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Abstract⎯Free inertia-gravity internal waves are considered in a two-dimensional vertically nonuniform flow
in the Boussinesq approximation. The equation for vertical velocity amplitude includes complex factors
caused by the gradient of the f low velocity component transverse to the wave-propagation direction; there-
fore, the eigenfunction and wave frequency are complex. It is shown that the decrement of damping (imagi-
nary correction to the frequency) of 15-min internal waves is two orders of magnitude smaller than the wave
frequency; i.e., the waves weakly damp. Vertical wave f luxes of heat and salt are nonzero due to the phase shift
between f luctuations of the vertical velocity and temperature (salinity) different from . The vertical com-
ponent of the Stokes drift speed is also nonzero and contributed into the vertical transport.
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INTRODUCTION

Internal waves play an important role in dynamic
processes on a sea shelf, due to ever-present energy
sources that generate the waves, i.e., f luctuations of air
pressure, wind stresses on the sea surface, interactions
of f lows and tidal waves with bottom inhomogeneities,
and instability of f lows.

The vertical exchange is an important part of the
marine ecosystem. It is usually connected with turbu-
lent diffusion. Causes of generation of a small-scale tur-
bulence are very different. We should distinguish those
that act in the stratified ocean depth, including hydro-
dynamic instability of flows and internal wave breaking.
One important contribution into the vertical exchange
is provided by the double diffusion [1–3], where the
temperature and salinity increase with depth under sta-
ble stratification or decrease with depth. The “salt fin-
gers” mode is possible in the last case; it is quite typical
for the world ocean [1]. Only double diffusion explains
the occurrence of step structures in the ocean, which
form the fine vertical structure of hydrophysical fields
[2]. The development of this approach resulted in the
development of nonlinear mathematical models of
ocean microstructure formation on the basis of ampli-
tude equations of thermohaline convections [3]. The
contribution of internal waves in the formation of the
fine vertical structure due to the kinematic effect of high
modes, internal wave breaking [4], nonlinear genera-
tion of mean flows by a wave packet [5–8], and verti-
cally high-oscillating correction to the density field [5,
6] should be taken into account separately.

The effect of a small-scale turbulence on the inter-
nal waves was considered in several works [9–11]. It
was shown that internal waves damp when considering
turbulent viscosity and diffusion. Vertical wave f luxes
of heat and salt are nonzero in this case [12]. It is inter-
esting to find these f luxes in a vertically inhomoge-
neous f low for inertia-gravity internal waves (taking
into account the Earth’s rotation). It is noticeable that
the wave f luxes are nonzero in this case even neglect-
ing turbulent viscosity and diffusion. Below we show
that the boundary problem for internal waves with
consideration of the Earth’s rotation has complex fac-
tors in the presence of a 2D flow, where the velocity
component transverse to the wave propagation direc-
tion depends on the vertical coordinate; therefore, the
wave frequency and eigenfunction are complex. This
means weak damping of a wave and nonzero vertical
wave f luxes of heat  and salt  ( , , and  are
the wave disturbance of the temperature, salinity, and
vertical velocity). The vertical component of the
Stokes drift velocity is also nonzero and contributes
into the vertical transfer.

STATEMENT OF THE PROBLEM
Let us consider free internal waves in a baroclinic

flow taking into account the Earth’s rotation in an
unbounded fixed-depth basin. Two components of the
velocity of a horizontally stratified mean flow depend on
the vertical coordinate. The dispersion relation is derived
in a linear approximation. Vertical wave heat and salt
fluxes and the Stokes drift velocity are found on the sec-
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ond order of amplitude. A set of hydrodynamic equa-
tions for wave disturbances in the Boussinesq approxi-
mation has the form

(1)

(2)

(3)

(4)

(5)

where x, y, and z are two horizontal and a vertical
coordinates—the z axis is upward directed; u, , and
w are two horizontal and a vertical components of the
wave f low velocity;  and P are the wave disturbances
of density and pressure;  is the sea depth;  is
the mean density profile; f is the Coriolis parameter;

 and  are the components of the mean
flow velocity; g is the gravity acceleration; and

.

The “solid top” condition is a boundary condition
on the sea surface (z = 0); it filters internal waves from
the surface waves [13]:

(6)
The impermeability condition is a boundary con-

dition on the bottom:

(7)

LINEAR APPROXIMATION
Let us find the linear approximation in the form

(8)

where  means complex conjugated terms;  is the
amplitude factor;  is the wave phase; 

  is the horizontal wavenumber, and  is
the wave frequency. The wave is assumed to propagate
along the x axis.

Substitution of Eq. (8) in set (1)–(5) allows us
to connect the amplitude functions 
with :

(9)

(10)

(11)

The function  obeys the equation

(12)

where  is the squared Brunt–Väisälä

frequency.
Boundary conditions for  are

(13)

(14)

Equation (12) includes complex factors with small
imaginary parts; therefore, we change to dimension-
less variables (strokes mean dimensionless physical
parameters):

(15)

where  is the characteristic wave frequency;  is
the characteristic f low velocity transverse to the wave
propagation direction.

Then Eq. (12) takes the form
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 (16)

where  is a small parameter. The imagi-
nary part of factors in Eq. (16) is on the order ; there-
fore, the imaginary part of solution  is also propor-
tional to ε; i.e., the solution of Eq. (16) can be repre-
sented as

(17)

where  and  are the real functions. The fre-
quency can also be expanded in the parameter :

 (18)

then  After the substitution of
Eqs. (17) and (18) in Eq. (16), we determine the
boundary problems for  and . The func-
tion  obeys the equation (accurate to terms ):

(19)

The boundary conditions for  are

(20)

The function  obeys the equation (accurate to
terms ):

(21)

where

The boundary conditions for  are

(22)
When changing to dimensional variables, Eq. (19)

takes the form

(23)

where  is the wave frequency with the
Doppler shift.

Equation (23) should be supplemented by the
boundary conditions

(24)

If there is no flow at , boundary problems (23)
and (24) have an enumerable set of eigenfunctions—a
set of modes. A certain value of the frequency

, answering a given mode, corresponds
to each value of the wavenumber k. At , there is
a possibility that no discrete spectrum of real eigenfre-
quencies exists [14] because of singularities in Eq. (23)
at  and  (hydrodynamically stable
flows are considered). There is a critical layer where
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the wave phase velocity is equal to the f low velocity in
the presence of singularity at . The singularity
shifts to the level  if considering the Earth’s
rotation. The effect of this singularity to the dispersion
curves is shown by the calculations below.

Let  =  and b(z) =  ×

; then Eq. (23) is written as

(25)

Let us reduce Eq. (25) to a self-conjugated form
by multiplying both parts of the equation by

:

(26)

where .
After changing to dimensional variables, Eq. (21) is

transformed to the form

(27)

where

The boundary conditions for  are

(28)
Multiplying both parts of linearly inhomogeneous

Eq. (27) by the function , we find the self-conju-
gated operator in the left part, the same as in linearly
homogeneous Eq. (26):

(29)

where .

The solvability condition of boundary problem (28)
and (29) [15] is

(30)

From this we derive :

where
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NONLINEAR EFFECTS

The velocity of Stokes drift of liquid particles is
defined by the equation [16]
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where u is the field of Euler wave velocities; the bar
means averaging over the wave period.

The vertical component of the Stokes drift velocity
is defined as
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direction, depends on the vertical coordinate,  is
nonzero.

The vertical wave f luxes of heat and salt are defined
by the equations

(34)

(35)

CALCULATION RESULTS

Let us calculate the wave f luxes of heat and salt for
internal waves, which were observed in an in situ

sw

( )∗= − −
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*
dTi iTw A w w
dz

( )∗= − −
Ω Ω

2 0
1 10 10 .

*
dSi iSw A w w
dz

experiment during the third stage of the 44th voyage of
Mikhail Lomonosov research vessel on the northwest-
ern shelf of the Black Sea.

Figure 1 shows four temperature isolines recorded
by gradient-distributed temperature sensors [17]. The
first sensor is measured in the layer 5–15 m, the sec-
ond one is measured in the layer 15–25 m, the third
one is measured at depths 25–35 m, and the fourth
sensor is measured in the layer 35–60 m. It is seen that
high-amplitude oscillations with a period of 15 min in
the 25–60 m layer are out of phase with the oscilla-
tions in the 15–25 m layer, which witnesses the sec-
ond-mode oscillations. Vertical profiles of the Brunt–
Väisälä frequency and two components of the f low
velocity are shown in Figs. 2a and 2b. Boundary prob-

Fig. 1. Time variations of vertical shifts of temperature isolines.
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lem (23) and (24) for internal waves is solved by the

implicit Adams scheme on the third order of accuracy.

The wavenumber is found by the shooting method

from the requirements for the fulfillment of boundary

conditions (24). The eigenfunction of 15-min second-

mode internal waves is shown in Fig. 3.

The wavenumber is 0.032 rad/m. Let us found the

normalizing factor  from the known maximum of1A

the amplitude of vertical shifts. For this, let us express

the vertical shift  using the relation :

From this,

Thus, the amplitude of vertical shifts is propor-

tional to . Extreme points of the function  corre-
spond to maximal vertical shifts according to the
experimental data (Figs. 1, 3); i.e., the second mode
was observed in the experiment. The wavelength of
15-min second-mode internal waves is 196 m. Disper-
sion curves of the first two modes are shown in Fig. 4.
If neglecting the f low, then the dispersion curves in
the low-frequency region would begin from a minimal
frequency equal to the inertia frequency. If the f low is
considered, the dispersion curves are cut in the low-
frequency region due to the effect of the singularity at

. The minimal frequency of the first mode cor-

responds to 1.22 × 10–4 rad/s, and, that of the second

mode, to 3.49 × 10—4 rad/s (let us note for the compar-

ison that the Coriolis frequency is 1.04 × 10–4 rad/s).

Boundary problem (28) and (29) for the function 
is solved numerically by the implicit Adams scheme on
the 3rd order of accuracy; the only solution orthogonal

to  is found, as well as the wave damping decrement

. The damping decrement  rad/s

for 15-min second-mode internal waves. For the com-
parison, the damping decrement of the first mode

 rad/s. The damping decrement is

two orders of magnitude lower than the wave fre-
quency.

The vertical wave heat f lux is composed by f lux 
(34) and a f lux induced by the vertical component of

the Stokes drift velocity , (  is the

mean temperature profile,  is the vertical compo-

nent of Stokes drift velocity (33), and  is the wave
disturbance of the temperature). These two fluxes
normalized to the squared wave amplitude are com-
pared in Fig. 5a for the first mode and in Fig. 5b for the

second mode. For the first mode, the f lux  prevails

over  in the absolute magnitude out of a pyknocline
located in the depth range 10–20 m. For the second
mode, the f lux induced by the vertical component of
the Stokes drift velocity predominates. A similar com-
parison of the wave salt f luxes is shown in Fig. 6a for
the first mode and in Fig. 6b for the second mode. The
flux induced by the vertical component of the Stokes

drift velocity prevails everywhere over the f lux .
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The total wave f lux of heat is defined by the for-

mula , and the turbulent f lux is

defined by the formula  The coeffi-

cient of vertical eddy diffusion is estimated by the for-

mula  m2/s;  corresponds to

the Brunt–Väisälä frequency in cycles per hour [18].

= + 0( )q sJ Tw T z w

= − 0' ' .z
dTT w M
dz

− −≅ × 4 1
0.93 10z cM N cN

The vertical profiles of temperature and salinity are

shown in Fig. 7. Vertical wave f luxes of heat normal-

ized to the squared wave amplitude are compared with

the turbulent flux in Fig. 8. The first mode predomi-

nates in the upper 20-m layer; these fluxes are compara-

ble in value deeper. For the second mode, the wave flux

is weaker than turbulent in the upper 40-m layer; the

wave and turbulent fluxes are comparable in value

Fig. 5. Comparison of wave fluxes of heat (1) and  (2) for (a) the first and (b) the second modes.

1.41.00.60.20–0.2
–80

–60

–40

–20

0
z,

 m

(a) (b)

1

2

×10–5

Jqs, wT, °C m/s

0.60.20–0.2–0.6
–80

–60

–40

–20

0

z,
 m

1

2

×10–6

Jqs, wT, °C m/s

wT qsJ

Fig. 6. Comparison of wave f luxes of salt (1) and  (2) for (a) the first and (b) the second modes.

1.00.60.20–0.2
–80

–60

–40

–20

0

z,
 m

z,
 m

(a) (b)

1

2

×10–5
210–1–2

–80

–60

–40

–20

0

1

2

×10–6

Jss, wS, ‰ m/s Jss, wS, ‰ m/s

wS ssJ



474

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS  Vol. 53  No. 4  2017

SLEPYSHEV, VOROTNIKOV

deeper. The wave and turbulent fluxes of salt are defined

similarly:   The

wave f lux of salt exceeds the turbulent f lux for the first

mode (Fig. 9). For the second mode, the wave f lux is

comparable with the turbulent one in the upper 20-m

layer; the wave f lux exceeds the turbulent f lux deeper.

The comparison between the total wave f luxes in

Figs. 8 and 9 and fluxes induced by the vertical com-

ponent of the Stokes drift velocity (Figs. 5, 6) shows a

= + 0( ) ,s sJ Sw S z w = − 0' ' .z
dSS w M
dz

decisive contribution of the vertical component of the
Stokes drift velocity into the wave transfer of salt. The

flux  noticeably contributes into the vertical wave
flux of heat, especially for the first mode.

CONCLUSIONS

1. The vertical component of the Stokes drift veloc-
ity of internal waves is nonzero and contributes deci-
sively in the wave transfer of salt.

Tw

Fig. 7. Vertical profiles of (a) temperature and (b) salinity.
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2. The first-mode wave f lux of heat exceeds the
turbulent f lux in the subsurface 20-m layer; these
fluxes are comparable deeper. For the second mode,
the wave f lux is lower than the turbulent one in the
upper 40-m layer.

3. The vertical wave f lux of salt exceeds the turbu-
lent f lux for the first mode; for the second mode, the
wave f lux exceeds the turbulent f lux deeper than 20 m.
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