν, r), (5.19)

where

Kx(Ψ, ν, r) :=
1

xr
Ψ

(
1

νx

)
.

Obviously, as ε → 0 + 0, the quantity K1+ε(Ψ, ν, r) increases and its limit is the value of Ψ(1/ν). Then,
from the definition of the upper bound, we obtain

sup
ε∈(0,1)

K1+ε(Ψ, ν, r) = Ψ

(
1

ν

)
. (5.20)
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Since the left-hand side in the chain of inequalities (5.19) is independent of ε, it follows that, using the
properties of the upper bound for a number set and relations (5.20) and (5.2), we can write

Πν(W
r(ω∗,Ψ), L2(R)) ≥ bν(W

r(ω∗,Ψ), L2(R)) ≥
π1−r

4νr
Ψ

(
1

ν

)
. (5.21)

For the extremal characteristics for the class W r(ω∗,Ψ), equalities (5.4) follow from a comparison of the
upper bounds (5.6) with the lower bounds (5.21).

To conclude the proof of the theorem, we shall show that the set of majorants satisfying condi-
tion (5.3), is not empty. To do this, we consider, for example, the function Ψ̃(t) := tζ , where ζ := π/2− 1;
for this function, condition (5.3) can be written as

(
tσ

π

)ζ

≥ π

2

⎧⎪⎪⎨
⎪⎪⎩

4

σt
sin2

(
σt

4

)
, if 0 < t ≤ π

σ
,

1− π − 2

σt
, if

π

σ
≤ t < ∞.

(5.22)

Let us prove that inequalities (5.22) hold. Setting u := tσ/π, instead of (5.22), we obtain the equivalent
relations

uζ ≥ 1

2

⎧⎪⎪⎨
⎪⎪⎩

4

u
sin2

(
πu

4

)
if 0 < u ≤ 1,

π − π − 2

u
, if 1 ≤ u < ∞.

(5.23)

In the case 0 < u ≤ 1, in view of (5.23), we consider the auxiliary function

Y (u) := uζ − 2

u
sin2

(
πu

4

)
. (5.24)

As u → 0 + 0, using (5.24) and the equivalence of infinitesimals, we obtain the approximate formula

Y (u)
.
= uζ

(
1− π2

8
u1−ζ

)
. (5.25)

Since ζ belongs to (0.57, 0.58), equality (5.25) implies the existence of an interval (0, ε) ⊂ (0, 1) at all of
whose points the function Y takes only positive values. Let us show that the function Y is of constant
sign on the whole interval (0, 1). Using formula (5.24), we expressed the function Y as

Y (u) =
1

u
Y1(u), (5.26)

where

Y1(u) := uζ+1 − 2 sin2
(
πu

4

)
. (5.27)

In view of equality (5.26), it is necessary to show that the function Y1 is of constant sign on the interval
(0, 1), i.e., that Y1(u) > 0. In view of formulas (5.27), this is equivalent to the proof of the inequality
uζ+1 > 2 sin2(πu/4) for any u ∈ (0, 1). Obviously, this inequality is equivalent to the relation

u(ζ+1)/2 >
√
2 sin

πu

4
, 0 < u < 1.

Thus, the initial problem is reduced to proving that the function

Y2(u) := u(ζ+1)/2 −
√
2 sin

πu

4
(5.28)

is of constant sign for u ∈ (0, 1). We shall prove this fact by arguing by contradiction. Suppose that Y2 is
a function with alternating signs, i.e., there exists a point z ∈ (0, 1) at which Y2 changes sign. In view of
the continuity of the function Y2, let us consider it on the closed interval [0, 1]. In view of formula (5.28)
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and the assumption about the point z, we have Y2(0) = Y2(z) = Y2(1) = 0. Then it follows from Rolle’s
theorem that the first derivative of the function Y2, i.e.,

Y
(1)
2 (u) =

ζ + 1

2
u(ζ−1)/2 −

√
2
π

4
cos

πu

4
, (5.29)

must have at least two distinct zeros on the interval (0, 1). Taking the equality ζ = π/2− 1, from

formula (5.29), we obtain Y
(1)
2 (1) = 0. It follows from Rolle’s theorem that the second derivative of

the function Y2, i.e.,

Y
(2)
2 (u) =

√
2

(
π

4

)4

sin
πu

4
− (ζ − 1)2

4
u(ζ−3)/2, (5.30)

must also have at least two distinct zeros on the interval (0, 1). However, in view of the form of

formula (5.30), the derivative Y
(2)
2 can have at most one zero on (0, 1), because it is the difference of two

functions the first of which is monotone increasing and convex upward, while the second is monotone
decreasing and is convex downward. The resulting contradiction proves the validity of the inequality
Y2(u) > 0 for any u ∈ (0, 1), and hence also the validity of the first of the inequalities in condition (5.22).

To prove the validity of the second inequality in this condition, in view of relation (5.23), we consider
the auxiliary function

Z(u) := uζ − π

2
+

π − 2

2u
, (5.31)

where 1 ≤ u < ∞. The first derivative of this function

Z(1)(u) = ζuζ−1 − π − 2

2u2
=

1

u2

{(
π

2
− 1

)
uζ+1 + 1− π

2

}

takes positive values for 1 < u < ∞. Since, in view of formula (5.31), Z(1) = 0, it follows that
the function Z is, obviously, positive and monotone increasing on the interval under consideration.
Therefore, the second inequality in condition (5.22) also holds and the function Ψ̃ is the majorant
satisfying condition (5.3). Theorem 3 is proved.

In our view, the calculation of best approximations for the intermediate derivatives of functions
f ∈ W r(ω∗,Ψ) by subspaces of entire functions of exponential type is of considerable interest. This
question is dealt with in the following statement.

Statement. Suppose that μ, r ∈ N, μ ≤ r, ν is an arbitrary finite positive number, and Ψ is the
majorant satisfying condition (5.3) for any finite value of σ, σ > νπ. Then the following relation
holds:

sup{Aνπ(f
(r−μ)) : f ∈ W r(ω∗,Ψ)} =

π1−μ

4νμ
Ψ

(
1

ν

)
. (5.32)

Proof. Setting σ := νπ, t := π/σ in Corollary3 and using the definition of the class W r(ω∗,Ψ), we
obtain the upper bound

sup{Aνπ(f
(r−μ)) : f ∈ W r(ω∗,Ψ)} ≤ π1−μ

4νμ
Ψ

(
1

ν

)
. (5.33)

Further, let ε̃ := ενπ, where ε ∈ (0, σ∗) is an arbitrary number, and suppose that σ∗ = min(σ, 1) and
σ̂ := σ+ ε̃ = νπ(1+ ε). To obtain the lower bound for the extremal characteristic on the left-hand side of
equality (5.33), we consider the entire function λε̃ defined by (2.16); it is an entire function of exponential
type σ̂. By (2.2) and (2.17), we have

‖λε̃‖2 = 2

ˆ σ+ε̃

σ
|F(λε̃, τ)|2 dτ = 2ε̃. (5.34)
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For the entire function

λ∗
ε̃(x) :=

ρε√
2ε̃

λε̃(x), (5.35)

where ρε is given by (5.8), using equality (5.34), we obtain ‖λ∗
ε̃‖ = ρε. Therefore, the entire func-

tion (5.35) belongs to the set Bσ̂(ρε) introduced in the proof of Theorem 3. Since Bσ̂(ρε) ⊂ W r(ω∗,Ψ),
it follows that the function λ∗

ε is an element of class W r(ω∗,Ψ). Using relations (2.31), (5.8), and (5.35),
we obtain

sup{Aνπ(f
(r−μ)) : f ∈ W r(ω∗,Ψ)} ≥ Aνπ((λ

∗
ε̃)

(r−μ)) =
ρε√
2ε̃

Aνπ(λ
(r−μ)
ε̃ ) ≥ ρε(νπ)

r−μ

=
π(νπ)r−μ

4(σ̂)r
Ψ

(
π

σ̂

)
=

π1−μ

4νμ
K1+ε(Ψ, ν, r), (5.36)

where the quantity K1+ε(Ψ, ν, r) is determined at the end of the proof of Theorem 3. Using arguments
similar to those used in the derivation of the lower bound (5.21) and equality (5.20), from relation (5.36),
we can write

sup{Aνπ(f
(r−μ)) : f ∈ W r(ω∗,Ψ)} ≥ π1−μ

4νμ
Ψ

(
1

ν

)
. (5.37)

Comparing inequalities (5.33) and (5.37), we obtain the required equality (5.32), which concludes the
proof of the statement.

REFERENCES
1. S. N. Bernshtein, “On the best approximation of continuous functions on the whole real axis by entire

functions of given degree,” in Collection of Works (AN SSSR, Moscow, 1952), Vol. 2, pp. 371–375 [in
Russian].

2. N. I. Akhiezer, Lectures in Approximation Theory (Nauka, Moscow, 1965) [in Russian].
3. A. F. Timan, Theory of Approximation of Functions of a Real Variable (Fizmatlit, Moscow, 1960) [in

Russian].
4. M. F. Timan, “The approximation of functions defined on the whole real axis by entire functions of exponential

type,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 2, 89–101 (1968).
5. S. M. Nikol’skii, Approximation of Functions of Several Variables and Embedding Theorems (Nauka,

Moscow, 1977) [in Russian].
6. I. I. Ibragimov, Theory of Approximation by Entire Functions (Élm, Baku, 1979) [in Russian].
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