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Abstract⎯The basic model for the recognition of natural and anthropogenic objects using their spectral and
textural features is described in the problem of hyperspectral air-borne and space-borne imagery processing.
The model is based on improvements of the Bayesian classifier that is a computational procedure of statistical
decision making in machine-learning methods of pattern recognition. The principal component method is
implemented to decompose the hyperspectral measurements on the basis of empirical orthogonal functions.
Application examples are shown of various modifications of the Bayesian classifier and Support Vector
Machine method. Examples are provided of comparing these classifiers and a metrical classifier that operates
on finding the minimal Euclidean distance between different points and sets in the multidimensional feature
space. A comparison is also carried out with the “K-weighted neighbors” method that is close to the nonpara-
metric Bayesian classifier.
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INTRODUCTION

The automation of recognition of natural and man-
made objects based on their texture and spectral fea-
tures in the processing of hyperspectral air-borne and
space-borne imagery requires the optimization of
computing processes with a view to improve the effi-
ciency of the use of computer tools. Based on the
example of recognition of objects in the forest cover of
different species composition and age using air-borne
hyperspectral images of the test territory, the studies
(Kozoderov et al., 2014a, 2014c) show the properties
of the optimization of calculations. Optimization by
texture features is reduced to finding the neighbor-
hood of resolution elements (pixels) of the first, second,
and higher orders using ideas about Markov random
fields (short-range action) for a given class of objects.
Optimization by spectral characteristics makes it easier
to join neighboring channels without significantly
reducing the accuracy of recognition of such objects.
Cognitive remote-sensing technologies that are used
in this case (Kozoderov et al., 2014b, 2015b) embody
the experience of the previous development of this
branch of science, which is related to the development
of the alphabet of classes of objects, dictionaries of
their signs, and mathematical procedures attributing

the current pixel to those known a priori in machine-
learning algorithms for data processing.

Along with the recognition of objects, cognitive
remote sensing technologies (RS) also make it possi-
ble to restore the parameters of the state of recognized
objects (Kozoderov et al., 2015a). Such parameters for
forest-cover objects include the phytomass volume of
foliage/needles and the related biomass volume of dif-
ferent fractions of forest vegetation (Kozoderov and
Dmitriev, 2012a). To solve the emerging applied prob-
lems, a hardware–software system for processing the
data of hyperspectral air-borne and space-borne sens-
ing is created (Kozoderov et al., 2013a, 2014b). Valida-
tion elements (ground-based confirmation) of the
information products obtained by processing air-
borne and space-borne imagery are also processed
(Kozoderov et al., 2015d). It becomes necessary to
understand the information capabilities of different
classifiers (computational procedures) (Kozoderov
et al., 2015c).

The listed aspects of the solution of applied prob-
lems based on appropriate methods, algorithms, and
software for the joint processing of RS data and
ground-based surveys originate from the principles of
pattern recognition (Tu and Gonzalez, 1978). A later
publication (Schowengertt, 2010) notes the main
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methods and models for the thematic classification of
air-borne and space-borne imagery. Let us dwell in
more detail on the optimization procedures of existing
applications.

STATEMENT OF THE PROBLEM
At the initial stage, the contours (open and closed,

true and false) of the objects on the optical image
under consideration are constructed to define classes.
Forest classes are represented by different species and
ages of stands, which are perceived as alternating pixels
belonging to insolated tops, shaded areas of the can-
opy, and intermediate cases where there are partially
insolated and shadowed areas. Such a representation
characterizes the random distribution of pixels of dif-
ferent forest classes on optical RS images.

The proposed method of recognition is based on
the well-known principle of Bayesian classification.
Let D be a set of features (these can be weighted spec-
tral brightnesses and related values), L be a set of class
labels (names), and a be the function acting from D to L
(i.e., a classifier). Then the general form of algorithms
of this type is represented as

(1)

where  is the element of the feature space, 
is the class label,  is the a priori probability of the
class l, and  is the probability distribution density
of the features d that belong class l. The a priori prob-
abilities of the classes are estimated on the basis of anal-
ysis of the image structure in the most contrasted spec-
tral channel. This procedure allows us to increase the
recognition accuracy for the main classes, such as water
surfaces, bare soils, meadow vegetation, and stands.

The texture analysis used can be formulated as fol-
lows. For some selected image, the vision theory
involves considering a discrete set S of m positions,
labels that are represented as a discrete set  of the
size J, and a set of standard brightnesses  of the
size m, which allows us to determine the set of func-
tions

that act from  in  i.e., 
Here and below, the index i corresponds to the nodes
of the grid (which is considered spatially regular) and
is responsible for the spatial distribution. The index j
identifies the classes under consideration. Thus, the
set  is a known texture reference that corre-
sponds to the object j.

The joint probability  and conditional

probability  are used to determine
the context in the labeling problem. If the labels are
independent (the context is absent), then the joint
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The labels become dependent due to the spatial
inf luence of individual pixels on the image, and the
Markov random field theory (MRF) allows us to
describe such a context. The pair of “a pixel and its
N-neighbors” is usually written in the form of a graph
(S, N) ~ G that contains the corresponding positions
and neighborhood relations. This graph defines
related connections as a subset of the set S. The con-
nections can be considered for a single site, for their
pair, triplet, etc., for regular and irregular nodes, thus
forming the basis for describing the neighborhood
between the pixels of the first, second, and higher
orders.

Let  be the recorded brightnesses on the
image for the corresponding classes, which are charac-
terized by pixels in the form of random fields. It would
be convenient to introduce the spatial argument x and
consider  and  as the discrete values of
continuous functions  and  It is typical in
pattern recognition to make a decision based on find-
ing the maximum of a posteriori probability (MAP)

(3)

The conditional probability  is usu-
ally modeled on the basis of the Gaussian distribution
using the maximum likelihood method and a priori
probability by the MRF methods. The solution to the
problem of marking the MAP-MRF is based on ana-
lytical properties of the theoretical distribution 
in the case of a comparison with the recorded bright-
nesses  and the estimate of MAP is usually equiv-
alent to the minimization of a posteriori energy for the
corresponding class on the image.

Problems for a string, core, and other similar prob-
lems discussed below are classical in the applications
of functional analysis for the statistical theory of auto-
mated systems. This branch of science is very popular
in scientific studies related to programming. Its
essence consists in understanding the behavior of sys-
tems when considering not only the distribution func-
tions, but also their derivatives.

If we consider the Gaussian noise model,

(4)

for which the observation is represented as “truth”
plus an independent Gaussian noise, which is charac-
terized as  It is implied that there are mean and
standard deviations for the noise. Analytic properties
of the functions  must also be taken into account.
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Our approach (Kozoderov et al., 2015b) to consid-
ering the neighborhood of second-order pixels (the
eight-point scheme within the window for each pixel
with allowance for the diagonal elements, i.e., the
“core”) differs from the traditional first-order
approach (the four-point scheme: pixels within the
window on the grid on the left, on the right, above,
and below, i.e., the “string”). Then, when minimizing
a posteriori energy, we can use, along with the likeli-
hood term, a regularizer in the form of an integral of
the square of the derivative of the theoretical (trial)
distribution function.

The emerging smoothness of the a priori con-
straints results in finding a regularized solution (in
general, a solution may be not unique which requires
such regularization) for a posteriori energy, which
must be minimized. The category of such energy con-
sists of two components that correspond to the a priori
hypothesis and the difference between the theoretical
distribution function and recorded brightnesses.

Thus, we must find

(5)

where a posteriori energy is expressed as follows:

(6)

Here set  contains indices of training data in
points i from a certain class,  is the weight coeffi-
cient between these two terms of the given quadratic
representation of the distribution function on a certain
interval of integration  and  is the order of
the derivative function. The first term in (6) character-
izes the measure of proximity of the solution and ini-
tial data, and the second term is the regularizer itself
that introduces an a priori restriction on the smooth-
ness of the functions used.

If we consider a posteriori energy in the form

(7)

(the  set of neighbors of the node i), where an addi-
tional restriction is introduced for the derivative of the
new g function

(8)

we come to minimizing the energy in the Sobolev
functional space  each point of which is assigned
by the function  the th derivative 

is absolutely continuous; and the nth derivative 
is quadratically included in the integral. The transition
to this functional space opens up new ways to solve
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tion based on the proposed image-processing meth-
ods, which were implemented for computations on
high-performance computers.

Returning to algorithm (1), we determine the prob-
ability distribution densities of features on the basis of
the Gaussian mixture model

(9)

where  is the vector of the features of the size Ω
that belongs to the set D introduced above; M is the
number of components of the mixture; and parame-
ters  , and  are the weight coefficients, expec-
tation vectors, and covariance matrices for each
kth component of the mixture within class l, respec-
tively. The feature space consists of weighted spectral
brightnesses, which are normalized to an integral
value according to a wavelength.

The estimates of the parameters  , and
 are based on a priori information in the form of

a set of spectra and corresponding names of classes
that make up the learning set. This set is extracted
from hyperspectral images of areas with the predomi-
nant homogenous species and age composition of
stands. The corresponding locations are determined
using the cadastral inventory data for the territories.
The data set makes it possible to consider the problem
of recognizing species and age variability of stands.

Let us introduce the indicator function for the
event A

(10)

Then the estimate of the probability of erroneous
classification for the class j can be expressed by the for-
mula

(11)

where  is the label of the node i.
This is the statement of the basic model of the

improved Bayesian classifier, which, together with the
quadratic discriminant analysis, corresponds to the
problems of statistical pattern recognition on the basis
of hyperspectral sensing data. However, the model has
limitations that are related to the requirement to have
a representative ensemble of selected data for the
implementation of the approach under consideration.
An alternative to the use of small samples for classifier
training is sought in the support vector method (Vap-
nik and Chapelle, 2000) in solving the minimax prob-
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lem of searching for the saddle point known in math-
ematics, which characterizes the unique solution of
the emerging quadratic programming problem. First,
the “margin” between two hyperplanes in the multidi-
mensional feature space is considered for the linear
separation of peripheral objects, objects between these
planes, and objects–violators that do not fall “in their
class.” Each measured spectrum is represented by a
point in this feature space. Then, nonlinearity is intro-
duced by replacing scalar products with kernel func-
tions. The properties of this approach are expounded
in the training manual (Kozoderov et al., 2013b).
Other approaches to the recognition of objects by their
multispectral/hyperspectral images are also expounded
there. For example, of interest is the simplest metric
classifier (Yuan et al., 2012), which is based on finding
the minimal Euclidean distance between individual
points of the feature space or between the sets of such
points.

Completing the description of the basic model, we
note other possibilities for improving the efficiency of
computational methods, algorithms, and software for
processing hyperspectral sensing data. The principal
component method (Jolliffe, 2002) of decomposition
of autocovariance matrices by eigenvectors ((EOF)
empirical orthogonal functions) serves as an example
of the possibility of reducing the dimensionality of the
feature space.

Another way to reduce the feature space is based on
the component-wise selection of the most informative
features (in the English-language literature it is called
the “step up method”) (Fukunaga, 1990). The essence
of the method is as follows: the recognition method
and a priori probability for recognized classes are
selected. The space of all features is divided into two
groups—the features accepted in the model and the
remaining features. For each feature from the set of
the “remaining features,” a recognition error is esti-
mated if this feature is added to the model. The mini-
mum error is selected from the obtained set of recog-
nition errors and is compared with the error of the pre-
vious model. If a significant decrease in the error
occurred, then the corresponding feature is accepted
in the model; in the opposite case, the process stops.

Finally, let us also consider a classifier known as
the K-weighted neighbors method (Cost and Salzberg,
1993). This method is interesting in that it is very close
to the Parzen window method (the nonparametric
Bayesian classifier) (Parzen, 1962). In the multidi-
mensional case, the widths of the Parzen windows are
usually chosen differently for different basic direc-
tions. The K-weighted neighbors method also makes it
possible to implement this possibility, but in a more
complicated way, by using nonisotropic distances.
Despite the noted proximity of these classifiers, these
methods are not completely identical.

Let us consider the listed examples of different
classifiers and their modifications for solving the

problem of recognition of objects by their hyperspec-
tral air-borne and space-borne imagery on the basis of
f light tests of the domestic hyperspectral equipment,
which was developed by the Lepton Scientific Produc-
tion Organization in Zelenograd (Kozoderov et al.,
2012).

DISCUSSION
One of the areas for f light tests of hyperspectral

equipment is imaged in Fig. 1. The contours of main
objects can be identified based on the RGB image.
Open soils and various types of vegetation are con-
trasted in the 637-nm and 827-nm channels, respec-
tively.

Corrected hyperspectral images are considered in
which the filtration of radiometric interference (bands
along the f light trajectory) was performed based on
the statistical polynomial method, maintaining the
mathematical expectation of the calibration coeffi-
cients for this equipment. Figure 2 shows the eigenval-
ues of the autocovariance matrix for the illustrated
image, which correspond to the variances of the coef-
ficients of decomposition on the basis of the EOF. The
variance of the instrumental noise of the hyperspectral
camera depends on the signal level and varies in the
measurement range from approximately 10–8 to 10–10 if
presented in brightness units (spectral-energy bright-
ness squares). It can be seen that the fifth principal
component (indicated by the arrow in Fig. 2) is close
to the noise level of the equipment.

The data in Fig. 3 reproduce the four most informa-
tive components of the main objects on the earth’s sur-
face. These components contain 97% of the total vari-
ance of objects. The color scales on the right in Fig. 3
characterize the effect of these variances. The predom-
inant red color of component 1 between scales 0 and
10–3 indicates the prevalence of vegetation on this
scene. The predominance of the blue color for compo-
nent 2 between scales –1 and 1 demonstrates the
response of this component to the spatial variability of
this scene. Components 3 and 4 also carry additional
information on the spatial variability of the objects on
the earth’s surface. Starting with component 5, distor-
tions of the decomposition coefficients become signifi-
cant due to the intrinsic noise of the equipment. It was
found that the contribution of components 8 and 12 did
not exceed 0.1 and 0.01%, respectively.

Another scene of the total test territory is shown in
Fig. 4. The site includes significant areas of water sur-
face, open sandy soil, and vegetation cover (mainly
pine and birch mixed stands). One particular difficulty
in the classification is caused by a complex orography
of the sandy area in the lower right corner of the
image. The area consists of two large sandy mounds
separated by a dirt road and sparse vegetation.

The RGB-synthesized image (Fig. 4a) makes it
possible to notice an artifact of attributing the shaded
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slope of a sandy mound as a road surface. In general,
we can note the similarity of the classification results
for the two presented methods (Figs. 4b, 4c). How-
ever, the classification results based on the K-weighted
neighbors method (Fig. 4c) show that the use of more
complex classifiers increases the accuracy of recogni-
tion. We can see that an artifact with a false recogni-
tion of a pavement at the edge of a mound is absent in
Fig. 4c in comparison with Fig. 4b. Unclassified areas
marked with the violet color are also absent in the area
of the sandy mounds. Many more pixels of the road
across the selected site are recognized. The pixels
that are falsely classified as herbaceous plants in the
border zones are significantly fewer in number. Nev-
ertheless, it should be noted that data processing by
the metric methods is performed at a much higher
rate than in case of using the K-weighted neighbors
method, even with consideration for acceleration due
to incomplete search.

Let us give a few more examples of comparing the
results of the above-described methods with more
complex classifiers. Table 1 presents the mutual com-
parison of the metric classifier on the basis of the
Euclidean distance and various types of Bayesian clas-
sifiers (BC) and the support vector method (SVM).

Other designations are as follows: g. cm is the Gauss-
ian mixture of pixels; lin. is the linear classifier; norm.
is the normal distribution; sq. is the quadratic kernel;
g. is the Gaussian kernel. The share of coinciding
object names was used as a proximity measure.

Figure 5 presents the results from recognition of
seven main classes of this scene: water surface (blue
color), pavement (black color), soil (pink color),

Fig. 1. RGB and single-channel images of the test area. 
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meadow vegetation (red color), pine (dark green
color), birch (light green color), and aspen (orange
color). An image in the IR channel (Fig. 5a), where
these classes have a good contrast, is given for visual
validation.

The greatest similarity is immanent to the BCs
based on the normal distribution and Gaussian mix-

tures and the SVM with the Gaussian and quadratic
kernel. These methods also show the greatest accu-
racy of classification. The results of the SVM show an
improvement in the accuracy of classification of
meadow vegetation in comparison with the BCs, but
the accuracy of classification of the stand species
composition is reduced. In addition, there are insig-

Fig. 3. Informative components of decomposition of a corrected normalized hyperspectral image on the basis of the EOF.
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nificant cases of false classification of the road sur-
face for the SVM.

The linear SVM (Fig. 5d) proves to be almost
unsuitable for solving the classification problem and is
the worst of the methods considered. The MC (metric

classifier) (Fig. 5b) also leads to significant errors and
can only be used for classification at the “qualitative”
level. In contrast to the linear SVM, the linear BC
gives acceptable results. This takes place, in particular,
due a restriction being imposed on a posteriori proba-

Fig. 4. RGB-synthesized hyperspectral image (a) and results from recognizing objects on this image using the metric classifier (b)
and based on the K-weighted neighbors method (c). Blue is water, yellow is sand, black is road pavement, dark green is pine stands,
light green is birch stands, orange is aspen stands, red is grassy vegetation, and violet is other objects. 

(a)

(b)

(c)

Table 1. Similarity of the results from classification by different methods

MC (Euclid) BK (g.cm.) BK (lin.) BK (norm) SVM (lin.) SVM (sq.) SVM (g)

MC (Euclid) 1 0.7 0.59 0.7 0.39 0.62 0.64
BK (g.cm.) 0.7 1 0.6 0.92 0.34 0.74 0.76
BK (lin.) 0.59 0.6 1 0.61 0.38 0.56 0.55
BK (norm) 0.7 0.92 0.61 1 0.35 0.75 0.76
SVM (lin.) 0.39 0.34 0.38 0.35 1 0.31 0.28
SVM (sq.) 0.62 0.74 0.56 0.75 0.31 1 0.85
SVM (g) 0.64 0.76 0.55 0.76 0.28 0.85 1
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bility. Nevertheless, the linear BC gives significantly
less accuracy than the nonlinear modifications of the
SVM and BC.

One more example concerning the accuracy of rec-
ognition of species composition by these methods is
shown in Fig. 6. Four methods are considered: the
SVM with the Gaussian kernel, the metric classifier
based on the Euclidean distance, the Bayesian classi-
fier based on Gaussian mixtures, and the K-weighted
neighbors method. The pixels of forest canopy were
classified making allowance for the gradation of illu-
mination.

The white lines show the contours of stand areas
according to the available forestation data. The species
composition is indicated for each stand area with a
white text. As we can see, the areas contain only pine
and birch stands. In general, all the presented four
methods have coped well with the task of recognizing
the species composition. Since the forestation data

that are used for validation are rather rough, it is diffi-
cult to compare the quantitative characteristics of
errors on their basis (Kozoderov et al., 2015d). How-
ever, an indirect method can be proposed.

As we can see, some pixels were falsely classified as
aspen stands. The forest taxation data have an intrinsic
error of about 10%, but it is reliably known that there
are no aspen stands in the first tier in this site. The
number of false-classified pixels for each algorithm is
represented by the numbers in the captions above the
figures.

From this standpoint, the worst of the presented
methods is the metric classifier. The best method is
the BC based on Gaussian mixtures. The SVM and
K-weighted neighbors method have somewhat larger
but commensurate errors. It can be concluded that, of
all the methods considered above, the K-weighted
neighbors method has an accuracy commensurable
with the accuracy of the nonlinear optimal classifiers

Fig. 5. Results from classifying a hyperspectral image using different methods: (a) image in the spectral channel of the near infra-
red region, (b) metric classifier (the Euclidean distance), (c) SVM with the Gaussian kernel, (d) SVM with the linear kernel,
(e) BC based on the model of Gaussian mixtures, and (f) linear normal BC. 

(a) (b)

(c) (d)

(e) (f)
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and can be equally used for the applied problems of
recognizing the forest cover of different species com-
position and age.

CONCLUSIONS

The basic model for recognizing forest-cover
objects of different species composition and age was
developed in the problem of processing the hyperspec-
tral air-borne and space-borne sensing data. The
effectiveness of the classification methods in the prob-
lem of hyperspectral RS of natural and anthropogenic
objects has been analyzed. The properties of the
implementation of the metric classifiers, parametric
Bayesian classifiers, and the multiclass support vector
method have been discussed. The results from classi-
fying the hyperspectral air-borne imagery by the indi-
cated methods in the selected test territory have been
demonstrated. The results from the comparative anal-
ysis of different classifiers, as well as the advantages of
using nonlinear classifiers, have been shown. The sim-
ilarity of the results given by some modifications of the

support vector method and Bayesian classification has
been noted.
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