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Abstract⎯A recently developed fully explicit algebraic model of Reynolds stress and turbulent heat f lux in a
thermally stratified planetary atmospheric boundary layer without stratification has been used for a numeri-
cal study of the Ekman turbulent boundary layer over a homogeneous rough surface for different dimension-
less surface Rossby numbers. A comparative analysis has been conducted for a closure model of the transport
term in the prognostic equation of turbulent kinetic energy dissipation including third-order moments.
Dependences of the total wind rotation angle on the Rossby number have been obtained. The calculated ver-
tical profiles of mean velocity, turbulent stress, turbulent kinetic energy, surface-friction velocity, and bound-
ary-layer height agree satisfactorily with observational and earlier obtained LES data.
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INTRODUCTION
Turbulence modeling remains a key topic in the

atmospheric sciences to describe the significant turbu-
lent transfer of heat and momentum in the atmo-
spheric boundary layer [1]. Atmospheric boundary
layer (ABL) studies are of great importance for solving
weather-forecast problems and future scenarios of cli-
mate change in climatological models. It remains
important to accurately reproduce the turbulent f luxes
of momentum, heat, and moisture from the underly-
ing surface with time varying temperature regime.

Many turbulence models used in climate simula-
tions or weather forecasts are based on the concept of
eddy viscosity. This model is inadequate for describ-
ing turbulent f lows specifically because it fails to cor-
rectly specify the Reynolds stress anisotropy .
A more general approximation of the well-known
hierarchy of turbulence models for geophysical tur-
bulent f lows [2] is based on transport equations for
Reynolds stress  and the vector of turbulent heat
f lux . The use of an equation for the variance of
temperature f luctuations (turbulent potential
energy), coupled with an equation for the rate of dis-
sipation of turbulent kinetic energy (TKE), makes it
possible to take into account the nonlocal effect of
turbulent heat transfer and correctly simulate the

ABL dynamics in inversion layers. More significant
progress has been made recently in developing more
general (than the standard hypotheses on turbulent
viscosity) models for eddy diffusivities of momentum
and heat due to the use of differential equations for
Reynolds stress and turbulent heat f lux in the weakly
equilibrium approximation [3–5], which disregards
the advection and diffusion of some dimensionless
quantities. For turbulent f lows with buoyancy, i.e.,
temperature (density) as an active scalar, the mathe-
matical derivation of the model becomes compli-
cated due to the coupling between the Reynolds
stress and heat f lux caused by buoyancy terms. In the
weakly equilibrium approximation, the coupled sys-
tem of algebraic equations for turbulent momentum
and scalar f luxes for the ABL can be solved analyti-
cally using the mathematical operation of symbolic
algebra to obtain explicit (noniterative) expressions for
turbulent f luxes of momentum ( ) and heat ( ).

In this paper we use an explicit algebraic model of
turbulent momentum and heat f luxes for a stratified
ABL [4, 5] to study the neutral Ekman boundary layer.
The numerical results are regarded as an input module
for the subsequent study of the dynamics of a stable
ABL over the surface with steady and nonsteady cool-
ing rates.
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2. EQUATION OF TURBULENT
KINETIC ENERGY DISSIPATION

A prognostic equation for the spectral f low of tur-
bulent kinetic energy (its dissipation rate ε) is the most
complex component of the Reynolds-Averaged
Navier–Stokes (RANS) approximation. Actually, the
ε equation must be modeled phenomenologically [6]
by analogy with the TKE equation. Here it is assumed
that the generation of dissipation occurs with the TKE
generation rate, while its destruction occurs with the
TKE destruction rate, and this concept gives a rather
adequate model. The prognostic equation of TKE dis-
sipation can be somewhat justified physically by the
spectral cascade of turbulence energy only for neu-
trally stratified turbulence [7].

The exact equation for the transfer of turbulent

energy dissipation  can be obtained by
standard Reynolds averaging of the Navier–Stokes
equation

(1)

2.1. Closure of Prognostic Dissipation Equation
The right-hand side of Eq. (1) for TKE dissipation E

contains seven high-order correlations, which are con-
trolled by quantities that are associated with the short-
wave region of turbulent spectrum. By scaling the rel-
ative magnitude of these correlations with the help of
the turbulent Reynolds number,  allows
Eq. (1) to be simplified [6]:

(2)

To obtain the closure of Eq. (2), one should formal-
ize the transport term (the third term in the left-hand
side) for the right-hand side of the equation as well.

The right-hand side of Eq. (2) describes the
imbalance between the generation due to vorticity
expansion and the dissipation destruction by viscos-
ity. The right-hand side was proposed to be simulated
using an approach [8] that is based on a polynomial
representation of the right-hand side: the right-hand
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side is  where Ψ is a dimensionless
function of invariants (Reynolds stress, turbulent
heat f lux, average velocity gradient, buoyancy, dissi-
pation, and viscosity). The simplified expressions for
Ψ can be found in [9, 10].

The transport term in Eq. (2) is normally assumed
to be subjected to gradient diffusion. In the stationary
horizontally homogeneous case, we have

(3)

where  is the eddy diffusivity of momentum and 
is the Schmidt number for the TKE dissipation rate.

This parameterization has no firm physical
grounds. The nonlocal process of turbulent diffusion
described by third-order moments is parameterized by
the local model. The attractive simplicity of gradient
diffusion model (3) for the transport term leads to dif-
ficulties in finding the turbulent Schmidt number  in
the minimized (in terms of complexity and complete-
ness) explicit algebraic Reynolds stress model, as is
shown in Section 3 and from the results of a numerical
simulation of the turbulent Ekman flow in Section 4.

The equations of the explicit algebraic model of
Reynolds stress and turbulent heat f lux for a thermally
stratified ABL are given in the Appendix.

3. EXPLICIT ALGEBRAIC REYNOLDS MODEL 
IN THE NEUTRAL ATMOSPHERIC 

BOUNDARY LAYER

The ABL changes in time and space. Its structure
depends on the Earth’s rotation, horizontal pressure
gradient and horizontal temperature gradient (barocli-
nicity), heat and moisture f luxes on the surface, vir-
tual potential temperature stratification, turbulence
intensity, and cloudiness, as well as the roughness,
slope, and heterogeneity of the underlying surface.

A neutral ABL appears at a constant virtual poten-
tial temperature without heat and moisture f luxes on
the surface and horizontal gradients of temperature
and cloudiness. A neutral ABL has no buoyancy
effects caused by heating or cooling the underlying
surface. A neutrally stratified ABL is also often called
an Ekman turbulent boundary layer (EBL).

Although the EBL is relatively rarely observed in
field conditions, it is important to understand and
quantitatively describe its turbulent structure for both
the ABL theory and practical applications. One
should know the turbulence structure to construct
adequate turbulent closures used in global and meso-
scale atmospheric circulation models.

The fully explicit (noniterative) algebraic model
of Reynolds stress and turbulent heat f lux of a ther-
mally stratified ABL (Eqs. (A.1)–(A.6) in the Appen-
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dix) is transformed for a neutral ABL to a simpler
form of EBL:

(4)

(5)

(6)

(7)

(8)

, where  and
 are calibrated reference constants of the full

turbulence model [4, 5].

(9)

(10)

For the neutrally stratified case in the TKE balance
equation

the transport term  in the near-surface sublayer of
the surface is negligibly small and the TKE generation
by a velocity shift is equal to the viscous dissipation:

(11)

For the surface neutral sublayer, approximation (11)
allows dissipation equation (10) to be written as

(12)

To estimate the coefficient  in (12), one can take
into account (6) and (11) to derive from (8) the qua-
dratic equation
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eddy viscosity with the constant coefficient 
[11] in (6), we obtain from (6) and (11) in the surface
neutral sublayer of the surface layer

(14)

where  is the friction velocity on the surface. Qua-
dratic equation (13) with (14) and  has the
roots  and . According to (12),
the first root  with the Karman constant 
yields the turbulent Schmidt number

(15)

The second root  leads to a too small turbulent
Schmidt number ( ). The resulting value

 is close to  obtained in [11] and
adopted in [12]. In the standard  model, the coef-
ficient  is assumed to be constant (0.09 in engineer-
ing applications [11] or 0.033 in the atmospheric con-
text [13]); however, the coefficient  in the present
explicit algebraic Reynolds stresses model varies
according to (8) in altitude with the change in turbu-
lence scale  and vertical gradients of the aver-
age wind-velocity components.

According to numerical results, the model cor-
rectly reproduces all the main ABL characteristics;
however, the use of the turbulent Schmidt number

 in the ε equation results in overestimated
vertical distributions of TKE and eddy diffusivity of
momentum.

According to the LES calculation results [14], for a
neutral ABL the shear generation and viscous dissipa-
tion in the E equation up to heights  are an
order of magnitude higher than the transport term,
which further takes an increasing value. Since the
transport term in the ε equation acts as a source term
in local processes, the turbulent diffusion of dissipa-
tion should be increased by decreasing the turbulent
Schmidt number . The value of  can be found by
comparing the calculated EBL characteristics with the
results of other RANS and LES calculations (see Sec-
tion 4.2). The turbulent Schmidt number was found by
numerical optimization to be .

The explicit algebraic model of the Reynolds stress
and turbulent heat f lux [12] uses the value ,
similar to engineering applications [11]. Unlike the
present explicit algebraic model of Reynolds stress,
the model described in [12] had no limiting case for a
neutral ABL and was verified directly in a stable ABL.

The turbulent Schmidt number  in TKE balance
equation (9) is fixed to be unity similar to other three-
and two-parameter turbulence models [12, 13].
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4. NUMERICAL SIMULATION: 
ESTIMATE FOR THE SENSITIVITY 

OF THE MODEL OF THE TRANSPORT TERM 
IN THE ε EQUATION TO THE TURBULENT 

SCHMIDT NUMBER 
In this numerical study, the profile of initial veloc-

ity is taken to be uniform in height and equal to the
geostrophic wind velocity: .
The structure of a neutral ABL is controlled only by
one dimensionless parameter—the surface Rossby
number , which gives the geostrophic
friction coefficient  [15]. The value of the

Coriolis parameter  s–1 was taken for moder-
ate latitudes ( ). The neutral boundary layer
specifies its proper thickness [16], which is multiple to

; the height h should exceed this “natural”
thickness to have no influence on the boundary layer
structure. In the numerical integration, the value of h
is chosen so that the neutral structure of the boundary
layer remains unchanged below h.

When specifying the initial distribution of TKE
 and its dissipation rate 

, the friction velocity  was determined by the
geostrophic coefficient  over the fixed
Rossby number according to [17].

We assume that the existence of a logarithmic layer
with the magnitude of mean horizontal velocity is jus-
tified:

(16)
Here, it makes sense to note the validity of logarith-

mic law (16) for heights  [18]. For heights
below the level , the ABL is affected by local pres-
sure forces caused by roughness elements. Therefore,
it is not quite justified to specify boundary values at

 (like, for example, in the -model [12]).
The friction velocity is calculated analytically from

the logarithmic law for magnitude of mean wind
velocity (16)

(17)

At the upper boundary of the computational
domain ( ), we have

(18)

At the lower boundary, in the first node of the dif-
ference grid (  ), we have

(19)

according to the measurement data presented in [10].
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Assuming that the effect of the Coriolis forces in
the surface layer is small and taking into account (16),
one can ensure that in the first two nodes of the differ-
ence grid the following condition is satisfied:

(20)

which is used as a boundary condition for wind veloc-
ity components.

The calculated values of the main characteristics of
a neutral EBL are shown in Figs. 1–4. System of equa-
tions (4)–(10) for given initial and boundary condi-
tions was solved using a semi-implicit finite-difference
scheme [19] on a staggered grid with a time step of 2.5 s
and a vertical coordinate of 3.125 m.

4.1. Velocity Profiles, the Ekman Spiral, Friction 
Velocity, and Logarithmic Profile of Wind Speed

Figure 1a shows the profiles of mean wind veloc-
ity components  and  for two Rossby num-
bers. Figure 1b shows the Ekman spiral for mean
wind velocity. Unlike the classical Ekman spiral with
a constant (by height) viscosity coefficient and a wind
rotation angle of 45°, the Ekman spirals in a turbulent
Ekman boundary layer with a variable (by height) eddy
diffusivity are located considerably closer to the geos-
trophic wind direction. The most variable parameter in
determining the Rossby number is the surface rough-
ness height . For a larger Rossby number (smaller
value of ), the Ekman spiral fixes a smaller wind rota-
tion angle:  (   m) and

 (   m). These values of
the total angle of mean wind rotation are consistent
with the data presented in [17, 21].

The logarithmic profile of velocity in the surface
layer is determined by friction velocity. Figure 2a
shows the calculated magnitude of velocity

 in a semilogarithmic
scale. The logarithmic profile is reproduced by the
model well. The plot slope near the surface depends on
friction velocity. The straight line stands for the theoret-
ical logarithmic profile . Fig-
ure 2b shows the friction velocity on the surface as a
function of the integration time. The friction velocity on
the surface  decreases with increasing Rossby
number, like in LES calculations [20]. In the steady state
of the boundary layer (Fig. 2b), we have  m/s
( ) for the friction velocity on the surface;

) for the geostrophic friction

coefficient; and  m/s ( ),
 for friction velocity.
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Fig. 1. Profiles of wind-velocity components (a) and the
Ekman spiral of mean wind velocity (b) for two Rossby
numbers  (the dimensionless height  is along the
vertical axis and the dimensionless velocity components
are along the horizontal axis, G = 8 m/s, the solid line is

 m, and the dashed line is  m). 
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4.2. Turbulent Stress Profiles, Turbulent Kinetic Energy, 
and Eddy Diffusivity of Momentum. 

Boundary Layer Height

The statistics of turbulence is shown in Fig. 3 by
vertical profiles of the total turbulent stress

 and turbulent kinetic energy

. For comparison, the profiles of total turbu-
lent stress (subgrid and resolved) obtained from a LES
calculation are presented [20]. In Fig. 3b, the solid and
dashed-and-dotted lines correspond to the profile of
TKE  ( ) and the profile obtained from
a LES calculation [20], respectively. The distributions
of τ and TKE in the LES calculation do not imply that
τ and TKE tend to zero with the growth of height
(Figs. 3a, 3b). This seems to be caused by insufficient
vertical resolution of the computational domain. For

( ) ( )2 2
uw wτ = − + −v

2 2iE u=

2

*E u 0.65εσ =
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comparison, the profile obtained with 
(dashed line) is shown. For this turbulent Schmidt
number, the vertical distribution of TKE turns out to
be overestimated starting from the height .
The overestimated value of TKE leads to an overesti-
mated distribution of eddy diffusivity of momentum
(the dashed line in Fig. 4a). Figure 4a shows the verti-
cal profiles of eddy diffusivity of momentum 
calculated by an explicit algebraic Reynolds stress
model in comparison with the results obtained by
other authors. The solid line marked with black dots
and the dashed line corresponds to the values calcu-
lated with turbulent Schmidt numbers  and

. In the neutral ABL, this clearly indicates
the influence of the turbulent Schmidt number in the
ε equation: the maximum value of  at

 significantly exceeds that value at
, when the behavior of eddy diffusivity of

momentum is consistent with other results. The solid
line (marked with black squares) indicates the eddy
diffusivity of momentum obtained by numerical simu-
lation [10] using prognostic equations for Reynolds
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Fig. 3. (a) Profiles of turbulent stress τ =

: solid line ( ), dashed-and-
dotted line (LES calculation [20]), and the dimensionless
height  is along the vertical axis; (b) TKE profiles:
solid line ( ), dashed line ( ), and
dashed-and-dotted line (LES calculation [20]). The quan-

tities of TKE and stress are made dimensionless to , and
all the profiles are given for the case  m). 
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Fig. 4. (a) Profiles of eddy diffusivity of momentum: solid
line 1 ( ), dashed line ( ), solid line 2
(RANS calculation [10]), dashed-and-dotted line 3 (LES
calculation [20]), and dashed-and-dotted line 4 (labora-
tory experiment [23]); (b) boundary layer height h (m):
curve 5 (  m) and curve 6 (  m). The hori-
zontal axis shows the time in hours. 
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stress, the dashed-and-dotted line indicates the results
obtained from a LES calculation [20], and the dashed-
and-dotted line with two points indicates experimen-
tal data [23].

The boundary-layer height was determined from
the condition that the turbulent stress at this height is
5% of the surface stress. Figure 4b shows the time
dependence of boundary layer height for two different
Rossby numbers. At the initial stage of integration
with the boundary layer evolution, its height increases
and the growth rate decreases with increasing Rossby
number. In 10 h, the evolution process is terminated
and the boundary layer height reaches a steady state.
The change in the boundary layer height has the same
character in the LES calculation [20]. Comparing the
characteristic vertical scale  of the neutral ABL*u f
IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS 
with the calculated boundary layer height h, one can
find the dimensionless boundary layer height (the so-
called Rossby–Montgomery constant ). Its
values are 0.36 (for ) and 0.35 (for ).
This constant under real conditions does not exceed
0.2–0.3. The difference is due to the fact that the
models consider a purely neutral boundary layer in a
neutrally stratified atmosphere. A fully neutral bound-
ary layer in the real atmosphere is rarely observed. For
example, the measurements [22] in the EBL over the
water surface were made under only approximately
neutral and barotropic conditions. The boundary layer
height was  because of a weakly stable layer
at the top: the measured vertical profile of potential
temperature was neutral up to a certain height and had
a stable gradient at the top.

5. CONCLUSIONS
A numerical simulation of a neutrally stratified ABL

has been performed. This is a classical problem in geo-
physical hydromechanics. The novelty of this study is in
the use of an explicit algebraic model for turbulent
momentum fluxes, which is a limiting case of the full
explicit model of turbulent momentum and heat fluxes

*RC hf u=
0 0.1z = 0 0.01z =

0.2 *u f≅
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for a thermally stratified ABL. The model correctly
reproduces the vertical profiles of mean wind velocity,
the tangential turbulent stress, the vertical distribution
of TKE, and the behavior of the Ekman spiral of the
mean wind as a function of the Rossby number. The
resulting characteristics of the neutral turbulent Ekman
flow are supposed to be used as input data for a numer-
ical study of the evolution of the structure of a stably
stratified planetary boundary layer with an unsteady
surface cooling rate.

APPENDIX
Explicit Algebraic Model of Reynolds Stress and

Turbulent Heat Flux for the Planetary Boundary Layer
The fully explicit algebraic model for turbulent

momentum and heat f luxes for a planetary ABL has
the form [4, 5]

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)
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The calibrated base constants of the model are
    

The countergradient term  in the turbulent heat
flux  takes into account the contribution of large-
scale eddies in the vertical heat transfer.

The right-hand side of Eq. (A.2) is written in a
form that is suitable for neutral, stable, and convective
cases with calibrated constant parameters 

 and  [9]. P and G denote the gener-
ation by shear and buoyancy, respectively, like in TKE
balance equation (A.1). The right-hand side of
Eq. (A.2) in a somewhat different form was used in [12].
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