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The investigation of Kantorovich-type distances between probability measures related to diffusion
processes has become a popular subject over the past decade, see [1]–[7] and references therein. The
goal of our paper is to obtain an upper bound for the total variation and the quadratic Kantorovich
distance W2 between stationary distributions of two diffusion processes. Actually, a more general
situation is considered, where in place of invariant measures, we deal with solutions to the stationary
Kolmogorov equation in the class of probability measures. These estimates are applied to nonlinear
stationary Fokker–Planck–Kolmogorov equations for probability measures.

Let b be a locally bounded Borel vector field on R
d or on a Riemannian manifold. Suppose that there

exists a diffusion process ξt with generator

Lbf = Δf + 〈b,∇f〉,
for example, a solution of the stochastic differential equation

dξt = b(ξt) dt+
√
2 dWt.

In this case b is called the drift coefficient. Suppose also that the diffusion process ξt possesses an
invariant probability measure μ. Then this measure μ satisfies the elliptic equation

L∗
bμ = 0, (1)

which is understood in the sense of the integral identityˆ
Rd

Lbu(x)μ(dx) = 0 ∀u ∈ C∞
0 (Rd).

This equation can be also written as

Δμ− div (b · μ) = 0
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in the sense of distributions. Moreover, under our basic assumptions any solution μ has a density �μ
with respect to Lebesgue measure and this density satisfies the elliptic equation

Δ�μ − div (�μb) = 0

in the classical weak sense.
We recall (see [8]–[12]) that, for the existence and uniqueness of an invariant probability measure it

suffices to have a function V ∈ C2(Rd), called a Lyapunov function, such that

lim
|x|→∞

V (x) = +∞ and lim
|x|→∞

LbV (x) = −∞.

In the manifold case, these two conditions are modified as follows: in place of the former we require that
the sets {V ≤ R} be compact (in the case of Rd this is an equivalent condition for continuous functions)
and the latter condition is replaced by

lim
R→∞

sup
x : V (x)>R

LV (x) = −∞.

Under this condition, the associated diffusion process with unique probability invariant measure μ
also exists. In what follows our main object will be Eq. (1) with respect to probability measures and
the existence of associated diffusions will not be assumed, but it is useful to have in mind that the
established estimates of distances between measures corresponding to different drift coefficients give
some information on the dependence of stationary distributions of diffusions on their drifts.

Suppose now that we are given two Borel probability measures μ and ν satisfying the equations
L∗
bμ
μ = 0 and L∗

bν
ν = 0 with certain locally bounded Borel vector fields bμ and bν . This is the case if we

have two diffusion processes with invariant measures. The main problem studied in this paper concerns
estimating the quadratic Kantorovich distance between these measures via a suitable distance between
bμ and bν . Since the coefficients bμ and bν are locally bounded, the measures μ and ν have continuous
positive densities �μ and �ν with respect to Lebesgue measure (see [12], [13]), therefore, we can assume
that

ν = v · μ,
where v = �ν/�μ is a continuous positive function.

The main result of this paper gives the following estimate under broad conditions on bμ and bν :
ˆ
Rd

|∇v|2
v

dμ ≤
ˆ
Rd

|bμ − bν |2 dν. (2)

A similar estimate holds in the manifold case.
Estimate (2) resembles the inequality

ˆ
Rd

|∇�ν |2
�2ν

dν ≤
ˆ
Rd

|bν |2dν,

established in [14] and meaning that �ν has a finite Fisher information number. The latter inequality
can be formally obtained from the former one if for μ we take Lebesgue measure with bμ = 0. This
substitution is possible on Riemannian manifolds of finite volume. For manifolds, the latter inequality
is also true (see [15]), but requires additional assumptions; for example, it fails if the given manifold
possesses a nonconstant positive integrable harmonic function �ν , since, in that case, we can take for μ
the Riemannian volume, and then ν = �ν · μ satisfies the equation Δν = 0, i.e., bν = 0, but ∇�ν 
= 0.
Clearly, (2) also fails in this case, since μ is another solution to the Laplace equation with zero drift.

Suppose now that the measures μ and ν have second moments, i.e., |x| ∈ L2(μ+ ν). In the manifold
case, the corresponding condition is that all Lipschitzian functions belong to L2(μ+ ν). If it is given in
addition that the measure μ satisfies the logarithmic Sobolev inequality

Entμ(f
2) :=

ˆ
Rd

f2 ln f2 dμ−
ˆ
Rd

f2 dμ ln

ˆ
Rd

f2 dμ ≤ C

ˆ
Rd

|∇f |2 dμ
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for all f ∈ W 2,1(μ) (equivalently, for all f ∈ C1
b (R

d)), then, as is well-known (see [16], [7, Section 9.3]
or [2, Theorem 3.3.2]), the probability measure ν = v · μ satisfies the so-called transport inequality

W 2
2 (μ, vμ) ≤ CEntμv = C

ˆ
Rd

v ln v dμ, (3)

hence, applying the logarithmic Sobolev inequality with f =
√
v, we arrive at the estimate

W 2
2 (μ, ν) ≤ 4−1C2

ˆ
Rd

|bμ − bν |2 dν. (4)

Here W2 is the quadratic Kantorovich metric (see [2], [7]):

W 2
2 (μ, ν) = inf

π∈Π(μ,ν)

ˆ
Rd

ˆ
Rd

|x− y|2 π(dx, dy),

where Π(μ, ν) is the set of all probability measures on R
d × R

d with projections μ and ν on the first and
second factors. There is a vast literature on the logarithmic Sobolev inequality, see [17], [18], and [19].

If in place of (3) we apply the Pinsker–Kullback–Csiszár inequality (see [20, Theorem 2.12.24]) for
the total variation distance

‖μ− ν‖ ≤
√
2Entμv

or its weighted generalizations obtained in [21], then we arrive at the estimate

‖μ− ν‖2 ≤ C

2

ˆ
Rd

|bμ − bν |2 dν. (5)

We apply estimate (4) to the study of the problem of the existence and uniqueness of a probability
solution to a nonlinear stationary Fokker–Planck–Kolmogorov equation. Note that the problem of
existence of solutions to nonlinear elliptic equations for probability measures was studied in [22].

Let W 2,1(μ) denote the weighted Sobolev class with respect to the measure μ obtained by completing
the class C∞

0 (Rd) of smooth functions with compact support with respect to the weighted Sobolev norm
given by the equality

‖ϕ‖22,1,μ =

ˆ
Rd

|ϕ|2 dμ+

ˆ
Rd

|∇ϕ|2 dμ.

The main result of our work is the following.

Theorem 1. Let μ and ν be two probability solutions to Eq. (1) with locally bounded Borel
coefficients bμ and bν , respectively. Suppose that

|bμ − bν | ∈ L2(ν)

and that at least one of the following two conditions is fulfilled:

(i) (1 + |x|)−1|bμ(x)| ∈ L1(ν),

(ii) there exists a function V ∈ C2(Rd) such that LbμV (x) ≤ MV (x) for all x and some M > 0
and

lim
|x|→∞

V (x) = +∞,
〈bμ − bν ,∇V 〉

1 + V
∈ L1(ν).

Then the estimate ˆ
Rd

|∇v|2
v

dμ ≤
ˆ
Rd

|bμ − bν |2 dν

holds, which yields, in particular, the inclusion
√
v ∈ W 2,1(μ). In case (ii), a similar assertion is

true for a smooth Riemannian manifold in place of Rd, provided that the condition

lim
|x|→∞

V (x) = +∞

is replaced by the requirement that the sets {V ≤ R} be compact.
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Proof. As shown in [13], in the case of a locally bounded coefficient b, any solution of Eq. (1) is given by
a positive continuous density with respect to Lebesgue measure and this density belongs to the Sobolev
class W p,1

loc (R
d) for every p ≥ 1. Therefore, we can write the solution ν as a measure given by density v

with respect to the measure μ, i.e., μ = � dx, ν = v · μ = v� dx. The function v satisfies the equation

div(�∇v − va− vh�) = 0, (6)

where

a = �bμ −∇�, h = bν − bμ.

We observe that, by virtue of the equation L∗
bμ
μ = 0, we have the equality

div a = 0.

Let f ∈ C1(0,+∞) and let f ′ satisfy the Lipschitz condition. Let also ψ ∈ C∞
0 (Rd). Multiplying the

equation by the function f ′(v)ψ and integrating by parts (exactly as in [11, Lemma 1] or [12, Lemma
4.1.4.]), we obtainˆ

Rd

|∇v|2f ′′(v)ψ�dx =

ˆ
Rd

�f(v)Lbμψ dx+

ˆ
Rd

[
〈h,∇v〉f ′′(v)ψ + 〈h,∇ψ〉f ′(v)

]
v� dx.

Suppose that f ′′ ≥ 0 and ψ ≥ 0. Then by the Cauchy inequalityˆ
Rd

〈h,∇v〉f ′′(v)ψv� dx ≤ 1

2

ˆ
Rd

|∇v|2f ′′(v)ψ�dx +
1

2

ˆ
Rd

|h|2f ′′(v)v2ψ�dx.

Therefore, we arrive at the inequalityˆ
Rd

|∇v|2f ′′(v)ψ�dx ≤ 2

ˆ
Rd

�f(v)Lbμψ dx+

ˆ
Rd

|h|2f ′′(v)v2ψ�dx+ 2

ˆ
Rd

〈h,∇ψ〉f ′(v)v� dx. (7)

Since L∗
bμ
μ = 0 and L∗

bν
ν = 0, for any numbers α, β, we have the following equality:

ˆ
Rd

�(f(v)− αv − β)Lbμψ dx =

ˆ
Rd

�f(v)Lbμψ dx− α

ˆ
Rd

〈h,∇ψ〉 dν. (8)

Let m,k ≥ 1 and

fm,k(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−t ln k if t ≤ k−1

t ln t− t+ k−1 if k−1 < t < m

t lnm−m+ k−1 if t ≥ m.

We observe that f ′
m,k(t) = ln

(
(k−1 ∨ t) ∧m

)
and f ′′

m,k(t) = t−1I(k−1,m(t), where I(k−1,m) is the indica-
tor of the interval (k−1,m). In addition, |fm,k(t)| ≤ C(m,k)t for any fixed m,k.

We now consider separately cases (i) and (ii). Let (i) be fulfilled. Set

ψN (x) = ψ(x/N),

where ψ ∈ C∞
0 (Rd), ψ ≥ 0, ψ(x) = 1 if |x| < 1 and ψ(x) = 0 if |x| > 2. Substituting in (7) the functions

fm and ψN , we arrive at the inequalityˆ
k−1<v<m

|∇v|2
v

ψN� dx ≤ 2

ˆ
Rd

�fm,k(v)LbμψN dx

+

ˆ
k−1<v<m

|h|2ψN dν + 2

ˆ
Rd

〈h,∇ψN 〉 ln
(
(k−1 ∨ v) ∧m

)
dν.

We observe that |fm(v)| ≤ C(m,k)v and
∣∣
∣∣

ˆ
Rd

�fm,k(v)LbμψN dx

∣∣
∣∣ ≤ C(m,k)

ˆ
Rd

|LbμψN | dν.
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We have

|LbμψN | ≤ N−2|Δψ|+N−1|bμ||∇ψ|
and LbμψN = 0 outside of the set {N < |x| < 2N}. Therefore, it follows from our assumption (1 +

|x|)−1|bμ(x)| ∈ L1(ν) that

lim
N→∞

ˆ
Rd

�fm,k(v)LbμψN dx = 0.

In addition, ˆ
Rd

〈h,∇ψN 〉 ln
(
(k−1 ∨ v) ∧m

)
dν ≤ (ln k + lnm)N−1 max |∇ψ|

ˆ
Rd

|h| dν.

Letting first N → ∞ and then m,k → ∞, we arrive at the desired estimate.

Let us now consider case (ii). Set

ψN (x) = ζ(V (x)/N),

where ζ ∈ C∞(R1), ζ ′ ≤ 0, ζ ′′ ≥ 0, ζ(0) = 1 and ζ(t) = 0 if t > 1. We observe that

LbμψN = N−1ζ ′(V/N)LbμV +N−2ζ ′′(V/N)|∇V |2.
Let us substitute the functions fm and ψN into (7) and use equality (8). We haveˆ

k−1<v<m

|∇v|2
v

ψN� dx ≤ 2

ˆ
Rd

�(fm,k(v)− v lnm− k−1)LbμψN dx

− 2 lnm

ˆ
Rd

〈h,∇ψN 〉 dν +

ˆ
k−1<v<m

|h|2ψN dν

+ 2

ˆ
Rd

〈h,∇ψN 〉 ln
(
(k−1 ∨ v) ∧m

)
dν.

We observe that

(fm,k(v)− v lnm− k−1) ≤ 0, |fm,k(v)− v lnm− k−1| ≤ C(m,k)(1 + v)

and

�(fm,k(v)− v lnm− k−1)LbμψN ≤ C(ζ,m, k)MN−1(�+ v�)V.

For every δ ∈ (0, 1) the following inequality holds:

N−1

ˆ
V <N

V d(μ+ ν) ≤ δ

ˆ
V <δN

1 d(μ + ν) +

ˆ
δN<V <N

1 d(μ + ν);

therefore,

lim sup
N→∞

N−1

ˆ
V <N

V d(μ+ ν) ≤ 2δ.

Since δ was arbitrary, we have

lim
N→∞

N−1

ˆ
V <N

V d(μ + ν) = 0,

whence we find that

lim sup
N→∞

ˆ
Rd

�(fm,k(v) − v lnm− k−1)LbμψN dx ≤ 0.

Finally, we observe that 〈h,∇ψN 〉 = N−1ζ ′(V/N)〈h,∇V 〉 and, for every δ ∈ (0, 1),

N−1

ˆ
V <N

∣∣〈h,∇V 〉
∣∣ dν ≤ (N−1 + δ)

ˆ
V <δN

∣∣〈h,∇V 〉
∣∣(1 + V )−1 dν
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+ (N−1 + 1)

ˆ
δN<V <N

∣∣〈h,∇V 〉
∣∣(1 + V )−1 dν.

As above, we conclude that

lim sup
N→∞

ˆ
Rd

〈h,∇ψN 〉 ln
(
(k−1 ∨ v) ∧m

)
dν ≤ 0.

Letting first N → ∞ and then m,k → ∞, we arrive at the desired estimate. The same reasoning applies
in the manifold case.

Note that condition (i) is satisfied if |bμ(x)| ≤ C1 +C2|x| or if |bμ(x)| ≤ C1 +C2|x|k and the function
|x|k−1 is ν-integrable. If ν has all moments, then any polynomial bound on |bμ| is sufficient.

Corollary 1. Suppose that, in addition to the hypotheses of Theorem 1, it is assumed that the
solutions μ and ν have second moments and the measure μ satisfies the logarithmic Sobolev
inequality with constant C. Then

W2(μ, ν)
2 ≤ C2

4

ˆ
Rd

|bμ − bν |2 dν,

‖μ− ν‖2 ≤ C

2

ˆ
Rd

|bμ − bν |2 dν.

In case (ii) of the theorem, these estimates hold on a Riemannian manifold.

Proof. This assertion follows immediately from the theorem and the transport and Pinsker–Kullback–Csiszár
inequalities.

Let us consider an important partial case illustrating the last corollary.

Let b be a Borel locally bounded vector field on R
d satisfying the following condition:

(H) 〈b(x)− b(y), x− y〉 ≤ −κ|x− y|2 for some κ > 0 and all x, y ∈ R
d.

It is known (see [23] or [12, Theorem 5.6.36]) that condition (H) ensures that every probability
solution μ to the equation L∗

bμ = 0 satisfies the logarithmic Sobolev inequality with constant 2/κ.

Moreover, in this case 〈b(x), x〉 → −∞ as |x| → ∞ and condition (ii) of Theorem 1 is fulfilled with
V (x) = |x|2. In addition, the equation L∗

bμ = 0 has the unique probability solution μ and |x|2 ∈ L1(μ).

Thus, we arrive at the following assertion.

Corollary 2. Let bμ and bν be locally bounded Borel vector fields satisfying condition (H) and let
μ and ν be the corresponding probability solutions to equation (1) such that |bμ − bν | ∈ L2(μ+ ν).
Then, for every number γ ∈ [0, 1], the following estimate

W2(μ, ν) ≤ κ−1‖bμ − bν‖L2(μγ ),

where μγ = γμ+ (1− γ)ν, holds.

Remark 1. If condition (H) is fulfilled just for bμ and |bμ − bν | ∈ L2(ν), then

W2(μ, ν) ≤ κ−1‖bμ − bν‖L2(ν).
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We now apply Corollary 2 to a nonlinear stationary Fokker–Planck–Kolmogorov equation.

Let P2(R
d) denote the space of all Borel probability measures on R

d with finite second moment.

Suppose that, for every measure μ ∈ P2(R
d), we are given a locally bounded Borel vector field b(·, μ)

on R
d. Set

Lμu(x) = Δu(x) + 〈b(x, μ),∇u(x)〉, u ∈ C2(Rd).

As in the linear case, the measure μ ∈ P2(R
d) is called a solution to the nonlinear stationary

Fokker–Planck–Kolmogorov equation

L∗
μμ = 0 (9)

if we have ˆ
Rd

Lμu(x)μ(dx) = 0 ∀u ∈ C∞
0 (Rd).

Corollary 3. Suppose that, for every measure μ ∈ P2(R
d), the vector field b(·, μ) satisfies condition

(H) with a common (for all measures μ) constant κ > 0. Assume also that there exists a number
C > 0 such that

|b(x, μ) − b(x, ν)| ≤ CW2(μ, ν) for all x ∈ R
d, μ, ν ∈ P2(R

d).

If C < κ, then there exists a unique solution to equation (9) in the class P2(R
d).

Proof. We define a mapping F : P2(R
d) �→ P2(R

d) as follows:

μ = F (σ) ⇐⇒ L∗
σμ = 0.

By Corollary 2, we have the estimate

W2(μ1, μ2) ≤
C

κ
W2(σ1, σ2), μ1 = F (σ1), μ2 = F (σ2).

Then the mapping F is contractive if C < κ. By the Banach contracting mapping theorem, there exists
a unique solution of Eq. (9).

Corollary 4. Suppose that, for every measure μ ∈ P2(R
d), the vector field b(x, μ) satisfies condi-

tion (H) with a common (for all μ) constant κ > 0. Suppose that there exist a number C > 0 and
a function Ψ > 0 with

lim
|x|→∞

|x|−2Ψ(x) = +∞

such that, for every measure μ, there is a Lyapunov function Vμ for which

LμVμ ≤ C −Ψ.

Suppose also that if a sequence {μn} of measures in the set

K =
{
μ ∈ P2(R

d) :

ˆ
Rd

Ψ dμ ≤ C
}

converges to a measure μ with respect to the metric W2, then the fields b(·, μn) converge to b(·, μ)
in L2(μ). Then equation (9) has a solution in P2(R

d).

Proof. We observe that K is compact with respect to the metric W2. Indeed, given a sequence of
measures μn ∈ K, we can pick a weakly convergent subsequence with a limit μ ∈ P2(R

d), since the
measures μn have uniformly bounded second moments due to our condition on Ψ. Moreover, the same
condition yields that the integrals of the function |x|2 with respect to μn converge to the integral of this
function with respect to μ, which shows that W2(μn, μ) → 0 (see [2, Theorem 1.1.9]). Obviously, K is
convex.

MATHEMATICAL NOTES Vol. 96 No. 6 2014
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Let F be the same as in the proof of the previous corollary. By Corollary 2, we have the estimate

W2(F (μ), F (σ)) ≤ κ−1‖b(·, μ) − b(·, σ)‖L2(σ),

which, by our assumptions, yields the continuity of F on the convex compact set K. By Schauder’s
theorem, there exists a fixed point and this point is a solution of Eq. (9).

Corollary 5. Suppose that, for every measure μ ∈ P2(R
d), the vector field b(·, μ) satisfies condition

(H) with a constant κ(μ) > 0. Assume also that there exists a positive Borel functionQ on R
d such

that

|b(x, μ)− b(x, σ)| ≤ Q(x)W2(μ, σ)

for all x ∈ R
d, μ, σ ∈ P2(R

d). If μ, σ ∈ P2(R
d) satisfy equation (9) and ‖Q‖L2(σ) < κ(μ), then

μ = σ.

Proof. According to Remark 1 one has the estimate

W 2
2 (μ, σ) ≤ κ−2‖Q‖2L2(σ)W

2
2 (μ, σ).

If ‖Q‖L2(σ) < κ(μ), then W 2
2 (μ, σ) = 0 and μ = σ.

In conclusion, we give examples illustrating these corollaries.

Example 1. Let

b(x, μ) = −kx−∇U(x)−
ˆ

∇W (x− y)μ(dy),

where U and W are continuously differentiable convex functions such that

|∇W (z1)−∇W (z2)| ≤ C|z1 − z2|.
It is clear that b satisfies the hypotheses of Corollary 3. If k > C, then the corresponding equation
possesses a unique probability solution.

Let us now give an example of non-uniqueness that exhibits a substantial difference between the
nonlinear and linear cases.

Example 2. Let d = 1 and b(x, μ) = −x+B(μ), where the vector B(μ) is the mean of the measure μ,
i.e.,

B(μ) =

ˆ
xμ(dx).

Any measure μa with density �a(x) = (2π)−1/2 exp
(
−|x− a|2/2

)
is a solution to our nonlinear equation

L∗
μμ = 0. Indeed, B(μa) = a and

b(x, μa) =
∇�a(x)

�a(x)
= −(x− a).

We observe that condition (H) for such b is fulfilled with κ = 1. Let us verify the second condition in
Corollary 3:

|b(x, μ)− b(x, σ)| ≤
ˆ ˆ

|x− y|π(dx, dy) ≤

√ˆ ˆ
|x− y|2 π(dx, dy),

where π is an arbitrary probability measure on R
d ×R

d having projections μ and σ on the factors. Since
π is arbitrary, we arrive at the required estimate with constant C = 1. On the other hand, if κ > 1, then,
by Corollary 3, our equation has a unique solution given by density

k1/2(2π)−1/2 exp
(
−k|x|2/2

)
.

Thus, the condition C < κ in Corollary 3 is sharp.

Analogous results are true for more general elliptic operators with variable second order coefficients
and also in the infinite-dimensional case. These questions will be considered in a separate paper.
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10. V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “On uniqueness problems related to elliptic equations
for measures,” J. Math. Sci. 176 (6), 759–773 (2011).

11. V. I. Bogachev, A. I. Kirillov, and S. V. Shaposhnikov, “On probability and integrable solutions to the
stationary Kolmogorov equation,” Dokl. Russian Acad. Sci. 438 (2), 154–159 (2011) [Dokl. Math. 83 (3),
309–313 (2011)].
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