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INTRODUCTION
In recent decades, data have been collected, pro-

cessed, and interpreted; retrospective analysis has been
carried out; and high-quality models of subsystems of
the global biogeochemical system have been developed
within a number of international research projects on
global changes on the Earth in order to create predictive
models taking into account modern models of the
global climate system. Currently, a coordinated
approach to the development and application of global
climate system models (including the atmosphere,
oceans, the cryosphere, and the biosphere), as well as
the estimation of the sensitivity of climate predictability
using such coupled models, is being developed.

There is increasing interest in the problems of
assimilating and processing observational data for ret-
rospective analysis in different branches of knowledge
in connection with studies of global changes on Earth.
In problems of geophysical hydrodynamics, in partic-
ular, in meteorology and oceanography, mathematical
models are used to study and predict hydrodynamic
fields. These models are based on the laws of hydrody-
namics, which follow from the conservation of mass,
momentum, energy, etc., which leads to systems of
nonlinear partial differential equations. These equa-
tions, although necessary, are insufficient to predict
the evolution of fields. Additional information is
required, including, in particular, initial conditions
and model parameters. This information can be
obtained by observations. Data assimilation methods
are used to predict the state of the f low at the right
moment based on all available observations.

In recent decades, significant progress has been
made in Earth sciences due to improved observation
systems and understanding of laws of geosystems.
A fairly accurate description of the initial conditions is
one of the fundamental requirements for successful
forecasting in oceanography. Data assimilation aims
to obtain the best (in a certain sense) estimation of the
state of a physical system from its observations and an
adequate mathematical model.

The data assimilation method is widely used in
Earth sciences. It is most popular in meteorology and
oceanography, where atmospheric and ocean obser-
vations are assimilated into atmospheric and oceanic
models in order to obtain initial conditions (or other
model parameters) for further modeling and forecast-
ing. In recent years, data assimilation methods have
been also used to analyze other observations of the
geosystem including the biosphere, the cryosphere,
and the soil surface.

Researchers have always wanted not only to know
and understand the climatic and current states of
hydrodynamic fields in the atmosphere and the ocean,
but also to be able to predict them. It is necessary to
estimate the current state, which, in turn, depends on
a certain state in the past, to make a forecast for the
future. The first attempts to estimate the state of the
system based on the analysis of observational data
were made in meteorology in the middle of the
19th century by Vice Admiral Robert FitzRoy,
founder of the British Meteorological Service. Subjec-
tive analysis (the simplest data interpolation) was then
used by Richardson [1], Charney [2], and Phillips [3].
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Eventually, objective analysis replaced manual graph-
ical interpolations of observational data with more rig-
orous mathematical methods, from polynomial inter-
polation and sequential estimation algorithms to mod-
ern variational methods.

Data assimilation methods were most developed in
dynamic meteorology and physical oceanography, as
well as in the real-time numerical prediction of atmo-
spheric and oceanic fields. To date, theoretical and
practical ideas of data assimilation can be found in
technical [4, 5], mathematical [6–9], and geophysical
literature [10–13]. The Seventh International Sympo-
sium of the World Meteorological Organization on
observation data assimilation in meteorology and
oceanography (Brazil, September 2017: http://www.
cptec.inpe.br/das2017/) showed significant progress
in the practical application of modern assimilation
methods based on the optimal control approach (vari-
ational data assimilation) and on the sequential esti-
mation approach (statistical methods), as well as on a
combination of both approaches (hybrid methods).

Currently, intensive studies on the development of
information computation systems (ICS) using obser-
vation data assimilation procedures (satellite, ship-
board, etc.) are being conducted in a number of coun-
tries. The development of modern information and
computing systems can rightly be attributed to the
interdisciplinary fundamental problems of computer
science, mathematics, physics, and many other areas
of science and technology. The development of such
ICS’s is nowadays necessary from the point of view of
economy, national security, and other needs of the
state and society. The most important problems here
are the implementation of real-time short-term and
long-term weather forecasts, determining the areas of
high biological productivity, ensuring the safety of
navigation and selection of optimal ship routes, con-
trolling the ecology of the sea, detecting and monitor-
ing especially dangerous phenomena (such as storm
surges and tsunamis), and predicting marine disasters
and estimating possible damage they may cause and the
risks arising from them. The problems of monitoring
and predicting the state of the environment are of vital
importance for human society. New geoinformation
technologies, including the technology for developing
variational observation data assimilation, make it possi-
ble to develop a unified system for monitoring and fore-
casting geosystems for global monitoring programs.

In recent years, there have been qualitative changes
in measurement systems. The global scientific com-
munity is receiving more and more measurements of
various characteristics of our geosystem. Therefore,
the development of technologies for variational obser-
vation data assimilation based on modern approaches
is an urgent problem.

In this paper, we review and analyze approaches to
data assimilation in problems of geophysical hydrody-
namics, from the simplest sequential assimilation
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schemes to modern variational methods. Special
attention is paid to the study of the problem of varia-
tional assimilation in a weak formulation, in particu-
lar, to the construction of an optimality system and the
estimation of the covariance matrices of the optimal
solution errors. This is a new direction of research in
which the author has obtained some results.

1. METHODS AND APPROACHES 
TO OBSERVATION DATA ASSIMILATION

1.1. Basic Notation and Formulation of the Problem
Consider a mathematical model that describes the

evolution of a hydrodynamic system (atmospheric,
oceanic, or coupled) as follows

(1.1)

where x is the state vector of the model, M is the cor-
responding dynamic operator of the model, and  is
the vector of the initial state. In numerical simulation
or prediction, dynamic operator M is generally nonlin-
ear and deterministic, while the true f low field differs
from (1.1) by a random or systematic error. In geo-
physical hydrodynamics, (1.1) is usually a system of
nonlinear partial differential equations, which is often
called a distributed parameter system in mathematical
literature. The dependent variable x is called the field.

Observations are given by some vector function
, which satisfies the following equation:

(1.2)

where H is the observation operator,  is the true
f low field, and  is the error function (noise). Func-
tion  is assumed to be given, while there is usu-
ally no information about function . Operator H, as
well as M, can be nonlinear. It sets the mapping of the
state vector to the observation space.

Strictly speaking, Eqs. (1.1) and (1.2) should be
considered in the corresponding function spaces, and
in each specific case it is important to investigate ques-
tions of solvability and properties of the solution of the
problem for the development of numerical algorithms.

When model (1.1) is discretized over time using
finite differences, finite elements, or (pseudo) spectral
methods, a discrete model describing the transition
from time  to time  is often obtained:

(1.3)

where  is the state vector with a dimension of ,
 is the number of the time step, and  is the differ-

ence operator of the state vector dynamics. In dis-

( )

=

 = >

 = 00

, , 0

,t

dx M x t t
dt
x x

0x

( )0y t

( ) ( )= + ε0 ,ty t H x

tx
ε

( )0y t
ε

it +1it

( ) ( )( )+ =1 ,i i ix t M x t

( )ix t n
i iM
IC AND OCEANIC PHYSICS  Vol. 55  No. 1  2019



METHODS FOR OBSERVATION DATA ASSIMILATION IN PROBLEMS OF PHYSICS 19
crete model (1.3), observations  at time  are given
by the following equation:

(1.4)

where  is the observation operator at time ,
is the true state, and  is the error function. Vectors
 have dimensions . In most practical problems,
is much smaller than .
Additional information (for example, initial condi-

tions and unknown parameters of the model, which
can be obtained using observational data) is required
to predict the evolution of f lows in problems of geo-
physical hydrodynamics. Thus, the data assimilation
problem arises: for a given observation function ,
it is required to find, for example, an unknown a priori
initial condition so that the state vector x satisfies
problem (1.1) and vector H(x) is in any sense close
to . The resulting solution of x is called a state

estimate (or analysis) and is denoted by .

1.2. Objective Analysis and Its Generalizations
The first attempt at objective data analysis was

made by Panovsky [14] using two-dimensional (2D)
polynomial interpolation of observational data. Later,
this approach was developed by Gilchrist and Cress-
man [15], who introduced the area of influence for
each observation and suggested using the so-called
initial approximation field (background), the field
from the previous forecast.

The approach of Bergthorsson and Doos [16] is
based on an analysis of the difference between the
observed data and the initial approximation and opti-
mization of the weight assigned to each observation.
This approach was later modified by Cressman [17],
who proposed the successive correction method
(SCM), which is an iterative algorithm for determin-
ing the state vector:

(1.5)

where k is the iteration number,  is the initial
approximation, W is the weight operator, and H is the
observation operator from (1.2). After a sufficiently
large number of iterations,  is the state estima-
tion. Successive iterations approximate observational
data on ever smaller scales, as was shown in [17]. The
disadvantage of the method is that the observational
data, the errors of which are not taken into account,
are approached more and more accurately during iter-
ations. Nevertheless, it is widely used for real-time
weather forecasting.

The nudging method, which consists of adding a
term such as (1.5) to the right-hand side of dynamic
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system (1.1), is a generalization of the method of suc-
cessive corrections for nonstationary problem (1.1):

(1.6)

This term causes the model solution to approach the
observational data as accurately as possible. This
method was first used in meteorology in [18] and later
in oceanography in [19–21]. This method is still of
interest. Its new versions have appeared, in particular,
the BFN algorithm [22].

1.3. Statistical Methods, 
Sequential Assimilation Algorithms

The use of statistical interpolation methods was a
very important breakthrough in solving data assimi-
lation problems. This approach goes back to
A.N. Kolmogorov (1941), the works of N. Wiener
(1949), and in Earth sciences it became known
thanks to the monograph by L.S. Gandin [23]. This
approach is also called optimal interpolation (OI)
[24, 25]. Observations are assigned weights that are
associated with observational errors. At the same
time, the initial approximation field is not the first
approximation for analysis, as previously, but is used
together with its error characteristic along with other
observational data.

Let observation operator H be linear and observa-
tion function y0 and the field of the first approxima-
tion xb be given as follows:

(1.7)

where errors ε and εb are assumed to be random
Gaussian vectors with zero expectation and covari-
ance matrices

(1.8)

The problem of optimal interpolation is to find the
estimate  minimizing deviation  based on
data (1.7)–(1.8), for example, in the sense of the min-
imum trace of the covariance matrix of the analysis:

(1.9)
Then the optimal interpolation method consists of
determining the analysis of  using the following for-
mula [11, 12]:

(1.10)

where H* is the operator adjoint to H.

According to (1.10),  is computed as the field of
the initial approximation  plus the correction, which
is nothing but the result of the action of some weight
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operator on the vector . The latter is called
the innovation vector or residual of observations.

It can be seen that the optimal interpolation
method in the form of (1.10) is equivalent to the opti-
mal control problem, which reduces to finding the
minimum of a quadratic functional:

To do this, its first derivative should vanish:

Hence, we obtain

Optimal interpolation algorithm (1.10) can be divided
into the following steps:

(1.11)

(1.12)

(1.13)

where Eq. (1.11) is written in the space of observations
and (1.12)–(1.13) is written in the state space.

The optimal interpolation method has been used in
many operations centers since the late 1970s [24, 26].
Later, this method was developed in the works of Lor-
enc [27, 28], who used different approximations to
solve equations (1.11)–(1.13) and introduced the anal-
ysis correction method, which is a “hybrid” of optimal
interpolation and successive corrections.

The optimal interpolation method and its modifi-
cations have so far been most widely used for real-time
data analysis in weather forecasting [27, 29–32], as
well as in assimilation of oceanographic data [33–35].
Ensemble optimal interpolation (EnOI) [36, 37],
which makes it possible to construct parallel data
assimilation algorithms [38], has gained great popu-
larity.

The Kalman filter, which extrapolates dynamic
variables and their covariances at each step and then
recursively refines the state estimate [39], is a general-
ization of the optimal interpolation method. The con-
tinuous analog of this method is often called the Kal-
man–Bucy filter [40]. There are different generaliza-
tions of this method to the nonlinear case [4].
Currently, the extended Kalman filter (EKF) [41, 42],
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which uses model linearization near a certain known
state, is very popular. A.S. Sarkisyan, V.V Knysh,
G.A. Korotaev, etc. [43–47] made a significant con-
tribution to the development of Kalman filter methods
and methods of 4D analysis of hydrophysical fields
based on dynamic–stochastic models of the ocean. In
recent years, the ensemble Kalman filter (EnKF) [48–
50], which is based on the Monte Carlo method at
every time step, has become very popular.

1.4. Variational Methods
The use of variational methods and, in particular,

optimal control methods was significant progress in
solving data assimilation problems. The idea of mini-
mizing a certain functional related to observational
data on the trajectories (solutions) of the model under
consideration turned out to be very productive. Thus,
the data assimilation problem is formulated as an opti-
mal control problem. The theoretical foundations of
research and solution of such problems were laid in the
classical works of R. Bellman (1957), L.S. Pontryagin
(1962), N.N. Krasovsky (1969), J.-L. Lions (1968),
G.I. Marchuk (1961), etc. Variational formalism was
used for the first time in Sasaki meteorology [51, 52]
and in problems of dynamic oceanography, Provost
and Salmon [53].

It is necessary to calculate the gradient of the orig-
inal functional when solving minimization problems.
One important step in this direction was the use of the
theory of adjoint equations (Marchuk, 1964; Lions,
1968). Adjoint equations have been widely used for the
study and numerical solution of data assimilation
problems (including the calculation of the gradient of
the functional) by many researchers [58–68], starting
from the well-known works (Penenko [54], Marchuk
and Penenko [55], Le Dimet and Talagrand [56],
Lewis and Derber [57]).

Three-dimensional variational data assimilation
(3D-VAR) was used for real-time analysis for the first
time at the National Center for Environmental Predic-
tion (NCEP) [69] and later at the European Centre for
Medium-Range Weather Forecasts (ECMWF) [70].

Currently, four-dimensional data assimilation
(4D-VAR) is attracting more and more attention, in
which linearized and adjoint models are used to
assimilate observational data not at a specific time, but
at a given time interval. The 4D-VAR system was used
for the first time at the ECMWF [71].

Let us dwell on the formulation of the problem of
4D-VAR data assimilation using the example of the
problem of restoring the initial condition. Consider
problem (1.1) on the interval :

(1.14)
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and introduce the functional of its solution:

(1.15)

where  is the (linear) observation operator from
(1.2),  is the observation function,  is the given
vector, ,  are weight operators, and  is the sca-
lar product. Usually, ,  are selected in the follow-
ing form: , , where ,  is the cova-
riance matrix of vectors  and

, respectively: , 
under the assumption that ε and  are random Gauss-
ian vectors with zero expectation. Such weight opera-
tors (or their approximations) are often used in practi-
cal problems [12, 72, 73].

Suppose that initial condition  from (1.14) is
unknown to us. Then the simplest data assimilation
problem is formulated as follows: find ,  such that
they satisfy (1.14) and functional (1.15) reaches its
smallest value on set of solutions (1.14). In other
words,

(1.16)

The necessary optimality condition [6] leads this
problem to a system for three unknowns , , x*:
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where  is the operator adjoint to the deriva-
tive of the dynamic operator of model M. System (1.17)–
(1.19) is called the optimality system and plays an import-
ant role in the study and numerical solution of data
assimilation problems. This system can also be obtained
from the Pontryagin maximum principle formulated for
problem (1.16) [61] or by the Lagrange multipliers
method [74].

The solvability of nonlinear data assimilation prob-
lems and rigorous justification of numerical methods
for their solution is not a simple problem. Sufficiently
complete results concerning the solvability of linear
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optimal control problems of form (1.16)–(1.19) were
obtained by Lions using the Hilbert Uniqueness
Method (HUM) that he developed. Some results
about the solvability of weakly nonlinear data assimi-
lation problems were obtained in [60, 75, 67]. Further
generalizations and new applications have been pro-
posed in recent years [76, 77, 68].

Problems of form (1.16) are currently numerically
solved by well-known optimization algorithms devel-
oped in classical works. A number of new iterative
algorithms for solving data assimilation problems
using adjoint equations were proposed in [60–63, 67,
68], etc.

It is possible to use known minimization methods
for problem (1.16) or solve optimality system (1.17)–
(1.19) to construct a numerical algorithm for solving
the data assimilation problem. In the numerical solu-
tion of a problem, it is often necessary to calculate the
gradient of original functional J. This can be done
using an adjoint problem selected in a suitable man-
ner. In the case under consideration, the gradient of
the functional is calculated as follows: for a given , we
successively find the solutions of the direct and adjoint
problems

(1.20)

(1.21)

and put

(1.22)

In the works of many authors, much attention is paid
to the numerical construction of adjoint model (1.21),
which can be obtained both by the discretization of con-
tinuous problem (1.21) [66, 78, 79] and the direct trans-
position of the code of the discrete linearized problem
[68, 80, 81]. In the latter case, automatic differentiation
methods are often used [82, 83, 74]. These two
approaches to the construction of a discrete adjoint
problem were compared, for example, in [78, 84].

The properties of the optimal solution itself play an
important role, along with the study of solvability, as
well as the development and justification of algorithms
for the numerical solution of problems of variational
data assimilation. The question of the sensitivity of
optimal solutions of variational assimilation problems
to the errors of observational data and model errors is
extremely important. This question has been, until
recently, little studied. However, a number of results
have been obtained using control operators over the
last few years [85–92]. Equations for the optimal solu-
tion error were obtained and investigated through the
errors of the observational data in the problem of
restoring the initial condition. The sensitivity of the
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optimal solution was investigated using singular vec-
tors of control operators. It turned out that fundamen-
tal control functions, which are singular vectors of
response operators, play an important role in the study
of errors [85, 88, 90, 92].

Currently, 4D data assimilation algorithms [10, 11,
13] seem to be the most effective. In recent years there
have been many studies comparing the ensemble Kal-
man method (EnKF) and variational data assimilation
[93–99]. In addition, a so-called hybrid approach has
appeared. It combines the ensemble Kalman method
and the variational data assimilation, Hybrid 4D-VAR
[100–104], as well as the ensemble method of 4D-VAR
assimilation, 4DEnVar [105–110].

2. COVARIANCE MATRICES 
OF OPTIMAL SOLUTION ERRORS

The a posteriori covariance matrix is an important
characteristic of the optimal solution obtained from
the optimality system of the variational data assimila-
tion problem. This section is devoted to the develop-
ment of algorithms for the study of covariance opera-
tors of errors of optimal solutions of problems of vari-
ational data assimilation using the cost functional
Hessian. The theoretical foundations of the algo-
rithms were laid in [85, 111–113].

Consider the variational data assimilation prob-
lem by the example of initialization problem (1.14),
for which optimality system (1.17)–(1.19) is valid.
It is assumed that the input data are given with errors:

 where 
 and  is the exact solution of problem

(1.14) for :

(2.1)

Here,  means that the random variable  is
distributed according to the Gaussian law with zero
expectation and covariance matrix  We will investi-
gate the influence of errors  on the optimal solu-
tion  obtained by solving (1.17)–(1.19) and formu-
late algorithms for calculating the covariance opera-
tors of optimal solution errors through the cost
functional Hessian.

System (1.17)–(1.19) with three unknowns 
can be considered one operator equation of the follow-
ing form:
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where  Sys-
tem (2.3) is a necessary condition for the optimality of
the following minimization problem: find  and 
such that

where

From (2.2)–(2.3), we have 
Let , . Then

(2.4)

Let  and then δU =
 Assuming that operator M

is sufficiently smooth, 
exists such that  Then
Eq. (2.4) is equivalent to the following system:
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(2.11)
System (2.9)–(2.11) is the linear data assimilation

problem. For a fixed , this is a necessary condition
for the optimality of the following minimization prob-
lem: find  and  such that

where

(2.12)

Consider the Hessian H of functional (2.12). It is
defined on v by the successive solution of problems

(2.13)

(2.14)

(2.15)

Let us introduce the auxiliary operators  Let
 and the operator  be defined on the func-

tions g by the formula  where θ* is the
solution of the adjoint problem

(2.16)

From (2.13)–(2.16), we conclude that system (2.9)–
(2.11) is equivalent to the equation for the error :

(2.17)
Hessian H is by definition a symmetric nonnega-

tive definite operator. We will assume that H is positive
definite and, thus, invertible. Then Eq. (2.17) can be
written as follows:

(2.18)
where Ti = H–1Ri, i=1,2.

We assume that errors  are random, normally
distributed with zero mean, and uncorrelated among
themselves while, as was mentioned above,

 Then it follows from (2.18)
that error  is also normally distributed with zero
expectation. Let P denote the covariance operator of
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the error of the optimal solution: 
From (2.18), we obtain

(2.19)

where  are operators adjoint to  It is neces-
sary to find operators  to construct oper-
ator P. Consider operator  Since  H–1R1 =
H–1C1 = , then  H–1C1BC1H

–1. Moreover,

if , then

(2.20)

Thus, the algorithm for calculating  is as
follows:

(1) solve equation Hp = v,
(2) calculate C1p,
(3) solve equation Hw = C1p.
As a result, Eq. (2.20) gives the contribution of

error  to covariance operator P.

Consider now operator  Since  H–1R2,
then  H–1R2R H–1. Let us consider the sca-
lar product  for fixed g and p to find . We
have from (2.16) that (R2g, p) =  =

 where  and
 is the solution of problem (2.13) for v = p. Thus,

operator  is determined by successively solving
the following problems (for a given v):

(2.21)

(2.22)

(2.23)

(2.24)

Then  If , then 
 and from (2.22)–(2.23) we have that 

Hv – C1v, where H is the Hessian given by
formulas (2.13)–(2.15). Then  H – C1 and

(2.25)

Thus, the algorithm for calculating  is as
follows:
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(3) solve equation Hw = (H – C1)p.
As a result, Eq. (2.25) gives the contribution of error 
to covariance operator P.

Equations (2.20) and (2.25) should be added to cal-
culate the total contribution of uncorrelated errors .
Then

from which we obtain the following:

(2.26)
The latter formula gives the form of covariance

operator P through the Hessian defined by
Eqs. (2.13)–(2.15). The rule of H multiplication by
some function v according to (2.13)–(2.15) or the
BFGS method [114, 115], which gives an approxima-
tion for H–1 as a result of iterations, can be used to cal-
culate the inverse Hessian.

3. WEAK FORMULATION
OF VARIATIONAL DATA ASSIMILATION
The formulation of the problem of variational data

assimilation in the form of (1.17)–(1.19) is often called
a strong formulation or a formulation with strong con-
straints. The strong constraints are the equations of
model (1.17), which must be strictly satisfied if func-
tional (1.15) is minimized. A significant shortcoming
of formulation (1.17) is that the model is assumed to be
accurate and the model errors are not taken into
account. Model errors can be associated with discreti-
zation, with an inaccurate description of physical pro-
cesses, and with errors in the input data. The so-called
weak formulation or formulation with weak con-
straints is considered to take into account possible
errors of the model [51, 52], [116–125].

In the case of a weak formulation of the equation,
the models are no longer necessarily accurate and they
are included in the original cost functional. Thus, we
consider the problem of minimizing the following
functional instead of problem (1.14):

(3.1)

where  are weight operators: C1 = B–1, C2 =

, and  are covariance matrices of
vectors , respectively:  

 Error vectors  were introduced ear-
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lier, and  is the model error:  Let us

introduce the notation  Then it can

be seen that functional minimization problem (3.1) by
x can be formulated in an equivalent form; namely, it
is necessary to find  such that

(3.2)

where

Thus, functional minimization problem (3.1) again
reduces to a problem with strong constraints, but here
the unknowns (controls) are not only the function of
the initial condition , but also the right side .

We calculate the gradients J in  and , respec-
tively, to construct an optimality system. By definition
of the gradient,

where ,  are the solutions of the following prob-
lems:

(3.3)

(3.4)

It can be seen that their sum  satisfies
the system in variations:
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We introduce the adjoint problem with respect to (3.5)
in form (1.18) to construct gradients explicitly. Then
we obtain the following gradients using the well-
known conjugacy relation [9]

which should be set to zero for any  Thus, the
necessary optimality condition leads the problem to
the system for four unknowns :

(3.6)
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(3.8)

(3.9)

Note that adjoint problem (3.7) in the obtained opti-
mality system coincides with adjoint problem (1.18),
and condition (3.8) coincides with (1.19), the condi-
tion for equality of the gradient in  to zero.

Let us construct covariance matrix P of optimal
solution errors  where 

 which is determined by formula
 For this purpose, we write the opti-
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(2.5)–(2.7):
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System (3.10)–(3.13) is nothing more than a condition
of optimality for the following linear data assimilation
problem: find  such that

(3.14)

where

Let us introduce the Hessian H of the functional J2; it

is defined on  by the sequential solution of
problems:

(3.15)

(3.16)

(3.17)
Then it can be seen that system (3.10)–(3.13) is equiv-
alent to the equation for the error :
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where 
and θ* is the solution of adjoint problem (2.16). Assum-
ing that operator H from (3.18) is invertible, we have
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where  H–1  The latter equation can be
used to construct covariance operator P for the opti-
mal solution errors:  From (3.19), we
obtain the following
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where H is the Hessian defined by formulas (3.15)–
(3.17). Then, from (3.21) we conclude:

(3.22)
Thus, we obtain a result similar to (2.26) only with

a different operator H.
Operator H, defined by formulas (3.15)–(3.17),

can be written in matrix form as follows:

where Hij are combinations of derivatives with respect
to  and . Thus, the dimension of H in this case
increases by an order of magnitude compared with
(2.26), because in problem (3.2) it is necessary to find
not only the function of the initial condition  but
also the right-hand side , which depends on time and
space variables. Other ways of accounting for model
errors using reduction in the dimension of the problem
were considered in [119–121, 124, 125].

4. COMPARATIVE ANALYSIS OF 4D-VAR 
AND ENSEMBLE KALMAN FILTER

As follows from the review presented above, the
new generations of assimilation schemes are based on
4D-VAR data assimilation (4D-VAR) and the ensem-
ble Kalman filter (EnKF). Each of these modern
approaches has its advantages and disadvantages, and
quite a lot of work has been devoted to their compara-
tive analysis (see, for example, [93–99]).

In the case of a linear model, a linear observation
operator, and Gaussian errors, the 4D-VAR methods
and the Kalman filter give identical results at the end
of the assimilation “window” if model errors are not
taken into account [27]. The EnKF method approxi-
mates the Kalman filter well [36] under the same
assumptions and with a sufficiently large number of
elements of the ensemble. Nonlinearities of the model
and the observation operator (and, as a consequence,
the non-Gaussianity of errors) are a potential cause of
the discrepancy in the results when using 4D-VAR and
EnKF [95]. If the errors of observations and initial
approximation remain Gaussian and the dynamics
model is nonlinear, the 4D-VAR method gives an esti-
mate of maximum likelihood—the mode of the distri-
bution function of a posteriori conditional probability
[126]. At the same time, in general, it is not clear how
the search for such a mode is associated with the result
of the EnKF method [95].

In most problems of geophysical hydrodynamics,
the dimension of the state vector of the system is so
large that it is necessary to find a compromise between
computational capabilities and theoretically optimal
approaches. For example, the EnKF method has sam-
pling errors due to the limited size of the ensemble,
and it is necessary to search for approximations of the
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initial approximation covariance matrices in the
4D-VAR method due to its large dimension, which
also leads to errors that are difficult to estimate using
comparative analysis.

As we saw above, 4D-VAR data assimilation
(4D-VAR) in form (1.17)–(1.19) uses direct and
adjoint models to estimate the state of the system,
which reproduces the observed data as accurately as
possible at a given time interval in the sense of mini-
mizing cost functional (1.15). It should be noted that
problems (1.16) and (1.17)–(1.19) are solved at once
over the entire time interval (0, T) in the 4D-VAR
method.

The EnKF method assimilates observations
sequentially, unlike 4D-VAR. This method requires
the ensemble of state vector  from the previous step

 for given observations  at time . The EnKF
method consists of constructing a correction for
expectation (mean over the ensemble)  according to
the following formula:

(4.1)

where  is the ensemble mean state estimate (analy-
sis) at time ,  is the observation operator, and  is
the generalization of the Kalman matrix (gain matrix):

(4.2)

where  is the covariance matrix of state errors at
time . The covariance matrices in definition (4.2) are
replaced by the covariance matrices of the sample
based on the ensemble to obtain . Thus, the EnKF
method constructs corrections for  taking into
account the uncertainties in the observational data .
This scheme gives the state ensemble at time , which
later serves as the initial condition for the ensemble at
time .

Thus, the difference in the mentioned approaches
is laid down already in very formulations (1.16) and
(4.1)–(4.2): the 4D-VAR method minimizes the func-
tional  at once over the entire time interval ,
while the EnKF method assimilates the observations
sequentially at each specific time. Unlike 4D-VAR,
the covariance analysis matrix  plays a key role in
assimilation by the EnKF method, where the esti-
mates of these matrices are refined at each time step.

The processing of the covariance matrices in the
EnKF method becomes a serious computational
problem if dimensions of the state vector are large. The
use of a limited number of ensemble elements leads to
a deterioration in the approximation of the Kalman
filter. On the other hand, in the 4D-VAR method, it is
necessary to construct and solve linearized direct and
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adjoint problems using iterative gradient methods,
which is often a big problem for complex geophysical
models. Thus, the construction of an adjoint model
for the well-known NEMOVAR data assimilation sys-
tem took many hours [73].

Numerical comparisons of 4D-VAR and EnKF
[93–99] showed that these methods often give similar
results. The EnKF provides more accurate results for
small time intervals. 4D-VAR leads to smaller errors
than EnKF for observations with gaps in the data,
when ensemble perturbations grow nonlinearly and
become non-Gaussian [94]. However, EnKF is pref-
erable from the point of view of parallelization of com-
putations, because computations for each member of
the ensemble can be carried out independently [99].

Errors in the models describing real physical sys-
tems, such as the atmosphere and the ocean, occur
due to the inaccurate forcing (of the right side or
boundary conditions), the parametrization of subgrid
processes, low resolution, etc. Errors can be system-
atic and random, as well as errors of model parameters
or physical parameterizations. In this case, 4D-VAR is
used in the weak formulation (weak constraint) [116]
described in Section 3. On the one hand, this
approach places high demands on computing systems
due to the high dimension of the state vector of the sys-
tem. It reaches ~109 in modern numerical weather
forecast models. On the other hand, this approach can
improve the accuracy of the forecast and increase the
“window” of data assimilation by considering the
extended cost functional in form (3.1).

In the EnKF method, a weak formulation appears
naturally by adding errors of the model, the estimation
of which is also refined at each step to the formulation
of the problem of the covariance matrix [93]. This
indicates the need for a further comparison of EnKF
and 4D-VAR methods in a weak formulation.

A broad discussion of the comparison of 4D-VAR
and EnKF [93–99] methods concluded in the recog-
nition of the need to develop data assimilation
approaches combining the best features of 4D-VAR
and EnKF [103]. This is how the Hybrid 4DVar
approach, which combines the ensemble Kalman fil-
ter and variational data assimilation [100–104], and
the ensemble method of 4D-VAR data assimilation
4DEnVar [105–110] appeared.

CONCLUSIONS

In this paper, we reviewed and analyzed methods
for solving data assimilation problems developed in
recent decades. The development of data assimilation
systems began with meteorology and was dictated by
the need to improve weather forecasts. These methods
are increasingly used in oceanography and other areas,
in addition to modern complex meteorological data
assimilation systems.
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Qualitative changes in measurement systems occur
along with the progress in solving data assimilation
problems. Recent years have been marked by a contin-
uous increase in the number of measurements of vari-
ous characteristics of our geosystem. Therefore, the
development of technologies for solving data assimila-
tion problems based on modern approaches and taking
into account recent advances in this direction is urgent.

The most modern and effective methods are the
variational data assimilation. Thus, special attention
should be paid to research in the field of a numerical
solution of the problems of variational observation
data assimilation for the problems of the dynamics of
oceans and seas. The weak formulation of the problem
of variational data assimilation makes it possible to
take into account possible errors of the model and thus
leads to a more accurate solution of the problem. The
algorithms formulated in Sections 2 and 3 can be used
to calculate the covariance matrix of the errors of the
optimal solution and the individual contributions to it
associated with the errors of the input data. These
algorithms make it possible to investigate the sensitiv-
ity of optimal solutions of problems of variational data
assimilation using the cost functional Hessian.
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