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Abstract—The methodology of cloud detection from the data of the Himawari-8 geostationary satellite using
a convolutional neural network is considered. The model of the cloud classifier has been tested in various sce-
narios, including winter and summer at night and daytime, as well as at day and night change. According to
the test results, it has been found that, even in complex scenarios, the classifier has minimal errors when com-
pared to the cloud-detection algorithms used in global operational practice.
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INTRODUCTION
Real-time information acquisition and relatively

high spatial resolution allow geostationary satellites to
be considered the primary tool for global environmen-
tal, climate, and atmospheric monitoring. Instruments
mounted on geostationary satellites can take images in
a wide range of wavelengths, from visible to longwave
infrared, which makes it possible to use them to solve
various problems related to detecting dangerous
weather phenomena, monitoring volcanic activity,
detecting fires, etc. These and many other problems
imply the use of a cloud mask, which has a number of
requirements. The mask must be calculated in real time
taking into account the high frequency of imaging. The
mask must be calculated for different climatic condi-
tions. In addition, some problems, e.g., monitoring for-
est fires or analyzing cloud formations, assume mask
calculation not only in day time, but also at night.

Based on the problems currently being solved in the
Far-Eastern Center of the State Research Center for
Space Hydrometeorology Planeta, there is a need to
create a cloud mask that takes into account the above
requirements. This article proposes an algorithm for
daytime and nighttime cloud detection specifically
designed for geostationary satellite data using the
Himawari-8 satellite data. The approach used in this
work is based on the application of a convolutional
neural network–based texture classifier (LeCun and
Bengio, 1995). The classifier uses spectral and spatial
(textural) features, which makes it possible to extract
almost the maximum amount of information useful
for cloud detection from satellite images. The classifi-

cation method is based on previous research in this
field (Mahajan and Fataniya, 2019; Ganci et al., 2011;
Dronner et al., 2018; Andreev et al., 2019) and is opti-
mized for a higher data processing rate with minimal
loss in classification quality, which makes it possible to
use it in real time for geostationary satellites with high
acquisition frequency.

CLOUD DETECTION METHODS
Rapid and accurate cloud detection is a challenge

taking into account all the variety of external factors,
and although various techniques for cloud detection
have been presented over the past few decades, the
development of more sophisticated and accurate meth-
ods is still ongoing (Mahajan and Fataniya, 2019). To
date, several approaches can be conventionally identi-
fied: threshold-based methods, statistical methods, and
machine learning and neural network approaches (Sun
et al., 2016).

The threshold-based approach is the most com-
mon. It is based on the spectral analysis of the under-
lying surface and cloud cover in each pixel of the
image. Thresholding algorithms are simple to imple-
ment and are characterized by a low computational
complexity, and the classification results are easy to
physically justify. Nevertheless, the quality of these
algorithms depends to a large extent on the accuracy of
the selection of threshold coefficients. The process of
selecting these coefficients is very time-consuming for
territories with different climatic conditions. In addi-
tion, in complex scenes where there are snow or opti-
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cally thin cirrus clouds, the quality of classification is
significantly reduced due to the similarity of the spec-
tral characteristics of snow and clouds containing ice
crystals (Chen et al., 2018; Stillinger et al., 2019), as
well as due to the spectral distortion which occurs
when radiation passes through clouds.

The use of radiative transfer models made it possible
to improve the threshold algorithms. Simulating all
kinds of spectral brightness coefficients under various
combinations of parameters, such as solar and satellite
zenith angles, atmospheric aerosol content, etc., makes
it possible to significantly improve the accuracy of
thresholding (Imai and Yoshida, 2016). This method is
highly efficient, especially when combined with neural
network algorithms (Chen et al., 2018), but currently
has a significant limitation, i.e., the simulation of
reflectance values at the upper boundary of the atmo-
sphere is only done for pixels, but not for textures. As a
consequence, texture information about the underlying
surface and cloud cover becomes unavailable.

Statistical methods of cloud detection are based on
regression equations obtained using statistical analysis
of the values of spectral reflectance and brightness
temperature among cloudy and cloudless pixels. In
practice, these methods are most often used for pre-
liminary data analysis and have the same drawbacks as
the threshold methods, i.e., low efficiency of separat-
ing snow and clouds, as well as errors in detecting opti-
cally thin clouds. However, this approach can serve as
the basis for constructing a cloud classifier (Amato
et al., 2008).

Building classifiers based on machine learning
algorithms is also a common approach in cloud detec-
tion. This approach consists of an automated selection
of thresholds based on statistical data using the feature
sets of each object being classified, thus combining the
advantages of the techniques described above. Neural
networks are a special case of machine learning algo-
rithms. Practice shows that the neural network
approach combined with texture and spectral features
shows the highest accuracy in cloud detection (Dron-
ner et al., 2018; Mahajan and Fataniya, 2019).

The cloud detection method proposed in this arti-
cle is based on the use of a convolutional neural net-
work whose architecture is optimized for the fast pro-
cessing of geostationary satellite images. In general,
the method is universal for low-resolution satellite
instruments and can be applied to both geostationary
and polar orbiting satellites. As with any method based
on machine learning algorithms, the convolutional
neural network-based classifier model needs to be
trained on preformed data.

DATASET FORMATION
The first step in developing a classification algo-

rithm is to collect, label according to class affiliation,
and preprocess training and test data of the required
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size. Let the necessary sample volume be such that, if
it is doubled, the overall level of classification accuracy
changes insignificantly (less than 1%) while observing
the condition of proportionality of the test and train-
ing sample volumes (the approximate volume ratio of
1 : 4, respectively, is accepted in this work). Note also
that the training sample cannot contain samples from
the test sample for the same time of satellite imaging.
Multispectral images from the Advanced Himawari
Imager (AHI) instrument mounted on the Himawari-
8 geostationary satellite (Da, 2015) were used in this
work. The data cover the time interval from January
2016 to July 2019 in a total of 302 images over the Asia-
Pacific region (30°–65° N and 105°–180° W).

In order to solve the cloud detection problem,
spectral channels previously successfully used in the
works of other authors (Wang et al., 2019; Afzali
Gorooh et al., 2020) and known to be effective in sim-
ilar tasks were applied. These include visible and infra-
red wavelength channels reduced to a spatial resolu-
tion of 2 km: 0.64, 0.86, 1.6, 2.3, 3.9, 6.9, 7.3, 8.6, 11.2,
and 12.4 μm, from which the training sample was sub-
sequently formed.

Each sample from the dataset is a third-order ten-
sor Xi,j,k, where the indices i and j correspond to the
row and column of the image and k is the spectral
channel number of the device. Each sample was
assigned a class label {0, 1} depending on whether the
central pixel p(ic, jc) ( , k = 1…C) is
cloudy or a cloudless underlying surface, respectively,
where T is the texture size, C is the number of spectral
channels, and ic and jc are coordinates of the texture
center. The central pixel can be located not only in the
center of the object in question, but also at the bound-
ary of two or more classes (provided that this boundary
is visually distinguishable).

The classification algorithm speed largely depends
on the texture size. Therefore, in this work, the texture
size T was assumed to be five pixels for the best use of
computational resources. In (Ganci et al., 2011), this
size was previously successfully applied to the problem
of cloud detection from the SEVIRI data. In addition,
as will be found later, a smaller texture size contributes
to the increased detail of the resulting cloud mask in
comparison with the results of the previous study
(Andreev et al., 2019), where a size of 32 pixels was used.

The training datasets were formed in a sequential
manner. The first stage of training sample formation
involved the manual classification of points on satel-
lite images by experienced decoders using RGB spec-
tral channel synthesis of 0.64, 0.86, and 1.6 μm for
daytime and 3.9, 11, and 12 μm for nighttime. Classi-
fied points totaling 5000 examples included samples of
snow, ice, water surface, soil, and various types of cloud
cover. Subsequently, these points became texture cen-
ters that were used to train the algorithm. After the pre-
training, a test classification was performed on new test
images, which had not previously been encountered in
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the training or test sample. The classification results
were analyzed, in the process of which errors were
detected. Then, for these test images, the data in the
error areas were relabeled and the new labeled data
were added to the training and test samples, after
which the algorithm was retrained. This recursive pro-
cess continued until the number of classification errors
was reduced to a minimum (in this work, this proce-
dure was repeated up to ten times). This approach
reduces the amount of data used in training and
focuses on problematic cases of classification making
adjustments to the data collection process. As a result
of this work, the total amount of data was approxi-
mately 62000 texture samples.

In order to increase the number of training tex-
tures, they were augmented by rotating around the
center every 90° and reflecting horizontally, which
increased the original sample size to 495000.

The texture data obtained in the daytime and
nighttime were combined into a single sample and
subjected to preprocessing. Reflectance values at the
upper boundary of the atmosphere were normalized
by the solar zenith angle:

where Refcorr is the corrected reflectance value, Ref is
the original reflectance value, and SZA is the solar
zenith angle value per pixel. Each spectral channel was
then normalized between 0 and 1. Reflectance values
at solar zenith angles greater than 85° were equated to
zero. This value of the zenith angle was selected based
on the results of (Godin, 2014), where the problem of
matching the daytime and nighttime cloud masks was
also solved. The data generated in this way were fur-
ther used to train and test the classification algorithm.

CLASSIFICATION ALGORITHM

The classification algorithm is based on a convolu-
tional neural network which was previously success-
fully used for object recognition on satellite images
(Francis et al., 2019). The convolutional neural-net-
work algorithm in the classification problem consists
in the sequential transformation of the tensor of the
source image (texture) using the convolution opera-
tion by matrix kernels to the output vector, in which
one of the possible classes is encoded. The coefficients
of matrix kernels are selected automatically in the
learning process while encoding certain features of the
image (straight lines, meshes, angles, etc.). When a
sliding window passes over a certain region of the
image and the convolution operation is applied, a
response is generated in the form of a probability value
that there is a certain feature in this region. The com-
bination of such features serves as an indicator for a
particular texture class (e.g., snow in the mountains).
In addition, the values of the features (brightness tem-

= ,
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perature and spectral brightness coefficients) also
carry a significant amount of information.

The MetNet3 neural network model built in this
work is a further development of the architecture pre-
sented in (Kramareva et al., 2019) and (Andreev et al.,
2019). A number of improvements were made to this
architecture in order to reduce its computational com-
plexity with a slight deterioration in classification
accuracy (not more than 1.5%), taking into account
the results of recent research in this area (Szegedy
et al., 2016). One such improvement is the transition
to a fully convolutional architecture by replacing the
fully connected output neural layers with a combina-
tion of convolutional layers, which reduced the com-
putational complexity. Another architectural solution
is the introduction of skipping connections between
layers in order to extract texture features at different
scales and reduce the phenomenon of model retrain-
ing. Subsequently, the two architecture branches that
have output tensors A and B are combined into a single
tensor C through the ⊕ concatenation operation
(which consists in alternate adding elements of the B
tensor to the end of the A tensor):

where i, j, k, m, and n are tensor indices, k = m + n. A
similar approach in the architecture was successfully
tested in (Drönner et al., 2018; Mateo-Garcia et al.,
2019) on cloud detection by segmenting the entire
multispectral image from geostationary satellite data,
which is generally similar to the approach used in this
article, where classification is performed using the
sliding-window method for each pixel separately.

Before starting the training process, a small (15% size
of the source dataset) validation sample was extracted
from the training dataset, intended to evaluate the
algorithm in the training process and to adjust its
parameters. In the final evaluation of the classification
results, this set was subsequently not used.

The neural network was trained using the Adam
algorithm (Kingma and Ba, 2014), for which the stan-
dard learning rate was set to 10–4. The cross-entropy
formula for the case of binary classification (Sad-
owski, 2016) was used as the target loss function. The
classification model converges after approximately
400 iterations of the training algorithm (the conver-
gence character is exponential) in the considered
problem with the specified training parameters.

The algorithm for implementing the classifier
model was developed in the Python 3.7 programming
language using the TensorFlow 1.14 and Keras 2.2.4
neural network modules. The maximum calculation
time for a 2300 × 7500–pixel cloud mask (region 30° N
65° W to 75° N 200° W) takes up to 4 min using the fol-
lowing hardware configuration: an Intel Core i7-5820K
CPU, an NVIDIA GTX 1060 GPU, 16 GB of CPU
RAM, and 3 GB of graphics card RAM. Therefore,
the specified calculation time makes it possible to

= ⊕ ,ijk ijm ijnC A B
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Table 1. Results of a classification precision evaluation for
the validation dataset

Time of day Precision, % Recall, % F1, %

Daytime 96.14 97.86 96.99
Nighttime 98.87 98.59 98.73
apply this classifier in the real-time mode on this
hardware.

ANALYSIS OF RESULTS
The quality of cloud masks obtained by the classi-

fier presented in this article was evaluated using a val-
idation dataset, as is common in machine learning
problems, and by comparing the results with the per-
formance of cloud detection algorithms used in global
operational practice. Precision, recall, and the F1-
measure indicator, which is a harmonic average of pre-
cision and recall (Friedman et al., 2001), were used as
evaluation metrics:

(1)

(2)

(3)

where:
• TP (True Positive) is the number of examples

where there is cloudiness in the example under con-
sideration and in the reference.

• FP (False Positive) is the number of examples
where there is cloudiness in the examined example but
no cloudiness in the reference.

• FN (False Negative) is the number of examples
where there is no cloudiness on the examined example
but there is cloudiness in the reference.

The validation sample for daytime and nighttime
included about 14000 examples of cloudy and cloudless
textures. This sample was generated using 76 observa-
tion terms from January 2016 to July 2019. Following
formulas (1), (2), and (3), the results presented in
Table 1 were obtained for the validation sample.

The results presented in Table 1 indicate a high
generalizability of the classifier under consideration,
since the validation sample data are not contained in
the training sample data. A slightly higher precision of
the classification at night is due to a slightly less repre-
sentative sample of textures. This is caused by the fact
that manual classification using only IR channel data
is much more labor-intensive, because there are often
situations when it is problematic to unambiguously
distinguish the presence or absence of cloud cover in
the pixel in question. When auxiliary information such
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as ground-station data was not available, such cases
were not included in the training and test datasets.

Another approach was also considered for a more
comprehensive evaluation of the classifier. The main
idea of this approach is a pixel-by-pixel comparison of
cloud masks, with the reference ones obtained using
known valid algorithms. In this work, the NOAA
JPSS_GRAN product containing a binary cloud mask
based on data from the VIIRS SC NOAA-20 instru-
ment (https://www.bou.class.noaa.gov) was selected
as the reference. This cloud mask is generated by an
algorithm based on a series of threshold tests described
in detail in (Godin, 2014). This algorithm takes into
account the underlying surface type, data on wind
speed and direction near the sea surface, water content
in the atmospheric column, and air temperature in the
surface layer.

Due to errors observed in the cloud masks from the
VIIRS instrument data, the cloud mask from the 2B-
CLDCLASS-LIDAR product (http://www.cloudsat.
cira.colostate.edu) generated from CloudSat and
CALIPSO satellite data is used as a reference in winter
time. This cloud mask is a track with a width of 1 pixel
(approximately 1.4 km) (Sassen, 2008), along which
the vertical sounding of the atmosphere was carried
out in order to detect cloudiness and subsequently
classify it. The threshold algorithm used to process this
data uses data on cloud height, temperature, reflec-
tance, and optical thickness.

The mask comparison used VIIRS instrument
data from August 1–5, 2019, and February 1–5,
2020, as well as CloudSat and CALIPSO data from
February 1–8, 2017. The maximum difference in
acquisition time between the reference instruments
(VIIRS, CloudSat, and CALIPSO) and AHI is not
more than 5 min. On the cloud masks in the places of
their intersections, polygons were cut in the total
number of 32 pcs., examples of which are shown in
Figs. 4–8. The polygons are distributed throughout
the Asia-Pacific region. Table 2 shows the average val-
idation results for the different scenarios.

The precision evaluation results showed a slightly
higher result for CloudSat data when compared to
VIIRS. This fact is explained by the fact that CloudSat
takes measurements along the track, so the number of
points related to cloud boundaries is small. In the case
of VIIRS cloud masks in the form of images, the con-
tribution of boundary values is taken into account to a
greater extent, which leads to a slight decrease in pre-
cision when compared with these masks.

Daytime Summer

From the results of the visual analysis (see Fig. 1)
and metrics calculation (Table 2), we can note that the
VIIRS cloud mask is comparable to the cloud mask
obtained by the developed classifier from the AHI
data. The VIIRS cloud mask has false positives along
 Vol. 57  No. 9  2021



1166 ANDREEV, SHAMILOVA

Fig. 1. Examples of cloud masks for 2 h 20 min on Aug. 4, 2019, UTC (top row) and 3 h 30 min on August 5, 2019, UTC (bottom
row): (a, c) RGB channel synthesis (R: 0.64, G: 0.86, B: 1.6 μm); (b, d) AHI cloud mask (red) superimposed over the VIIRS
mask (green); enlarged mask fragments are shown in the right-hand area of the figure. The blue lines indicate the coastal line
(solid) and coordinate grid (dashed).
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coastlines, rivers, and lakes. The AHI cloud mask is
devoid of these drawbacks, although it tends to fail to
fully identify the edges of optically thin clouds (Fig. 1d,
enlarged scale in the right region of the figure, bottom
row). The incomplete extraction of the optically thin
cloudiness can be regarded as an advantage or a disad-
vantage, depending on the purpose of the mask.

According to the tests, the AHI cloud mask has an
average precision of about 96% and recall of 94%
when compared to the VIIRS mask, which is a rather
high-quality indicator.

Nighttime Summer

The cases where instrument imagery in the visible
wavelength range is not available are significantly more
IZVESTIYA, ATMOSPHER

Table 2. Precision evaluations for tested polygons

Used instrument, scenario Precisio

VIIRS cloud mask, summer, daytime 95.86
VIIRS cloudiness mask, summer, nighttime 95.43
CloudSat cloud mask, winter, daytime 97.73
challenging. In this case, the main problem is the detec-
tion of lower layer cloudiness (layer, layer-cumulus,
etc.), because their temperature is close to the underly-
ing surface temperature, which makes their detection in
the infrared range much more difficult. Figure 2 shows
examples of polygons at night during summer.

Based on the analysis of formulas (1) and (2) (high
precision and low recall) and the results of Table 2, as
well as the visual evaluation, it follows that the VIIRS
cloud mask often has a large number of false positives
(areas highlighted by circles in Fig. 2), which is con-
firmed by the high precision index (on average, 95%)
and low recall (63%). The AHI cloud mask confi-
dently detects convective cloudiness, but omissions
can be observed for clouds located at the periphery of
a large cloud mass.
IC AND OCEANIC PHYSICS  Vol. 57  No. 9  2021
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Fig. 2. Examples of cloud masks for Aug. 1, 2019, 13:40 UTC (top row) and August 2, 2019, 18:30 UTC (bottom row): (a, d) RGB
channel synthesis (R: 3.9, G: 11.2, B: 12.4 μm), dark regions correspond to lower temperatures; (b, e) AHI cloud mask (red); and
(c, f) comparison with VIIRS masks (green). Circles indicate regions of interest. The blue lines show the coastal line (solid) and
coordinate grid (dashed).
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Daytime Winter

The previously mentioned problem of cloud detec-
tion in the presence of snow and ice demonstrates the
shortcomings of thresholding techniques well, as can
be seen in the VIIRS cloud mask in Figs. 3b and 3e.
The algorithm used to compute the VIIRS mask deter-
mines the probability of cloud presence for each pixel,
but even at a probability value of 0.995 artifacts in the
form of a large amount of noise are observed, espe-
cially for mountainous areas. On the AHI cloud mask
(Figs. 3c, 3f), the cloudiness fields are completely cor-
rectly identified and ice and snow are recognized with
a high degree of precision.

The CPR (radar) and CALIOP (lidar) instruments
of CloudSat and CALIPSO satellites, respectively,
were considered alternatives to the VIIRS instrument
in this work. Precision estimates using this product are
given in Table 2 for winter daylight hours. The preci-
sion of the validated cloud mask is quite high here
(97% on average), which is confirmed by the visual
analysis of the AHI satellite images. The available
errors are mainly due to instrument mismatches in
time and angle of observation, as well as to the high
IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS 
sensitivity of microwave instruments to aerosols con-
tained in the atmosphere.

Nighttime Winter

Due to the fact that the 2B-CLDCLASS-LIDAR
data are not available at night, a visual quality evalua-
tion was performed for this scenario. Figure 4 shows an
example of the AHI cloud mask compared to the
VIIRS mask (Fig. 4d). For ease of analysis, a synthesis
of visible channels during the daytime is also presented
to evaluate the snow cover distribution.

By analyzing the classification results in the winter
night time, we can conclude that the cloud mask
according to the VIIRS instrument actually has the
same drawbacks as in summer: artifacts along the
coastline and “cloud overestimation,” but the number
of false classifications of snow is low. Ice is observed in
the area indicated by the circle, which was also mis-
classified by the VIIRS Mask as cloud cover. The mask
identifies cold convective clouds and detects snow and
ice in the AHI instrument data well but still often
“underestimates” cumulus and layer clouds.
 Vol. 57  No. 9  2021



1168 ANDREEV, SHAMILOVA

Fig. 3. Examples of cloud masks for Feb. 1, 2020, 0:40 UTC (top row) and Feb. 8, 2020, 3:20 UTC (bottom row): (a, d) RGB
channel synthesis (R: 0.64, G: 0.86, B: 1.6 μm); (b, e) VIIRS cloud mask (red); and (c, f) comparison with VIIRS masks (green).
The blue lines indicate the coastal line (solid) and coordinate grid (dashed).
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Fig. 4. Example of the cloud mask for Feb. 7, 2020, 17:50 UTC: (a) RGB channel synthesis (R: 0.64, G: 0.86, B: 1.6 μm) for
Feb. 7, 2020, 2:00 UTC to estimate snow distribution; (b) IR channel 11 μm, darker areas have lower temperatures; and
(c) VIIRS cloud mask (green) compared to the AHI mask (red). Circles indicate regions of interest. The blue lines show the
coastal line (solid) and coordinate grid (dashed).
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Alternation of Day and Night

Finally, let us consider a scenario in which there is a

transition between daytime and nighttime cloud

masks. Figure 5 shows a typical example in which a

cloud that can be clearly seen in the visible image

merges with the underlying surface in the infrared
IZVESTIYA, ATMOSPHER
range (the area is indicated by a white circle in Fig. 5a).

Note also that such examples of cloud cover were not

included in the training dataset due to difficulties in

their manual interpretation by specialists at night. The

cloud cover in the lower part of the image shows a

smooth transition of the cloud cover mask through the

terminator line set at 85° on the zenith angle of the Sun.
IC AND OCEANIC PHYSICS  Vol. 57  No. 9  2021
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Fig. 5. Example of the cloud mask for Aug. 2, 2019, 21:00 UTC: (a) RGB channel syntheses (R: 3.9, G: 11.2, B: 12.4 μm) and
(R: 0.64, G: 0.86, B: 1.6 μm) left and right of the terminator line, respectively; (b) AHI cloud mask. The circle indicates the region
of interest. The blue lines show the coastal line (solid) and coordinate grid (dashed).
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CONCLUSIONS

This article considered one of the most promising
approaches to cloud detection using geostationary sat-
ellite data by the example of the Himawari-8 satellite
based on the application of a convolutional neural net-
work and taking into account the spectral and textural
characteristics of clouds and the underlying surface.

The quality of the cloud masks obtained using the
classifier proposed in this work was evaluated using the
validation texture set, as well as by a pixel-by-pixel com-
parison with cloud masks from SC NOAA-20, Cloud-
Sat, and CALIPSO data. The validation process
included a comprehensive quality evaluation using Pre-
cision, Recall, and f1-measure metrics under various
scenarios, including winter and summer, nighttime and
daytime, and the transient process (dusk/dawn). Due to
the labor intensity of the validation process, its results
do not claim to be absolutely complete; nevertheless,
according to the available data, we can conclude about
the high quality of the obtained classifier, the results of
which can be used for practical purposes.

The undoubted advantages of the approach used in
this work are the high precision of snow and ice detec-
tion, no need to use third-party data (except for satellite
instrument images), and the universality of the algo-
rithm with respect to different climatic and geographi-
cal conditions. The latter is achieved by supplementing
the training sample with data obtained for other territo-
ries by the additional training of the existing model. In
this case, the threshold algorithms require a manual
selection of coefficients and consideration of territorial
and temporal dependences in the analytical form. At
the same time, the approach considered in this work
makes it possible to take into account more complex
dependences than in the threshold algorithms.
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The disadvantages of the classifier model include

the incomplete extraction of stratus and cumulus

clouds (especially at night) and a slight smoothing of

the mask (a consequence of using the texture method

for classification), which leads to its lower level of

details. In general, the disadvantages of the approach

used in this work can also include the high labor

intensity of the formation of the training sample,

because at this stage a manual markup of large vol-

umes of data (tens of thousands for the most accurate

classification) with the involvement of experienced

specialists in the decoding of satellite images is

required. Note that partly the share of manual labor

can be reduced by applying already existing cloud

masks when preparing a new training sample. In

addition, the possibilities of maximally automating

the generation of training texture sets are currently

being investigated.

According to the authors, one of the further direc-

tions for improving the classifier, in addition to the

spectral and spatial (texture) components, is to take into

account the temporal dependence, which requires con-

sidering a sequence of satellite images. Since a cloud is

a dynamic system, the analysis of the temporal compo-

nent in each pixel of the image can improve the accu-

racy of cloud detection against the background of a

static underlying surface. One promising direction for

further research is also to improve the detection accu-

racy of the lower cumulus and stratus clouds at night.

Based on the results of this work, the classifier

model was introduced into the operational work of the

Far Eastern Center of the State Research Center for

Space Hydrometeorology Planeta as part of the soft-

ware package for calculating cloud cover parameters.
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