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Abstract—An approximate analytical description of the nonstationary evolution of cylindrical nonlinear sol-
itary waves with a complex structure is given. A modified Gardner equation with a boundary condition in the
form of a “wide” soliton close to the limiting one is analyzed. The analysis shows a qualitative difference in
the behavior of converging and diverging waves, as well as a difference from the quasi-stationary dynamics of
cylindrical solitons.
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INTRODUCTION
As shown by satellite observations, internal gravity

waves, which are observed everywhere in the World
Ocean, often have curvilinear fronts [1–3]. Such a
picture is typical for internal waves generated by local
disturbances in shelf regions of seas and oceans. In the
literature, the influence of cylindrical divergence on
propagation of long weakly linear waves was studied in
detail within the framework of the integrable cylindri-
cal Korteweg–de Vries (KdV) equation [4–10]. In
particular, the law describing the variation in the
amplitude of the KdV cylindrical soliton 
where r0 is the initial coordinate of the soliton, was
obtained in the quasi-stationary approximation and is
corroborated by many numerical and laboratory
experiments [6–10]. At the same time, the amplitude
of observed solitary internal waves in many cases is not
small, and their width considerably exceeds that pre-
dicted in the KdV model [11–14]. In this case, the
Gardner equation, which contains quadratic and cubic
nonlinearities and is also often used for modeling non-
linear wave processes in a stratified liquid [11–20], can
serve as a good approximation. In [14, 15], the Gard-
ner ray equation allowing one to take into account the
nonunidimensionality of wavefronts of nonlinear
internal waves in the ocean with variable depth and
hydrology was obtained; in [16], numerically and as
part of the approximate quasi-stationary theory, the
influence of weak cylindrical divergence on the trans-
formation of solitary internal waves of different types
existing at different signs of nonlinearity coefficients
and dispersion of the Gardner equation was studied.
The very widespread two-layer fluid model is character-
ized by the existence of limiting amplitude solitons [17].
Solitons close to limiting (we call them large) have the

form of rectilinear pulses and can be treated as com-
posite structures formed by more elementary station-
ary waves—kinks (field drops). Similar solitons with a
composite structure were also found in a numerical
investigation of Euler equations in a smoothly strati-
fied f luid [18]. As established in [16], the dynamics of
a cylindrically diverging wide soliton in the quasi-sta-
tionary approximation qualitatively differs from the
similar dynamics of a KdV soliton: first, such a soliton
preserves the almost limiting amplitude, becomes nar-
rower, and only then begins to decrease in the ampli-
tude according to the quasi-stationary law 
typical for KdV solitons and, correspondingly, to
expand as  At the same time, for wide solitons,
an approximate approach was developed [21–24]. It
presents an analytical description of the significantly
nonstationary evolution of such solitary waves which
are already dissimilar to solitons in shape. In addition,
the shape of the initial solitary wave can be signifi-
cantly distorted, up to the birth of new solitons. The
main idea in this approach is the transition from the
traditional description of the evolution of solitons as
integral formations to the description of the evolution
of kinks constituting them and nonstationary fields
beyond the kinks. Using this approach allows one to
study nonstationary processes appearing during the
interaction of solitons [12, 21] and their propagation
in media with variable parameters [22–24], when the
scales of disturbing factors become comparable and
even significantly less than scales of solitary waves. In
particular, using this approach, parameters of soli-
tary internal waves were successfully calculated at the
so-called critical points related to the change in the
sign of the quadratic nonlinearity of the Gardner
equation [24, 28]. Such situations are typical, in par-
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ticular, for solitary internal waves in the shelf zone of
oceans and seas [25–28].

In this work, based on the abovementioned
approach, the essentially nonstationary behavior of
cylindrically diverging and converging localized waves
in the Gardner equation is studied. For brevity, we call
them quasi-solitons. Converging (focused) waves are
considered not only due to nontrivial features of their
evolution, but also due to the fact that such waves can
be observed in a real ocean, e.g., when a diverging
wave is ref lected from a steep concave shore.

WIDE SOLITONS 
AS COMPOSITE FORMATIONS

We proceed from the Gardner equation supple-
mented with a summand responsible for the cylindri-
cal geometry of the problem far from the center [16,
25, 26]:

(1)

According to [25, 26], the variable  in the mode
approach is related to the displacement of particles at
the horizon of the maximum of the corresponding

mode and  is time in the accompanying sys-

tem of coordinates; the signs ( ) relate to converging
and diverging waves, respectively. For internal waves,
parameters α0, μ0, and β and the velocity of long lin-
ear waves c0 are determined by liquid stratification.
The applicability limits of Eq. (1) were discussed,
e.g., in [29].

The change of the variable  reduces Eq. (1)

to an equation with variable coefficients:

(2)
where

Gardner equation (1) with a zero right-hand side
describes the evolution of solitons of internal moder-
ate amplitude waves in a two-layer f luid well; a gener-
alization of (1) to the case of parameters slowly varying
in the horizontal direction was presented in [14, 15]. In
problem (2), which is evolutionary in the variable r,
growing values r > r0 are in correspondence with cylin-
drically diverging fronts; converging fronts correspond
to decreasing values r < r0.

At constant coefficients α, β, and μ > 0, Eq. (2) has
a family of soliton solutions:
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depending on an arbitrary pedestal  and
dimensionless parameter  All other parame-
ters entering into expression (3a) can be written in
terms of  and b:

(3b)

The soliton amplitude  and

duration  at the level  can also be expressed in

terms of b:

(3c)

The dimension of parameters s, sm, and s0 entering
into (3a), (3b), and (3c) is inverse to velocity. For brev-
ity, below we call them slownesses. Note, however,
that the quantity s in physical variables (r, t) is propor-
tional to the addition to the velocity c0.

In addition to soliton solutions, Eq. (2) at constant
parameters has a one-parameter family of solutions in
the form of field drops—kinks:

(4)

where ± corresponds to kinks of different polarities
(kinks and antikinks).

The structure and characteristics of solitons (3a) sig-
nificantly depend on the magnitude of the parameter b.
At , the soliton amplitude is small ( )
and solution (3a)–(3c) is close to the soliton KdV
solution. In the other limiting case, when  the
soliton amplitude tends to the limit (  and
the solitary wave acquires a rectangular shape in the
form of an extended plateau with a duration .
The plateau is bounded by relatively narrow field drops
close to kinks (4). In the general case, solitons (3a) can
be considered composite formations formed by kinks (4)
of different polarity. This property manifests itself in
the most obvious way in solitons at  when, as
shown in [22–24], solution (3) has the form of a
superposition of kinks (4):

(5)

where variations in time coordinates of the front 
and drop  are determined by the equations
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(6)

Solutions (5), (6) describe a stationary composite
soliton, duration  of which is connected with

parameters of the kink  by Eq. (6) which agrees

with the exact relation for slowness s from (3a).
Indeed, at , we obtain from (3a)

In the presence of disturbances caused by the
smooth variation of parameters  and  in (2),
the evolution of the composite soliton can be
described as the dynamics of kinks constituting it, in
agreement with the slow variation of the field beyond
the kinks. Such an approach includes as a particular
case the previously considered quasi-stationary evolu-
tion of the soliton as a whole, when its spatiotemporal
scales remain small when compared to the scale of dis-
turbing factors during the propagation [16]. Let us
briefly discuss this problem for wide solitons using the
approach developed here. In this case, the shape of the
wide soliton remains close to rectangular, its ampli-
tude is close to limiting  and the
duration  is determined by Eq. (6).
However, it is simpler to determine the last depen-
dence from preservation of the integral in Eq. (2):

 =  [13, 25].

Taking into account the rectangular shape of the
wave and setting  = 0, we immediately obtain

 for a wide cylindrical soliton, it fol-
lows that

(7)

Note that the amplitude of the cylindrical soliton
for the initial variable and its inverse velocity sm do

not depend on r and are equal to  and , respec-

tively. In contrast to known results (see, e.g., [16]),
relation (7) describes in an explicit form the variation
in the single parameter of the composite cylindrical
soliton—its width Δ(r). Note that dependence (7) also
follows from the general expression for the integral
presented above; the expression is valid for solitons
with any 
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where the constants B and C are determined by the
condition at  At b  1, expression (8) is reduced
to (7); at b  1, (8) implies the abovementioned law
of variation in the amplitude of the cylindrical KdV
soliton.

CONSTRUCTION 
OF THE NONSTATIONARY SOLUTION

Let us turn to the main case, where the pulse loses
its shape close to a stationary soliton and acquires a
composite (quasi-soliton) structure consisting of a
smoothly varying vertex bounded by sharp field drops
(kinks) which vary in a quasi-stationary manner.
According to the method of matched asymptotic
expansions in the form proposed in [21–24], the solu-
tion is first constructed separately for kinks and for
significantly more extended regions between them;
then, these solutions are joined. Here, it is assumed
that the scale of the disturbing factor (in this case, the
radius r) significantly exceeds the kink width. Such an
interrelation of scales allows one to consider the evo-
lution of each kink as quasi-stationary, i.e., described
according to (4), and the slow variation in the field
beyond kinks is determined by Eq. (2) in the disper-
sion-free approximation:

(9)

i.e., by the equation of a simple wave with variable
parameters. In what follows, for simplicity, parame-
ters α0, μ0, and β are set to be unity.

The solution of Eq. (9) is well-known; it is reduced
to the solution of the characteristic system of equa-
tions in ordinary derivatives:

(10)

which determines characteristic lines in the 
field; along the lines, the field  is transported
without any change in its magnitude.

To determine the initial and boundary conditions
of (9), we use the assumption above about the quasi-
stationary character of the kink evolution. This makes
it possible to connect the slowly varying fields adjacent
to the kink which lies on radius r at time . Let us

denote this field at  as  and the field at

 as  as is shown in Fig. 1. Here, k = 
for the leading kink (front) and k = c for the rear kink
(drop). Note that, since characteristics (10) transport
disturbances from the front to the drop, the wave
before the leading kink propagates independently from
the field behind it, although it has an effect on this
field. In particular, if this field is zero at the initial
point, it remains equal to zero during the evolution.

0.r r= @

!

0 0

00

Φ Φ Φ Φ 0,r Tr rr r

 α μ+ − = 
 

0
0

ФФ Ф , 0,rdT dr r
dr r dr

 = − = 
 

( ),r T
( ) Φ ,r T

( )kT r

( )kT T r> ( )kΦ r+

( )kT T r< ( )kΦ ,r− f
IC AND OCEANIC PHYSICS  Vol. 57  No. 2  2021



DYNAMICS OF NONSTATIONARY CYLINDRICAL SOLITARY INTERNAL WAVES 173

Fig. 1. Scheme of the evolution of the (a) diverging and (b) converging wide soliton (the dashed line is the soliton shape at the
initial point, at r = r0; the solid line is the soliton shape at (a)  and (b) ).  is the instant of the front passage

through the point r0 and  is the instant of the drop passage through the same point.  are values of the field at 

and  are those at  for the front and drop, respectively. Here and below, in the given frame of reference, the converging
wave is displaced to the left; the diverging wave is given to the right along the T axis. 
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The relation between the fields directly near the kink
(an analog of the boundary condition at the weakly
shock wave in a compressible medium) has the form

(11)
This relation follows from the expressions for asymp-

totics of kink (4), which are equal to 
 for the kink and   for the

antikink, respectively, and the elimination of  using the
determination of  from (3a).

Trajectories of kinks  are determined by the
quasi-stationary expression for sm following from (3a):
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quantity  because, with allowance for (11), the
equality of characteristic slownesses—the right-hand
sides in the first equation of (10)—is valid:

 =  they, in

turn, appear to be less than the quantities  from (12).

The last fact means that, as was mentioned above, the
disturbances generated by the kink are behind it and
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have no effect on the field before it. Therefore, as the
line of initial data for solution (9), one should take the
trajectory of the kink (e.g., the front)  with the

distribution of the field  on it for converging fronts

and  for diverging ones. As a result, Eq. (12) deter-
mines the slowly varying field  in the region
between kinks, i.e., at all T >  for converging
fronts and  for diverging fronts, including
the field near the trajectory of the next kink, at

 which is found from Eq. (12) using the
obtained solution  at  Then, adding
the field distribution directly after the drop from rela-
tion (11) to the dependence , we obtain the initial
conditions for the determination of the slow field in
region following the soliton drop. Thus, the construc-
tion of the general solution using the proposed algo-
rithm consists of a consequent determination of fields

 and trajectories of kinks and antikinks 
beginning from the region situated before the first kink
and corresponding to the front.

Let us consider in more detail the situation where
disturbances before the soliton at the initial point 
are absent and, therefore, according to what has been
said, will be also absent in what follows. This makes it
possible to immediately determine from (10)–(12) the
magnitude of the field near the quasi-soliton front
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Fig. 2. Solid lines are trajectories of the front and drop of a converging soliton, dashed lines are characteristics calculated by
Eqs. (10)–(12), and dots are the results of the numerical calculation of Eq. (2).
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expands directly after the front due to the front motion.
The field is determined by the solution of Eq. (10) with
conditions (13) and has the form

(16)

where 

CONVERGING AND DIVERGING WAVES
Let us now consider examples of using the devel-

oped approximate theory and comparison with results
of direct numerical modeling of the initial Eq. (2).
Figure 2 shows the trajectories of the front, drop, and
corresponding characteristics for a cylindrically con-
verging quasi-soliton.

Expression (16) describes in an implicit form the
field on a part of the quasi-soliton top from the front
to the beginning of the f lat part (until this part exists)
and for the duration of the pulse from the front to the
drop, when the f lat part of the top disappears.

The region with the inhomogeneous and nonsta-
tionary distribution of the field appears also after the
drop. This distribution is also described by expres-
sion (16), when the front trajectory  is
replaced by the drop trajectory  and the
dependence  is replaced by . They are
found from the relations
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For converging waves, it is necessary to use the
dependence  =  for diverging waves,

( ) =  Note that the dependences 
and  are known until there exists the f lat part
of the top because the field near the drop from the
direction of the top is constant and equal to unity (see
Fig. 1), and all quantities in (17) are defined. After
the disappearance of the f lat part of the top, the field
magnitude near the drop from the direction of the
top changes. It is found from expression (16) at T =

 both for converging solitary waves 

and for diverging  ones:

(18)

Differentiating (18) with respect to r and excluding

 using (17), we obtain an equation for 
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solution can be represented in a parametric form.
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(  ) a parametric dependence on R and,
consequently, on r. Finally, we present an expression
for the field distribution after the drop in a paramet-
ric form:

(22)

The domain of applicability of the obtained solu-
tion is, generally speaking, restricted with respect to r
and T because the slowness of the evolution of the
field  can be broken by the appearance of sin-
gularities caused by the intersection of characteristics
of (16) and leading to the formation of singularities in
the form of fragments with infinite steepness and sub-
sequent nonuniqueness of the field (which is typical
for simple waves). Differentiating expression (16) with
respect to , we obtain the condition for the appear-

ance of these singularities  in the form of the

transcendent equation

(23)

having two real roots greater than unity:  = 1.2 and
 = 3.09. Since the field of the quasi-soliton top is

formed by disturbances transported along characteris-
tics from the front to the drop, the quantity

 for converging waves is always less
than unity. Therefore, singularities do not appear in
the distribution between kinks, although they are pos-
sible behind the quasi-soliton (see Fig. 3). In addition,
since characteristics of (16) diverge, the field between
kinks monotonically increases from the front to the
drop. In this process, the time interval between the
drop and the front also monotonically increases:

(24)

The general picture of the evolution of a converging
soliton is shown in Figs. 2 and 3. The soliton front moves
with a constant velocity to the point  =

 and the quasi-soliton drop moving first
in the same direction as the front decelerates and stops
at ; then it begins to move in the opposite

direction with an increasing velocity 

The characteristic scale of the field drop  for the
front turns out to be constant; for the drop, it tends to
zero as  Finally, we note that the field drop
at the quasi-soliton front in the initial field variables

 remains constant and equal to unity and the
field at the drop increases as  (Fig. 3). It is
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Fig. 3. Evolution of a cylindrically converging quasi-soliton with an initial duration  at different values of r (r = r0 = 600,
r = 300, 200, 100, 50, and 5). The dotted-and-dashed line corresponds to calculations by the approximate model and the solid lines
are the numerical calculation of Eq. (2).
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remarkable that, even at r = 5, when the scale of the
field drop at the front  already exceeds the dis-
tance from the center, the prevailing part of the pulse
(a considerable part of the top and the drop) is well
described by the approximate theory. Since the pro-
cess of field transformation goes in the direction from
the front to the drop, relatively great differences at r = 5
take place only near the front; in particular, its posi-
tion  is greater than the numerical
value approximately by 20 units of T. This is caused by
the action of dispersion, leading to spreading both of the
front itself and of the top part, where nonlinear effects
strongly steepen the field distribution (see Fig. 3).
Finally, let us note that the approximate approach cor-
rectly describes the magnitude and distribution of the
field on an interval of about 50 units of T in the region
behind the drop up to the point r = 1. From the other
side of this almost f lat part at r ≈ 300, a packet of oscil-
lations appears, growing in amplitude and forming
due to the upset of the slowly varying field after the
quasi-soliton drop. With an increase in r, leading
oscillations are transformed into a sequence of solitons
with an amplitude close to limiting, i.e., approxi-
mately equal to the field jump at the drop.

For cylindrically diverging waves (r > r0), the field
drop on the front increases with propagation

 therefore, the field magnitude at any
point of the top is less than the field magnitude on the

(6 6)√

( )5 125 fT r = ≅ −

( ) 0(Φ );f r r r=
IZVESTIYA, ATMOSPHER
front  and the formation of a singularity in the
form of a field region with a large gradient turns out to
be possible inside the quasi-soliton. In the case of the
appearance of such singularity, dispersion effects lead
to the appearance of oscillations, the subsequent
growth of which leads to the decay of the initial soliton
into a sequence of shorter solitary waves. The regular
(without singularities) evolution is implemented only
for relatively short quasi-solitons. The initial duration
of the soliton , before which the regular evolu-
tion of the solitary wave is implemented, is found from
the condition for the coincidence of coordinate rcr, at
which the singularity is formed, and the coordinate ,
at which the f lat part of the top disappears. Since the
field value at the point of the coincidence is equal to
unity, we obtain from (18) the value  ≈ ;
from condition (15)  = 0, we have

(25)

When the evolution is regular, the pulse is mono-
tonically compressed:

(26)
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Fig. 4. (a) Evolution of a narrow  diverging composite quasi-soliton at different radii r (r =   and
). (b) Same for a wide soliton ( ). The solid lines are the numerical calculation of Eq. (2). The dashed lines

correspond to calculations by the approximate model. 
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up to the formation of a short solitary wave, the further
evolution of which occurs according to a scenario
close to the evolution of the KdV soliton. In spite of
the monotonic variation in  the field distribution
on the quasi-soliton top varies nonmonotonically: the

ratio  of the fields at the front and drop increases

until there is a f lat part of the top, and it decreases after
the disappearance of the flat part; at the same time, the
ratio remains greater than unity. The field after the drop
with the same polarity as the quasi-soliton itself varies
in a similar manner: the field amplitude first increases
and begins to decrease after the disappearance of the
flat part of the top (Fig. 4a). These features of the evo-
lution of a diverging quasi-soliton are also traced for
sufficiently narrow solitons considered in [16].

( ),rΔ

f

с
+

Φ
Φ

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS 
For a decaying wide quasi-soliton, at  a
similar process leads to the formation of new pulses at
the drop. At the beginning, the first of them has a scale
depending only on rcr. At a later stage, however, the
compression rate of this pulse is determined to a con-
siderable extent by the quantity  Since the num-
ber of shorter solitary waves appearing after the leading
pulse increases with an increase in , the distance
at which these solitary waves detach from the leader
also increases. The abovementioned effects can be
seen by comparing the evolution of diverging quasi-
solitons with different  in Figs. 4a and 4b. Note
that the approximate theory in this case well describes
the whole process only up to relatively small distances,

 although it also correctly determines the
pulse position and amplitude at later stages.
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Finally, note that qualitative differences in the behav-
ior of converging and diverging wide pulses are caused by
the different relationship of characteristic slownesses of

top points  and slowness of its front  In converg-

ing waves, the quantity  for any points of the top has

the opposite sign with respect to  therefore, the

disturbances are drifted in the direction from the front
to the drop at any place of the top and no singularities
appear in the field distribution on the quasi-soliton
top. For diverging waves, the characteristic slowness is
positive at any point of the top; i.e., these points move
in the same direction as the front. The slowness of
each point of the top increases from zero near the front
to a value exceeding the front slowness by half. At a
sufficient pulse duration, disturbances from the front
do not reach the drop and are accumulated, which just
leads to the formation of field singularities.

CONCLUSIONS

This analysis allows one to describe the evolution
of localized nonlinear cylindrical waves in the modi-
fied Gardner equation beyond the quasi-stationary
situation. The initial condition corresponds here to the
wide soliton; however, in the process of evolution, the
pulse becomes significantly nonstationary and its
approximate description is achieved by the matching
of quasi-stationary kinks with a weakly dispersive field
inside and outside the pulse (quasi-soliton).

For cylindrically converging solitary waves, their
evolution, as in the quasi-stationary case, occurs with
an increase in their duration (this trend is clear even
from the condition of energy conservation). At the
same time, however, their shape greatly differs from
the rectangular shape and the difference in field drops
and velocities of the front and drop are so great that do
not allow one to characterize the process as quasi-sta-
tionary. In the case of cylindrically diverging solitons,
the nonstationarity of the process is pronounced to a
lesser extent when compared to the case of a converg-
ing wave. In particular, the difference between magni-
tudes of fields and front and drop velocities does not
exceed 1.2. As expected, the duration of the solitary
wave decreases both in the nonstationary and in the
quasi-stationary cases; however, the regular character
of the evolution turns out to be possible only for suffi-
ciently short initial solitons. For solitary waves with a
long duration, a singularity appears on their top. The
singularity generates field oscillations, the growth of
which, in turn, leads to the soliton decay into relatively
short solitary waves. Our approach made it possible to
determine, for the initial solitary wave, the critical
value of the duration  beginning from which it

dT
dr

.fdT
dr

dT
dr

;fdT
dr

crΔ = Δ
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decays:  (see (22)). The corresponding

critical width of the soliton Lcr = 

As for internal waves observed in the ocean, we
here note that, first, as mentioned in the Introduction,
wide (as compared to KdV solitons) solitary waves and
their groups are observed everywhere in the ocean (see
also the survey [30]) and, second, such waves not
always propagate as stationary or quasi-stationary for-
mations (e.g., [31]). In particular, the estimate above
for the conditions of the transition from the quasi-sta-
tionary regime to the significantly nonstationary
regime and the description of the latter for waves with
curvilinear fronts can be useful for interpreting oce-
anic observations. A more detailed application of the
theory to specific oceanic situations should be a sub-
ject of an individual investigation.
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