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Abstract⎯We compare algorithms designed to extract quasiperiodic components of a signal and estimate the
amplitude, phase, stability, and other characteristics of a rhythm in a sliding window in the presence of data
gaps. Each algorithm relies on its own rhythm model; therefore, it is necessary to use different algorithms
depending on the research objectives. The described set of algorithms and methods is implemented in the
WinABD software package, which includes a time-series database management system, a powerful research
complex, and an interactive data-visualization environment.
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INTRODUCTION
For many years, the authors of this work have been

conducting regime observations at various geophysical
areas. We found that daily, seasonal, and other
rhythms were present in most of the observed pro-
cesses. For the analysis of their characteristics, various
algorithms were created, including those that are tol-
erant of missed observations and other data defects.
All these methods can be applied not only in geophys-
ical applications, but also in medicine, biology, eco-
nomics, etc.

The aim of this work is to present some methods of
rhythm analysis which are suitable for data series with
gaps. We also aimed to demonstrate the features of
these methods using an example of experimental signals
of the motor activity of bioindicators, which were
obtained at the Gharm Testing Area within the work on
searching for earthquake precursors (Sidorin, 1990).

APPLIED DATA
To illustrate the features of the developed methods

of signal processing, two series of signals of a biological
nature with sharply differing characteristics of the daily
rhythm are selected from the database (Deshcherevskii,
Sidorin, 2002). The first series shows the number of
electrical pulses of a Nile elephant fish (Gnathonemus
leopoldianus), the SLON2M series; a mildly expressed,
relatively smooth, circadian rhythm is typical for this
series, which is almost invisible against the background
of other variations. The second series—the SOM4—
shows the number of mechanical impulses (surfacing)

for a catfish (Hoplosternum thoracatum); the diurnal
rhythm in this series is a brief and very sharp burst of
activity, the amplitude of which varies greatly from day
to day, and the time shifts by 1–2 h. The possible spec-
tral range of such a signal can be quite wide, but due to
the specificity of measurements with strong antialiasing
and averaging (the number of pulses per hour was
counted in observations) we consider only the daily
cycle of activity.

Both bioobjects were observed for several years. All
calculations were performed for the full series, but for
greater clarity only small fragments of the series are
shown on the graphs, which allow us to analyze and
compare the selected signals in detail. The data from
15 days (from November 13 to November 27, 1983) are
shown for the SLON2M series (see Fig. 1a, curve 1) and
from 18 days for the SOM4 series (from February 13 to
March 1, 1992; see Fig. 1b, curve 1). Since the
SLON2M series contained a trend, low-frequency
variations were filtered from it prior to analysis with
periods of more than 168 h.

ALGORITHMS FOR RHYTHMS EXTRACTION
The Need to “Refine” the Rhythm 
before Evaluating Its Parameters

In the analysis of rhythms, their phase and ampli-
tude characteristics are usually studied (Komarov,
1989). Also, the shape of the rhythm, its stability, and
other parameters can be considered (Deshcherevskii
and Sidorin, 2003). These and other characteristics
of rhythm can be estimated directly from the original
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S series; however, the actual experimental signals
always contain various types of noise, which is why
the rhythm parameters are evaluated with a very large
error. For this reason, before evaluating the rhythm
parameters, it is advisable to extract it in a refined
form, i.e., to filter it from noise.

Filtering the signal to increase the signal-to-noise
ratio is a typical signal-processing technique. Fre-
quency filtering is mostly used, which is based on dif-
ferences in the spectral properties of the noise and the
signal being selected (Kanasevich, 1981; Hemming,
1987). This approach is effective in the study of quasi-

harmonic rhythms, the dispersion of which is concen-
trated in a limited frequency band. However, rhythms
are far from always being sinusoidal (Terebizh, 1992).
The deviations from the harmonic function are often
not just significant, but constitute the most essential
feature of rhythm; for example, the asymmetry of the
seasonal course, biorhythms, etc. To describe such
variations and study their characteristics, the models
that consider rhythm as a periodic function R of a
complex form are more adequate.

The effectiveness of such models was shown by us
when analyzing seasonal variations of electrical param-

Fig. 1. Extraction of diurnal rhythm by different methods: (а) SLON2M series (November 13–27, 1983); (b) SOM4 series (Feb-
ruary 13 to March 3, 1992). Original signal (1) and refined rhythm according to the models М1–М6 respectively (2–7).
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eters at the Gharm Testing Area (Sidorin, 1990); there-
fore, the name “average seasonal function” was used for
the rhythm function R (Deshcheverevskii et al., 1996;
Deshcherevskii and Sidorin, 1999). This approach
made it possible to detect the flicker-noise character of
nonseasonal components of variations of the parame-
ters under consideration (Deshcherevskii et al., 1997b)
and also to obtain interesting results, in particular, in
analyzing the seasonal variations of apparent resis-
tance (Deshcherevskii et al., 1997a; Deshcherevskii
and Sidorin, 2004).

In some cases (for example, in astrophysics (Tere-
bizh, 1992)), the form of the rhythm function R can be
specified from a priori considerations. In biological,
geophysical, and other applications, the form of varia-
tion should, as a rule, be estimated empirically. The
most natural way of such an assessment is based on the
method of epoch superposition. This method assumes
that we only know the value of the period of rhythm
originally. In addition to this—for some types of
rhythms—one can assume a certain degree of smooth-
ness of the periodic function or impose other restric-
tions on it, which makes it possible to improve the esti-
mate (Deshcherevskii and Sidorin, 1999).

Knowing the model rhythm function R, you can
use it to extract a purified signal Ŝ. As a rule, the sig-
nal S is approximated by the function R in some win-
dow. In the case of a linear model, the approximating
function Ŝ is calculated as

Ŝ = A ⋅ R + B, (1а)
where A and B are the coefficients of the model, which
are chosen to minimize the remainder Z:

S = Ŝ + Z = A ⋅ R + B + Z. (1b)
Bold type in Eq. (1) designates vector values that corre-
spond to the time series within the window (Deshche-
revskii et al., 2016a).

An estimation of coefficients A and B and a calcu-
lation of the values of approximating function Ŝ are
performed anew for each position of the time window.
The wider it is, the stronger noise is suppressed and
more stable the parameters of rhythm are. However, to
improve the temporal resolution or in the case of
strong variability of rhythm composition, it is advis-
able to choose a window with a small width. To ensure
that the duty cycle of the filtered signal corresponds to
the duty cycle of the source series, the evaluation win-
dow is shifted to one point at each step (Desh-
cherevskii et al., 2016b). Among other things, this
avoids sharp jumps in parameter values at the bound-
aries of the window and ensures that function Ŝ is
smooth and continuous.

Depending on the problem being solved, the calcu-
lation of Ŝ can be performed in the middle of the win-
dow (which increases stability and improves allocation
of rhythm) or on its right-hand boundary, which gives
the possibility to extrapolate signal Ŝ forward into the
future (beyond the window) when solving forecast

problems. Having the model or cleaned rhythm Ŝ
formed, it is possible then to evaluate its amplitude,
phase, stability, and other characteristics. In addition,
signal Ŝ can be used to fill data gaps in the original sig-
nal, which substantially increases the stability of estima-
tion of any parameters of rhythm and can also be useful
in other calculations (Deshcherevskii et al., 2016b).

Methods of Rhythm Extraction
Let us consider the methods or algorithms that we

used to extract the refined rhythm. For brevity, they
are indicated as M1–M6 below.

Algorithm M1. Bandpass frequency filtering. The
standard algorithm of frequency filtration is based on
the calculation of the filter coefficients in accordance
with the given parameters of the gain-frequency charac-
teristic (usually the limits of the suppression/transmis-
sion band and the slope of the filter cut are specified)
(Kanasevich, 1981; Hemming, 1987). This algorithm
generates alternating filtering sequences that require a
uniform step between samples and, therefore, do not
allow data gaps. For series with an uneven time step, the
calculation of special filtering sequences is possible.
However, a recalculation of the filter coefficients at
each step, taking into account the actual distribution of
gaps in the window, would require a disproportionate
computing time. Therefore, we used the method of slid-
ing kernel smoothing (with the Gaussian kernel) for fre-
quency filtration (Hardle, 1993; Lagutin, 2009).

Due to positively defined weighting function of
the kernel, this algorithm is tolerant to data gaps.
Using the so-called “collapse of the window” allows
us to perform filtering without decreasing the length
of the filtered signal, not only at the beginning and
end of the series, but also at the boundaries of the
data-gap intervals (Deshcherevskii et al., 2016a–
2016d). To extract the daily rhythm from the signal,
we excluded (filtered) the variations with periods of
less than 17 and more than 35 h.

With frequency filtering, function Ŝ is constructed
without using the model (1).

Algorithm M2. Approximation by a sinusoid. As a
model rhythm R in the model (1), a sinusoid fragment
with a period P is used (Deshcherevskii et al., 1996).
The degree of adaptability of this algorithm can be
adjusted by varying the width of the approximation win-
dow, and it can be either less or more than the period P,
depending on the priorities: maximum noise suppres-
sion or improvement of time resolution of the method.
Given the properties of the signals, a 48-h window was
used when processing the SLON2M series and a 12-h
window when processing the SOM4 series.

Algorithm M3. Approximation by an average rhythm
with adjustment of amplitude. The average oscillation
estimated by epoch superposition is used as a model
rhythm R (Deshcherevskii and Sidorin, 1999):

(2)= +∑( ) (1 ) ( ( )),R t N S t iP
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where t varies from 1 to p, summation is over all inte-
gers i for which the point of time t + iP lies within the
series, and N is the number of summable values (non-
gaps). Thus, the series is as if cut along the length of
the period to a certain number of parts (epochs) of
duration P, and then all these epochs are superim-
posed and averaged. Then, the constructed image of
the rhythm is further smoothed out and coherently
(i.e., with the conservation of phase) multiplied
(duplicated) on the entire time axis:

R(t + iP) ≡ R(t). (3)

In fact, this means that the current rhythm is com-
pared with an ideally stable reference rhythm that has
a fixed shape and phase throughout the time axis.
Thus, the M3 algorithm does not suggest the possibil-
ity of changing the phase of rhythm and does not allow
us to evaluate these changes, even if they actually exist.
On the other hand, excluding one degree of freedom
(phase variability) from the model increases the stabil-
ity of amplitude estimation in the case when the
rhythm phase does not really change.

For highly noisy rhythms, the error in estimating the
coefficients of regression model (1) can be reduced by
increasing the width of the sliding window. If the
rhythm is sufficiently clear, its value of sliding window
can be reduced, which increases the temporal resolu-
tion. In any case, the window width should be a multi-
ple of period P. Taking these considerations into
account, we used a sliding window with a width of 72 h
when processing the SLON2M series and 24 h for the
SOM4 series.

Algorithms M4 and M5. Approximation by the cur-
rent average rhythm. Both these algorithms are based
on a calculation of the average rhythm R(t) by Eq. (2).
However, unlike the M3 algorithm, the evaluation is
performed not over the entire row, but in a sliding win-
dow whose width is chosen to be several periods P.
This leads to the fact that the shape of the average
rhythm R (and, consequently, its phase characteris-
tics) can vary with a window displacement.

It is assumed in algorithm M4 that the resulting
function R is a refined rhythm: Ŝ ≡ R, i.e., approxima-
tion by model (1) is not used. The M5 algorithm dif-
fers from algorithm M4 in such a way that, after evalu-
ating shape of the rhythm, the amplitude of the rhythm
is additionally adjusted according to model (1). It is
usually assumed that the shape of the rhythm varies
more slowly than its amplitude. Therefore, function R
is evaluated in a relatively wide window, while param-
eters of the model (1) are evaluated in narrower win-
dow. The M5 algorithm tracks only slow enough
changes in the rhythm phase.

For the SLON2M series, we estimated the shape of
rhythm using Eq. (2) in a 7-day-wide window, and the
amplitude adjustment (Eqs. (1), (2)) was performed in
a 2-day window. For the SOM4 series, windows with a
width of 5 and 1 day were used.

Algorithm M6. Approximation by the epoch super-
position method. The algorithm of epoch superposi-
tion is also based on the use of model (1). However,
the average rhythm R calculated according to Eq. (2)
in this case moves along with the window; i.e., unlike
the algorithm M3, only the S series is fixed now. It is
as if the fragment of the R series that hit the sliding
window in its initial position “freezes” into this win-
dow and then moves along with it. Thus, the phase of
the average rhythm R is fixed not relative to the begin-
ning of the signal, but relative to the beginning of the
window. If the reference variation fits well with the
actual vibration at some position of the sliding win-
dow, the correlation between them approaches unity
and the regression coefficient shows the exact ampli-
tude of the rhythm.

Thus, this algorithm allows us to take into account
variations, amplitudes, and phases of the rhythm simul-
taneously without restriction on the magnitude of the
phase shift. The width of the sliding window in this
algorithm is usually chosen to be equal to the period of
oscillation, which was applied in this present work.

Comparison of Filtered Rhythm

The results of the diurnal rhythm extraction by dif-
ferent methods are shown in Fig. 1. As can be seen in
Fig. 1a, for the SLON2M series (where the amplitude
of the rhythm is small) the differences between filtered
signals Ŝ are very significant. In fact, each model
defines the concept of “rhythm” in its own way, which
leads to such a significant difference in the results. For
the SOM4 series (see Fig. 1b), there are also signifi-
cant differences between the models. However, the
differences in this case are due to the fact that some
models are clearly not optimal; i.e., the results of the
filtration do not correspond to the intuitive notions on
the structure of the rhythm. Let us consider in more
detail the features of the described algorithms.

SLON2M series. As can be seen in Fig. 1a, fre-
quency filtering (algorithm M1, curve 2) identifies a
very unstable diurnal rhythm. An approximation of
the rhythm with a sinusoid in a 48-h window (algo-
rithm M2, curve 3) yields close results, but there are
significant differences in details (shape, amplitude,
and phase of the rhythm). The visual comparison of
the rhythms selected (curves 2, 3) with the original
series (curve 1) shows that the models that have a har-
monic basis are apparently not quite adequate to the
characteristics of this series. When approximating by
an average rhythm with amplitude adjustment (algo-
rithm M3, curve 4), the form of the variation is fixed,
and only its amplitude varies. At the same time, a
comparison of the refined rhythm with the original
signal shows that the correspondence between them is
rather coarse.

When the average rhythm is approximated in a slid-
ing window (algorithm M4, curve 5), the shape of the
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rhythm varies noticeably within the time interval
under consideration. It can be seen that the method is
quite successful in simulating the daily rhythm during
the period from November 15 to 18: the results of fil-
tration are rather close to the a priori (subjective) con-
cept about the rhythm selected. However, this algo-
rithm does not track rapid changes in the nature of the
rhythm. Therefore, on the night of November 23–24,
there is no usual night outburst of activity in the origi-
nal signal, which is clearly seen from the original series
(curve 1); however, a similar effect is not noticeable in
the filtered rhythm (curve 5). The change in the shape
of the rhythm on November 25 is also not reflected.

The M5 algorithm provides a much more accurate
adjustment to the amplitude of the rhythm is (curve 6),
although it also does not cope with the change in the
rhythm shape on November 25. However, it should not
be forgotten that this algorithm has the largest number
of adjustable parameters (degrees of freedom). This
means that, upon an unfavorable combination of cir-
cumstances, this algorithm can be adjusted not only to
the rhythm, but also to random noises. For the signal
under consideration, this algorithm seems to corre-
spond most closely to our a priori concepts about the
nature of rhythm.

The rhythm extracted by the M6 algorithm seems to
correspond least of all to our intuitive understanding of
the biological rhythm (Fig. 1a, curve 7). It can be seen
that an algorithm that allows arbitrary phase variations
has a much worse selectivity than the algorithms con-
sidered above. However, it is possible that it is our
expectations that are wrong rather than the model.
When analyzing such a complex signal as a series of
motor activity, it is impossible to determine the optimal
rhythm pattern a priori, since we do not have a clear
understanding of the causes and patterns of changes in
the motor activity of a fish. One can only assume that
the daily rhythm of activity exists, as this is confirmed
by both an analysis of the signal spectra and a priori rep-
resentations.

In this situation, the choice of the optimal model of
rhythm can be made only through expert evaluation.
Each of the refined rhythms shown in Fig. 1a imple-
ments one of the possible models of rhythm. Given the
complex structure of the original series and the low
signal-to-noise ratio, it is not surprising that the mod-
els differ significantly. At the same time, most algo-
rithms demonstrate a similar dynamics of the change
in the amplitude of the rhythm over time, which indi-
cates the reality of these changes.

SOM4 series. This signal is the exact opposite of
the previous case. The diurnal rhythm is distinguished
very clearly, as a rule, in the form of a burst of activity
of very large amplitude (see Fig. 1b, curve 1). How-
ever, its phase is unstable, and the amplitude falls
almost to zero on some days. Quite often, along with
the main burst of activity, there are side maxima of
smaller amplitude. In this case, the task of a formal-

ized description of such a rhythm is not obvious. Let
us see how suitable the algorithms are for solving it.

With frequency filtering (algorithm M1), the filtered
rhythm (see Fig. 1b, curve 2) gives a certain idea on the
relative magnitude of the bursts; however, the ampli-
tude of the rhythm decreased by an order of magnitude
in absolute terms. The shape of the rhythm was dis-
torted beyond recognition, and the phase undergoes
obvious biases each time when there are additional
bursts of activity in the original signal.

When the sinusoid is used for approximation
(algorithm M2), the window width of the regression
model (1) was chosen to be 12 h in order to enhance
the adaptive properties of the method (see Fig. 1b,
curve 3). Reducing the window size degrades the sig-
nal-to-noise ratio of the filtered signal, but improves
the temporal resolution. Indeed, the amplitude of the
rhythm is traced slightly better in this case than with
frequency filtering (compare curves 2 and 3 in
Fig. 1b). However, the filtered series is very noisy, and
the shape of the extremum still “blurs” and poorly
conveys the sharp features inherent in the original
curve; distortions of the phase are also noticeable. A
fairly obvious fact is confirmed that the methods M1
and M2, based on the harmonic model, are of little use
for the analysis of rhythms with sharp bursts.

When using M3 algorithm (curve 4), the averaged
rhythm R must be further smoothed to ensure that
bursts that are shifted in time relative to the average
position are tracked. This is due to the fact that this
algorithm does not allow phase variation. Therefore,
the width of the local burst in signal R must be suffi-
cient to allow the actual burst of activity to coincide
with the burst of activity in R even for a small phase
shift. If this alignment is ensured (the phase is fixed),
the M3 algorithm tracks the amplitude of the rhythm
quite well.

When approximation by an average rhythm in a
sliding window (algorithm M4, curve 5) us used, rapid
changes in the amplitude of the rhythm (the duration
of which is less than the window of the estimation of
the function R) are not tracked. For the SOM4 series,
we used a window with a width of 5 days, which pro-
vides good noise suppression. However, the amplitude
of the rhythm in this case corresponds to its average
amplitude over five periods. In fact, the amplitude
varies significantly faster (with a characteristic time of
1–2 days). Therefore, the M4 model is not very suit-
able for the SOM4 rhythm. The inclusion of ampli-
tude tuning (algorithm M5, curve 6) leads to a more
realistic picture. However, the resolution improve-
ment is achieved at the cost of less effective suppres-
sion of random noise.

Quite ambiguous results were obtained using
M6 algorithm (see Fig. 1b, curve 7). On the one hand,
the filtered rhythm reflects all the important features
of the original signal well enough. On the other hand,
it also contains quite a few small (random) features,
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which can be considered a drawback of the algorithm.
However, without a clear idea of the criteria for opti-
mality, it is possible to compare different models only
through expert assessments.

EVALUATION OF THE AMPLITUDE 
OF RHYTHM

Methods for Estimating the Amplitude of Rhythm
One of the most important parameters of the

rhythm is its amplitude. When monitoring the rhythm
parameters, the amplitude can be measured in different
ways. In the simplest case, amplitude A is estimated as
the difference between the maximum and minimum
value of the series over the period. Let us to designate an
amplitude as Amax–min. To estimate Amax–min(t) at the
time t, the filtered signal Ŝ(t) is considered in the time
interval from t – P/2 to t + P/2, where P is the period.
The maximum Max(Ŝ) and minimum Min(Ŝ) values of
the signal in the specified interval are sought after.
Amplitude is estimated by formula

Amax-min(t) = Max(Ŝ) – Min(Ŝ). (5)

Then the sliding window of amplitude estimation is
shifted by one point. This allows us to calculate varia-
tions Amax–min(t) with the same resolution as the origi-
nal signal (and not with the step P, as is done some-
times). Such a method of constructing the Amax–min(t)
series is useful not so much for a more detailed repre-
sentation of the time scanning (the use of window esti-
mates in any case leads to a certain averaging–
smoothing), but rather for convenience in the subse-
quent joint processing of the initial and parametric
(calculated) series.

Another method for estimating the amplitude is to
measure a variance of the filtered signal in the same
time window (t – P/2, t + P/2). For practical pur-
poses, it is more convenient to use a standard deviation
rather than variance, since it has the same dimension
as the signal. We denote the amplitude measured in
this way as Aσ. It should be noted that both estimates
Amax–min and Aσ are not applicable for a very noisy sig-
nal, since in this case the amplitude or standard devi-
ation of the noise rather than the signal is measured.
However, for the filtered rhythm, both methods are
fully functional.

When regression model (1) is used to estimate the
amplitude of the rhythm, one can analyze coefficient A
of this model. Let us designate the amplitude of the
rhythm measured in such a way as Aregr. This estimate
is convenient, because it is much less subject to the
influence of various random factors, such as separate
outbursts or data gaps. Unfortunately, it is not always
possible to evaluate the amplitude in this way. There-
fore, with frequency filtering (algorithm M1) or when
the signal is approximated by the average rhythm in
the sliding window (M4 algorithm), the regression
model cannot be constructed and the Aregr coefficient

cannot be calculated. Although the regression coeffi-
cient can be estimated in the case of the M5 model, to
measure the amplitude of the rhythm it still has to be
multiplied by the amplitude of the reference R, which
changes when the window is shifted. Unfortunately, this
usually leads to an additional noise of the resulting
curve, since the random features of the two functions
are multiplied. Therefore, in practice, this method of
estimating the amplitude of rhythm is hardly advisable.

Although the M6 algorithm uses a regression model,
the A coefficient in this case has a different meaning and
does not imply the amplitude of rhythm. The point is
that frame R is “frozen” in the sliding window in the M6
algorithm. Therefore, as the window moves, the phase
difference between the frame R and the rhythm under
study cycles through all values from 0 to 2π and so on.
Therefore, the time course of the regression coeffi-
cient A looks like a quasiperiodic function in this case,
which reaches its maximum when the phase of the ref-
erence and actual rhythms coincide and the minimum
when they are in antiphase. In particular, if both the
studied and the model rhythm are two identical sinu-
soids, the graph of the change of the coefficient A will
also be a sinusoid whose values are +1 when the phases
coincide and –1 when the phases are shifted by π. In
fact, the amplitude of the rhythm in this case is deter-
mined by the maximum value of the coefficient A over
the period. This allows us to estimate the regression
amplitude only with a resolution (time step) P, and not
with resolution of the original signal, as in the case of
other algorithms.

Thus, the amplitude of the rhythm can be esti-
mated in different ways. The most universal methods
are those that estimate the amplitude from the filtered
signal. An alternative approach is based on the use of
coefficients of the regression model of the filter. The
analysis shows that the regression method for estimat-
ing the amplitude of rhythm is much more resistant to
data gaps, and the edge effects are much weaker than
when estimating the amplitude of the rhythm by the
span or standard deviation. However, the regression
estimate is available only for particular rhythm mod-
els, which significantly limits its applicability.

The following question arises: how consistent are
the estimates of Amax–min, Aσ, and Aregr? Figure 2 shows
the daily rhythm of the SLON2M series filtered by the
M4 algorithm, as well as its amplitude calculated in
three ways. As can be seen from the figure, the largest
differences between the three estimates of the ampli-
tude of the rhythm are most noticeable at boundaries
of the intervals with missed observations. This, in gen-
eral, is not surprising, since the way gaps are processed
when calculating these parameters is different. It is
worth noting that the calculations were carried out at
η = 49%, that is, only those data sets were excluded
where there were more than half misses (Deshche-
revskii et al., 2016d). If you allow calculations only for
those positions of the window where the proportion of
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misses does not exceed 25%, the differences between
the curves are significantly reduced.

For a numerical measurement of the degree of sim-
ilarity between the estimates, we calculated the cor-
relation coefficient between Amax-min and Aσ for six
variants of the filtered rhythm (algorithms M1–M6).
It turned out that, for the SLON2M series as a whole
and for the fragments shown in Figs. 1–2, it varies in
the range of 0.96–0.98 and almost never drops below
0.94. For the SOM4 series, the situation is similar.

The correlation between Aregr and Amax-min or Aσ can
only be estimated using M2, M3, and M5 algorithms;
in the latter case, the Aregr evaluation is performed
using a more complex algorithm (the regression coef-
ficient is multiplied by the amplitude of the reference
rhythm R, which must also be estimated in some way).
Calculations show that the differences between Aregr on
the one hand and Amax–min or Aσ, on the other, are
slightly larger than the differences between Amax–min
and Aσ. The correlation coefficient in the pairs (Aregr,
Amax–min) and (Aregr, Aσ) is slightly lower than in the pair
(Amax–min, Aσ), but in this case it almost never drops
below 0.9. And if you reduce the value of η to 25%, the
correlation increases even more and reaches 0.98–0.99.

Thus, for the filtered SLON2M and SOM4
rhythms, all methods for estimating the amplitude
give almost identical results.

Dependence of the Amplitude on the Way
of Rhythm Selection

Let us now consider the question of how much the
amplitude estimate depends on the way of rhythm fil-

tration (extraction). Figure 3 shows the time depen-
dence of Amax–min for the daily rhythm of SOM4 fil-
tered in different ways (algorithms M1–M6).

As the analysis shows, the differences between these
curves are quite noticeable, which is related to the spe-
cifics of the rhythm patterns. For example, a decrease in
the amplitude of the rhythm on January 16–28 is con-
sidered by the M4 algorithm as almost monotonic,
while the other algorithms show more detail. There is a
rather strong difference between algorithms M1 and M2
at the very beginning of the interval, and on the whole
for the first fragment of the signal there are differences
between algorithms M1 and M2, on the one hand, and
M3, M5, and M6 on the other hand. It is interesting
that, despite the very significant difference in the
rhythm patterns of M3, M5, and M6, the dynamics of
the amplitude of the rhythm is displayed by them in
practically the same way. Apparently, this is a conse-
quence of the fact that the rhythm in this case is very
clear.

For the second fragment of the signal (February 13–
28), dynamics of the amplitude of rhythm is estimated
by all methods almost equally. The only exception is the
M4 method, which shows a smoother dynamics; this is
quite expected based on the rhythm model used by this
method. Recall that the average rhythm for the SOM4
series was estimated in a sliding window with a width of
120 h, which does not permit responding to rapid
changes in the rhythm amplitude lasting less than 2–
3 days. However, all the main features of the amplitude
dynamics have been fully worked out in this case.

When analyzing the Amax–min graphs for the
SLON2M series (not shown in the figures), the results
are approximately the same, although there is a speci-

Fig. 2. Amplitude of the diurnal rhythm filtered by M4 algorithm (SLON2M series) estimated in three ways (November 9 to
December 18, 1983): filtered rhythm (1), amplitude estimation by span (2), amplitude estimation by standard deviation (3), and
amplitude estimation by the regression coefficient of the model (4).
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ficity associated with a lower signal-to-noise ratio for
the diurnal SNR2M dependence. Because of this, the
differences between rhythms filtered using different
patterns of rhythm are more pronounced.

ESTIMATION OF ACROPHASE
AND BATHYPHASE

When analyzing rhythms, characteristics such as
acrophase and bathyphase are often used (Komarov,
1989). To calculate the acrophase tmax, we are looking
for a time t when the monitored index S reaches a
maximum value Smax for the period. The time tmin to
reach the minimum value Smix for the period is called
the bathyphase. When working with a daily rhythm, it
is most convenient to represented results in hours. It
should be remembered that the difference between
23 h and 0 h is only 1 h, although this change may look
like a phase jump on the graph. For the convenience of
visualization in such cases, it is advisable to introduce
corrections into the phase, subtracting or adding an
integer number of periods. In practice, this means
that, instead of a 23-h phase, the graph depicts a phase
of –1 h, which is much more convenient for analysis,
although it may be somewhat unusual.

Figure 4 shows tmax statistics reflecting the time of
maximum activity of the SOM4. The specificity of the
SOM4 activity (Fig. 4, curve 1) is that the acrophase is
determined very clearly even from the original signal,
not refined from noise (curve 2). At the same time, the
jumps of the acrophase on January 20–21, and espe-
cially on February 21–22, look random. Estimation of
the acrophase in the filtered signals (curves 3–6) shows

that not all algorithms are equally useful. For example,
refining the rhythm by M1 and M2 algorithms not only
does not stabilize tmax, but, on the contrary, leads to a
“bounce” of the acrophase, within both the first and
second fragments of the signal (see Fig. 4, curves 3, 4).
Obviously, this is due to the fact that the rhythm pat-
terns embedded in M1 and M2 are based on a sinusoid,
which is completely inadequate to the real form of the
variation. This leads to a phase shift when the amplitude
of the rhythm changes. Algorithm M5 (curve 5), on the
contrary, stabilizes the phase of the filtered rhythm. In
this case, it may be optimal. It is interesting that an eval-
uation of the phase by the M6 algorithm (curve 6) is
very stable. This is a consequence of the specific form of
variation. For rhythms with a more complex form of
periodicity, the results are not always as unambiguous as
an analysis of similar graphs for the SLON2M series
shows (not shown in this paper).

The batiphase is calculated similarly, but it is ana-
lyzed much less frequently. In biological systems, the
rhythm quite often has a sharp splash (as in the
SOM4), and, much less often, a sharp dip. For exam-
ple, when analyzing the rhythm of the SOM4, the
acrophase will be evaluated steadily (since the maxi-
mum is clearly visible), while the bathyphase is not
(see Fig. 1b). For the SLON2M rhythm, extracted by
the superposition of epochs in the sliding window (see
Fig. 1a, curves 5 and 6), the acrophase estimation is
unstable during the period from November 15 to 19.

We noted above that, when evaluating the ampli-
tude characteristics, as can be seen from Fig. 3, the
type of model that approximates the rhythm does not
play an essential role. When analyzing the phase

Fig. 3. Amplitude of the diurnal rhythm estimated by the swing method for the SOM4 series (January 12 to March 2, 1992):
(1–7) are the same as in Fig. 1.
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parameters, the correct choice of the rhythm model is
much more important. If the model does not corre-
spond to the actual variation, the phase is evaluated
very unstably, with large errors.

DISCUSSION
Insufficiency of Approaches Based 

on Spectral–Temporal Analysis
To analyze the rhythmic structure of the signal,

various approaches and methods are used in monitor-
ing. The time-frequency signal analysis (TFSA) and
wavelet analysis allow us not only to detect rhythms,
but also to track changes in the amplitude and period
of the rhythm in time. In many cases, these tools allow
us to isolate a whole spectrum of harmonics and
rhythms, even for a signal that at first glance looks
completely random. However, in practice, it often
turns out that such a model of a signal, which rep-
resents it in the form of a set of “flickering” rhythms,
is very difficult to interpret in meaningful physical
terms. Therefore, even when analyzing the results pre-
sented in the form of TFSA diagrams, most attention
is usually paid not to chaotic “flickering” rhythms, but
to more regular periodicities that are rather notable
against the background and essentially determines the
structure of the process.

However, the rhythms with changing periods are
not so often found in nature. In most cases, rhythms
tied to regular external influences (seasonal, diurnal,
tidal, etc.) are of more interest. Such fluctuations, tied
to certain preknown periods, usually have a complex

form, determined by the nonlinearity of the system
under study and multifactor effects. Such a rhythm
will be “smeared” over a whole spectrum of multiple
frequencies on the TFSA diagram due to the Gibbs
phenomenon. The representation of a rhythm—in fact
an integral object (an entity according to Occam)—in
the form of a package of independent oscillations is
hardly an optimal approach.

Additional problems arise when there are any sharp
features in the signal: steps, outliers, activity bursts,
and data gaps. On a TFSA or wavelet diagram, such
features manifest themselves on many frequencies
simultaneously, which greatly complicates the inter-
pretation, especially in the case of nonstationary pro-
cesses (that are just typical for monitoring).

When processing the data of regular monitoring,
the very fact of the existence of a rhythm does not usu-
ally cause doubts, and the main task is to track changes
in the characteristics of the rhythm in time. Thus, the
task of rhythm detection loses its relevance. If, in addi-
tion, the period of the rhythm is fixed, the task of
tracking the variations of the period becomes irrele-
vant too. It is clear that methods that try to extract this
information from a signal can do this only at the cost
of resolution degradation while tracking other signal
characteristics (an analogue of the Heisenberg uncer-
tainty principle). Including excessive parameters in a
model, we always lose accuracy in estimating other
parameters, because the amount of information in the
experimental signal is limited.

If the fact of rhythm presence is known and its
period is fixed, it is better to use specialized tools

Fig. 4. Acrophase activity for the SOM4 series estimated using different methods of rhythm extraction (January 12 to March 2,
1992): the original series (1), from the original series (2), from the filtered rhythm (3–6): models M1 and M2 (3, 4), model M4 (5),
and model M6 (6).
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designed to track changes in the parameters of the
rhythm.

Model of Rhythm as a Tool for Analysis

In connection with the wide application of Fourier
analysis, predominantly harmonic oscillations are often
understood under a periodicity. More complex periodic
processes were investigated in a much smaller number
of papers (Anderson, 1976; Rytov, 1976; Deshche-
revskii and Lukk, 2002). Within these approaches, such
periodicity is represented as a superposition of harmon-
ics with multiple periods. Indeed, a periodic function
with reasonable properties can always be approximated
with desired accuracy by a set of harmonics of the Fou-
rier expansion, and their parameters (period, ampli-
tude, and phase) uniquely determine the characteristics
of the rhythm (Anderson, 1976). However, for a num-
ber of reasons, such decomposition is convenient only
for theoretical analysis, but it is very impractical in the
study of experimental signals. It is enough to mention
the difficulties arising when trying to extract significant
and insignificant harmonics in the Fourier decomposi-
tion of a rhythm.

Criteria recommended by theory are applicable
only when rather strong conditions are satisfied (the
stationarity of the series, absence of data gaps, mutual
independence of the values of the aperiodic (residual)
component, etc.), which is not feasible in practice. But
even if the signal can be filtered so that these condi-
tions are met, the result of the analysis will be only a
multiparameter description of a strictly periodic pro-
cess. This is very inconvenient for monitoring, the
purpose of which is to track changes in the monitored
system. For example, the analysis shows that the Fou-
rier decomposition of the rhythm consists of 15 har-
monics, and the amplitude and phase of each har-
monic varies in time according to its own law. How do
we interpret this result in physical terms?

In fact, it is not that easy to offer a universal
approach for studying arbitrary rhythms. The rhythms
encountered in practice have a great variety and do not
fit into the Procrustean bed of standard models. For
each quasiperiodic process, its own features are spe-
cific and their study is complicated by incomplete
information. How does one choose the model that
best describes a particular rhythm if the experimental
signal is noisy and has a limited length, data gaps, and
other defects?

One way to solve this problem is to approximate the
experimental rhythm using several different models,
for example, those proposed in this paper. Each such
model actually offers its own definition of the concept
of “rhythm,” concretizing and detailing the general
understanding of rhythm as something repeating
(reproducing) in different cycles with possible changes
from cycle to cycle. After that, an informal analysis of
the merits and demerits of each model is made from

the point of view of the scientific task being solved,
and the optimal rhythm model is chosen. In such a sit-
uation, it is impossible to propose a formal criterion
that would allow choosing the preferred model with-
out the participation of an expert–researcher. Instead,
it is necessary to consider the totality of qualities and
characteristics of the considered and other models of
rhythm and evaluate their usefulness in processing
specific signals.

Discussion of the Considered Models of Rhythm

Let us now turn to the discussion of algorithms, the
work of which was demonstrated using the SLON2M
and SOM4 series. All these algorithms provide effec-
tive rhythm extraction even for highly noisy signals
and allow tracking changes in the characteristics of the
rhythm over time. At the same time, each of these
algorithms has its own peculiarities, which make it
possible to outline the optimal area of its application.

Algorithm M1, which is based on frequency filter-
ing, can be used for slightly noisy rhythms with a
smooth form of variation without sharp features. In
such situations, the M1 algorithm provides effective
tracking of changes in both the amplitude and phase of
the rhythm. Algorithm M2 works in a similar way. It is
based on an approximation of rhythm by a sinusoid. In
contrast to the M1 algorithm, the degree of adaptability
of the filter can be varied in this case in accordance with
the properties of the series. The wider the approxima-
tion window, the higher the noise suppression and the
worse the resolution of the method in the time domain
is. Like algorithm M1, algorithm M2 is most effective
for a smooth, quasi-harmonic form of variation.

M3 algorithm, which uses average oscillation as the
model rhythm R, provides a good approximation of the
rhythms with a complex shape and makes it possible to
accurately estimate Aregr amplitude even under condi-
tions of strong noise. However, this method is applica-
ble only if the phase of the rhythm is not changing,
which is not always the case. For example, the time of
thawing of snow or the beginning of a high water may
vary greatly from year to year, which entails a shift in the
phase of the seasonal rhythm of respected parameters.

The M4 algorithm also approximates the rhythmic
process by an average oscillation; however, the latter it
is calculated not over the entire row, but only within
the sliding window. This allows tracking relatively slow
changes in the amplitude and phase of the rhythm.
Reducing the width of the window, one can increase
the adaptive properties of the algorithm; however, this
also reduces the degree of noise suppression. There-
fore, the average rhythm estimated in the sliding win-
dow should be smoothened in accordance with the rec-
ommendations (Deshcherevskii and Sidorin, 1999).
The M4 algorithm is very effective if the phase and
shape of the rhythm vary rather smoothly (for example,
the annual course of diurnal variation). However, if the
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phase and oscillation changes occur quickly enough,
the width of the window for average rhythm estimation
should be minimized, which automatically leads to a
deterioration in the noise reduction.

This problem is solved to some extent by the M5
algorithm. In this case, the rhythm calculated in the
sliding window according to the M4 algorithm is con-
sidered as a reference R, which is then inserted into the
regression model (1). This allows one to react much
more quickly to the changes in the amplitude of
rhythm. However, the assumption of a slow (insignifi-
cant within the window) change in the shape of the
variation is still necessary. If the shape of the rhythm
changes noticeably within the window, these changes
will be treated as noise.

Algorithm M6 gives the possibility to track changes
in both the amplitude and phase of the rhythm, and the
shape of rhythm can be arbitrary, not necessarily har-
monic. This is the only algorithm of those under con-
sideration which makes it possible to fully implement
the technique of phase capture; i.e., the period value is
corrected in real time. However, for the correct opera-
tion of this algorithm, it is necessary that the shape of
the variation is unchanging and the reference rhythm R
is self-orthogonal for any phase shift within 2π. If this
condition is violated, a side maximum can be captured.
For example, if reference R consists of two identical
half-periods, a high correlation between R and the
actual signal S will be observed not only for an exact
coincidence of phases R and S, but also when they are
shifted by half of a period.1 The M6 algorithm identifies
the rhythm against the noisy background very poorly.
These limitations are quite understandable, since the
M6 algorithm has the greatest degree of adaptability.
For a highly noisy signal, the introduction of additional
degrees of freedom into the model makes it poorly
defined and generally incapable of rhythm extraction.

Thus, all the algorithms considered have advan-
tages and limitations. We emphasize that it is impossi-
ble to determine the best method in advance in order
to use it in research work with monitoring data, since
there is no a priori criterion for optimality. In one sit-
uation, the criterion for a minimum of the variance of
the residual Z may be preferable, in another, accu-
rately describing some features in the shape of rhythm,
etc. To formalize this choice, it is necessary to know in
advance what exactly we are looking for, that is, to
proceed from a certain model of rhythm. However,
usually such a model is not known in advance in
research studies. On the contrary, one of the aims of
an experiment is to formulate such a model.

1 In such a situation, an additional triangular weight window can
be used to allocate the main maximum, however, this reduces
the noise stability of the algorithm.

Studying the Dynamics of Rhythm Parameters
Rhythms that are present in real signals are always

masked by other components of the process (both
deterministic and random) and by noise. To monitor
changes in the rhythm parameters, it must be filtered
(cleaned of noise). To do this, you can use the algo-
rithms described in this paper or other similar algo-
rithms. After this, various parameters of the rhythm
are estimated from the refined signal (Deshcherevskii
and Sidorin, 2003). Regression methods that are very
resistant to missing data are well suited for tracking
variations in the amplitude of rhythm. In those cases
where the rhythm is approximated without using a
regression model, the amplitude can be estimated by
the span or variance of the variation.

To control the phase changes, we can monitor the
position of extremes of the rhythm and its other char-
acteristic features. However, if the shape of the varia-
tion can change, then such estimates are not very sta-
ble. For example, for a rhythm similar to the SOM4,
the bathyphase value is very poorly defined, even for
the filtered signal. In such a situation, the Rayleigh-
Schuster hodograph method can be used to monitor
the phase. An improved algorithm, free from some of
the shortcomings of the classical method, was consid-
ered by us in (Deshcherevskii and Sidorin, 2015a,
2015b). This method can be used for any rhythms,
including rhythms similar to the SOM4. Unfortu-
nately, in this paper we were unable to illustrate this
thesis in more detail because of size limitations.

Another useful characteristic of rhythm is the coef-
ficient of its variability in time. The reverse parameter—
rhythm stability—can be introduced as the correlation
coefficient between S and Ŝ. With the direct evaluation
of Ŝ by epoch superposition or frequency filtering, an
average rhythm R, which is constructed by averaging of
the function Ŝ over the entire observation period, is
substituted into expression (1). Depending on the sub-
ject area, other parameters that characterize time
dependence of signal can be evaluated for each rhythm.

CONCLUSIONS
In this work, some models of rhythms intended for

an investigation of quasiperiodic processes are consid-
ered. Each such model is essentially a filter (algo-
rithm), which makes it possible to extract the studied
rhythm from the signal in the purest form, eliminating
noise and interference. After isolating the refined
rhythm, it becomes possible to study in detail charac-
teristics such as amplitude, phase, form of variation,
etc. In total, six algorithms (models) are considered.
This is a frequency-filtering algorithm with a posi-
tively defined filter weight function (which signifi-
cantly improves the tolerance of the method to data
gaps), as well as algorithms that approximate the
rhythm in a sliding window with a sinusoidal or some
“reference rhythm” (that is evaluated separately). All
these algorithms ensure efficient rhythm extraction
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even for very noisy signals and allow monitoring vari-
ation in rhythm parameters even with a significant
number of missed observations.

The work of the presented algorithms is demon-
strated using the example of two experimental realiza-
tions obtained with long-term monitoring of the motor
activity of bioindicators at the Gharm geophysical test
site. The circadian rhythm of motor and electrical activ-
ity of bioindicators was considered. Of course, all algo-
rithms without any modifications can be used for an
analysis of any other rhythms with other periods.

It is shown that the choice of the optimal algorithm
for rhythm extraction depends both on properties of
the rhythm and research objectives. For this reason, it
is pointless to ask which of these models is better. In
each specific situation, when solving certain scientific
problems, the advantages and disadvantages of spe-
cific models can be more or less significant. The above
results clearly show that even algorithms based on sim-
ilar rhythm models often lead to markedly different
estimates of the dynamics of the rhythm parameters. A
comparison of the results that can be obtained with
different models and their evaluation from the point of
view of practical use in processing specific signals are
the main criteria for choosing the best model.

All algorithms are implemented in the WinABD
package (Deshcherevskii et al., 2016b–2016d).
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