
ISSN 0001�4338, Izvestiya, Atmospheric and Oceanic Physics, 2014, Vol. 50, No. 9, pp. 867–877. © Pleiades Publishing, Ltd., 2014.
Original Russian Text © R.N. Achmetov, N.R. Stratilatov, A.A. Yudakov, V.I. Vezenov, V.V. Eremeev, 2014, published in Issledovanie Zemli iz Kosmosa, 2014, No. 1, pp. 17–28.

867

INTRODUCTION

Hyperspectral imagery has been actively intro�
duced in the Earth remote sensing in recent years
(Gut, 1999; Kozoderov et al., 2012). This imagery is
based on splitting radiant energy reaching the entrance
pupil of the onboard observation system into several
dozen and hundreds of very narrow contacting wave�
length subranges. As a result, different spectral images
forming the so�called hypercube are simultaneously
formed:

 

where k is the spectral subrange number,  are
point image coordinates (point line and column num�
bers), and  is the energy brightness at point 
in the kth frequency subrange (Fig. 1). That is hyper�
cube includes K equal images, each of which describes
the emission energy of the observed object scene in a

certain kth ( ) spectral subrange. The image in
the form of the energy brightness matrix  k =

const,  , corresponds to a fixed k.

The K�dimensional vector of energy brightness val�
ues, which is called the spectral characteristic (SC)
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corresponds to each image point with coordinates

. Energy brightness can be specified as codes of
imagery output signals, spectral radiance (SR), or
spectral brightness coefficients (SBCs). These values
can be interconverted during radiometric correction
performed using data of ground or onboard calibra�
tion.

In contrast to the panchromatic and spectral zonal
imagery, hyperspectral imagery represents the unique
possibility of estimating the physicochemical proper�
ties of the observed scene object based on measuring
SC (Pozhar and Pustovoit, 1996). If the SC is known
at each hypercube point, this makes it possible to sim�
plify substantially the segmentation and classification
of the observed objects, which are the most difficultly
formalized image analysis processes.

Abroad, the hyperspectral imagery method has
been used to study the Earth for more than ten years
(Gut, 1999; Akhmet’yanov et al., 2013). In Russia, the
first attempt to install hyperspectral equipment
designed by NPO Lepton was performed on the FKI
small spacecraft (NPO S.A. Lavochkin, leading devel�
oper) (Khailov and Zaichko, 2013). The Resurs�P
spacecraft (GNPRKTs TsSKB�Progress, leading
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developer) (Akhmetov and Stratilatov, 2011), on
which hyperspectral equipment (HSE) designed at the
Krasnogorsk S.A. Zverev plant (Arkhipov et al., 2013)
was installed, was launched in 2013. Extensive works
aimed at the creation of ground methods for process�
ing the data from this equipment have been per�
formed.

Hyperspectral imagery gives important informa�
tion about radiant energy distribution depending on
the wavelength (Bondur, 2014). At the same time, sev�
eral topical issues originate when this information is
processed. First, radiant energy splitting over several
dozen and hundreds of channels leads to a corre�
sponding decrease in the desired signal�to�noise ratio.
This fact should be taken into account. Second, when
radiant energy passes through the atmosphere, the
emission spectral composition substantially changes at
the entrance pupil. Therefore, this phenomenon
should be strictly taken into account when the
physicochemical properties of the observed objects are
studied. Third, energy brightness is analyzed during
the panchromatic and spectral zonal surveys; at the
same time, SC objects are analyzed when hyperspec�
tral imagery is performed. All of these specific features
of hyperspectral imagery data require new approaches
to their analysis and processing, which are considered
in the present work.

MEASURES OF HYPERSPECTRAL IMAGE 
POINT SIMILARITY

Various measures of image element similarity form
the basis for many segmentation, classification, and
integration algorithms for different spectral data and
for solving many typical problems originating when
hyperspectral information is used (Bondur, 2014).

We consider three most frequently used fre�
quency–spatial measures of similarity between two
adjacent hyperspectral image (HSI) points on the line:
the rms, correlation, and spectral angle measures
(Yuhas et al., 1992):

(1)

(2)

(3)

where  and  are dispersions of SC readings
for points  and  and a bar above the vari�
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Fig. 1. A hyperspectral image: a hypercube.
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ables and expressions means averaging over the

K spectral ranges, e.g., 

Measure (1) characterizes the rms difference in the
brightness between adjacent image elements with
coordinates  and  Measure (2) is
described by the correlation coefficient between SCs
determined for the same adjacent elements. Measure (3)
is numerically equal to the angle in the K�dimensional
spectral space. Although the proposed measures of
similarity between two vectors are numerous (SCs are
such vectors in our case), analysis indicates that these
measures respond to the average difference squared or
to the correlation, or to both parameters. In this case
some functional transformations are proposed, which
in any case change the behavior of these measures
depending on the SC degree of closeness.

Measure (1) can be reduced to (2) by linear SC
transformation (Antonushkina et al., 2010). For this
purpose, we consider two hyperspectral image points
(  and ) and reduce the corresponding fre�

quency characteristics to the unified average  and
rmsd (σ) found, e.g., for the entire hypercube. We per�

form linear transformations  and , into 

and 

(4)

where a and c are the coefficients.
We write the expressions for the average values

 

and rmsd

 

With regard to these relationships,
(5)
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Taking (5) and (6) into account, we perform trans�
formation (4) and calculate the following measure

based on obtained  and  

(7)
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After transformations (7) and averaging over

 we obtain
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Expression (8) establishes the relation between two

image element closeness measures:  calculated
using formula (7) and  determined from (2). We
can also determine the functional relation of
measure (3) to measures (1) and (2) so that principal
differences in the usage of any measure are absent.

An absolutely different situation is observed when
HSI has additive uncorrelated noise, the level of which
can be high (see above). The adequacy of such a noise
model for many applications was sufficiently justified
in several works (Zlobin and Eremeev, 2006). If noise
ε with dispersion  is present on noise images, mea�
sures (1)–(3) take the form

(9)

(10)

(11)

where  and  are SCs not distorted by noise
and are averaged over all K channels.

Measures (9)–(11) are of special interest in the
vicinity of the global extremums point, when

It is evident that  is altogether independent of the
desired signal at the extremum point and completely
depends on the noise level;  depends on the signal�

to�noise ratio;  depends on the  ratio. We
introduce a new measure free of the distorting noise
effect ε by modifying , having retained the previous
relationship for this measure:

(12)

We present the examples of some operators for distin�
guishing contours based on measure (12).

Gradient operator: 
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Δ*
m n

ρmn

D
ε

( )
2

1,
ˆ ˆ 2 ,mn mn m nB B D

+ ε
Δ = − +

( ) ( )
1,1,

1,

ˆ ˆ ˆ ˆ
,mn mn m nm n

mn

mn m n

B B B B

D D D D

++

ε + ε

⋅ − ⋅
ρ =

+ ⋅ +

( ) ( )

1,

2 2

1,

ˆ ˆ
arccos ,

ˆ ˆ

mn m n
mn

mn m n

B B

B D B D

+

ε + ε

⋅
α =

⎛ ⎞ ⎛ ⎞+ ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,ˆ m nB 1,ˆm nB +

:1,mn m nB B
+

≈

( )

( )arccos

1

1
2

2 , 1 ,

1 .

mn mn mn

mn mn

D D D

D B

−

ε ε

−

ε

Δ ≈ ρ ≈ +

α ≈ +

mnΔ

mnρ

mnα
ε

2
mnD B

mnρ

( ) ( ) ( ) ( )

++

+ + + + +

ρ

⋅ − ⋅
=

⋅ ⋅ ⋅ − ⋅

1,1,

2 2
1, 1, 1, 1 1,

.

mn

mn mn m nm n

mn m n m n m n mn m n

B B B B

B B B B B B

2 2
, 1, , 1.m n m n m nG

+ +
= ρ + ρ

, 1, 1, , 10.25(m n m n m n m nL
− + −

= ρ + ρ + ρ

+
ρ , 1).m n



870

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS  Vol. 50  No. 9  2014

ACHMETOV et al.

Kirsch operator:  depen�

dent on variables  and   using the data on

vector  where  

    b6 =
 and   

 (subscript i is calculated based on
module 8).

Sobel operator:  = 
where   =   +  +   =

 +  +   =  +  +
 and =  +  

Thus, when HSI contours are processed, SCs of
adjacent points are compared, whereas their bright�
ness is compared in traditional algorithms.

The HSI contour processing using the gradient
operator based on a brightness (Fig. 2a) and SC
(Fig. 2b) analysis is illustrated in Fig. 2. It is clear that
the result is higher�quality when the SC correlation
gradient operator is used.

HYPERSPECTRAL INFORMATION 
DIMENSIONALITY REDUCTION

HSI information capacity depends on the 
product; therefore, even the simplest procedures
require considerable computational efforts. We stud�
ied several approaches to the reduction of the hyper�
spectral data redundancy, specifically, using the main
component method, Wavelet transform, and SC poly�
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nomial presentation.  The last approach gave slightly

better results when contours were processed and
objects were segmented and classified (Eremeev et al.,
2012c).

The SC polynomial representation decreases the
effect of additive uncorrelated noise, which is usually
present on HSI. This fact follows from the approxima�
tion process, which consists in the mapping of the ini�
tial SC in the basis of K spectral channels onto the

 basis. At  the additive noise rmsd

decreases by a factor of  Coefficients  

of the polynomial approximating SC 
are determined using the least squares method condi�

tion .

After this procedure, the measure of similarity
between two SCs is defined as

(13)

where  =   =
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 –  and  and   are the coef�

ficients of the polynomials approximating two com�
pared SCs.
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Fig. 2. Results of HSI contour processing achieved based on an analysis of (a) brightness and (b) SC.
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Since SC is reduced to basis  the com�
putational efforts for determining (13) can be consid�
erably decreased. We represent this expression in
another form:

where 

Here it is important to note that  can be eventu�
ally calculated beforehand and used to find K. The cal�
culation of ρ directly requires (3k + 6) multiplication
and (5k + 4) addition procedures. If  were prelimi�
narily calculated, the ρ components are determined

using r multiplications and r additions for  and 

 multiplications and  additions for

, and  multiplications and 

additions for  and . Finally, to calculate ρ, it is

necessary to perform  multiplications

and  additions. For example, at K = 100
and r = 3, a direct calculation of ρ requires 306 multi�
plications and 504 additions; 79 multiplications and
52 additions are required when SC is represented by
the polynomial of degree 3; i.e., the number of arith�
metical procedures decreases by a factor of almost 4.
The HSI volume decreases many times with regard to

 since it is necessary to conserve r coefficients
for each SC at a polynomial representation.
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Figures 3 and 4 present the SCs of asphalt coating
and vegetation and their polynomial representation. It
is clear that the polynomial representation gives
SC variations (crests and depressions), which include
most valuable information and are slightly affected by
noise and atmospheric distortions.

The experimental studies performed using polyno�
mial SC representations gave good results when the
contours were distinguished and objects were clustered
and classified.

STATISTICAL CORRECTION 
OF ATMOSPHERIC DISTORTIONS

The distortion action of the atmosphere causes an
exclusively negative effect when HSI is analyzed and
processed. Two approaches to the description and cor�
rection of atmospheric distortion exist. The first, tra�
ditional, approach (Mahiny and Turner, 2007; San,
2010) is based on multifactor analytical models, which
describe radiant energy transfer from the Sun to the
image sensor entrance pupil through the atmosphere.
These are very complex models that require the
knowledge of many parameters characterizing the
state of the atmosphere and image obtaining con�
ditions.

The second approach is based on the correction of
atmospheric distortions by analyzing statistically
hyperspectral imagery data (Shovengerdt, 2012). Two
problem statements are possible in this case. The first,
simpler, statement requires obtaining an image free of
atmospheric distortions on a certain absolute energy
brightness scale. Such a procedure can be used for sub�
sequent clustering of objects on an image and their
contour processing. According to the second state�
ment, it is necessary to obtain a new image on the spe�
cific physical quantity scale, e.g., SR, which is equiva�
lent to the usage of the analytical model of the atmo�
sphere.

Sufficiently strict analytical models of the solar
radiation passage through the atmosphere are known
(e.g., Shovengerdt, 2012). Omitting the physics of this
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process, we can most generally describe it as was done
in (Akhmetov et al., 2013; Eremeev, 2012a; Makaren�
kov and Yudakov, 2012)

(14)

where B and X are the distorted and undistorted
images;  and  are the multiplicative and additive
components of atmospheric distortions. Function

 characterizes the contribution of the radiant
energy that falls on the image sensor entrance pupil as
a result of reflection from point  on the Earth’s
surface with regard to absorption in the atmosphere
and topography. The additive component ( )
describes scattered radiation from atmospheric layers
that did not reach the Earth’s surface but reached the
image sensor input.

During satellite flight, the image lines are formed
under identical conditions from the standpoint of
atmospheric distortions (in the absence of clouds). In
this case we can consider that  and βk =
const for an arbitrary compact group of columns and
estimate these coefficients using this assumption.
Since atmospheric distortions change along lines, it is
necessary to estimate several sets of coefficients 
and  for different image columns.

We estimate brightness dispersion in each column
of each hypercube spectral channel

(15)

Argument  in function  takes into
account a certain change in the solar ray propagation
length from the first ( ) to the last ( ) line
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According to the dispersion properties, expression (15)
is transformed to the form
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In such a case, we can obtain corrected element

 in the following way:
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Using (15)–(17), we find that  =
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column m brightness rmsd in the hypercube
kth channel.
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the variants of reducing these values to the physical
scale:

where  and  are minimal and maximal
solar SR at the upper atmospheric boundary, respec�
tively, in the wavelength range corresponding to chan�
nel k.

The considered statistical model was compared
with analytical models of radiation transfer in the
atmosphere (6S, RRTM) using the EO�1 Hyperion
and AVIRIS (USA) data. As a result, it was established
that the effect of the additive coefficient in (14) is neg�
ligible at different input data, which makes it possible
to pass to the multiplicative model of the atmosphere
(Akhmetov et al., 2013; Eremeev, 2012a; Makarenkov
and Yudakov, 2012)

(18)

We fix k and m in a hypercube, i.e., consider the
mth column of an image in the kth spectral channel,

assuming that  is variable. We obtain the aver�
age brightness value for this column
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When the analytical model of the atmosphere is
used, we first calculate the radiation intensity at the
upper atmospheric boundary in the SR units and then
take into account radiation weakening by the atmo�
sphere on the path to the ground level. The relative val�
ues calculated using (22) can be differently coordi�
nated with SR. This procedure is most simple when
the upper and lower boundaries of the atmospheric
transmission spectral characteristic at a wavelength of
~950 nm, which is caused by an abrupt radiation
absorption by water vapor, are compared. We require
that the upper and lower boundaries of these peaks
coincide for the   analytical model and at a

statistical approach  . In such a case, it is
necessary to introduce correction coefficients α0 and

β0 in (21):  = 

where α0 =  β0 =
Ba, max – Bc,maxα0.

Several characteristic peaks of atmospheric absorp�
tion are available if hyperspectral data are processed in
a wide wavelength range (e.g., 0.4–2.0 μm). Based on
an analysis of these peaks, we can more accurately pass
from brightness codes to SR physical values.

Figure 5a and 5b present SCs for dense vegetation
and open soil, respectively before atmospheric correc�
tion (dot�and�dash line), after correction according to
the multiplicative model (dotted line), and after cor�
rection according to the multiplicative–additive
model (solid line).

Figure 5 indicates that the correction of atmo�
spheric distortions according to the multiplicative and
multiplicative–additive models generally gives similar
results; however, we should note that the multiplicative
additive model behaves slightly more correctly in the
blue spectral region (channels 1–10), which is
expressed in the absence of dense vegetation SC slope
in this spectral region (Fig. 5a). A disadvantage of the
multiplicative–additive model consists in that local

,min,aB ,maxaB

,min,cB ,maxcB

*( , )kB m n [ ] 0 0( , ) ( ) ( ) ,k kB m n B m B m α + β

( ) ( ),max ,min ,max ,min ,a a c cB B B B− −

distortions are present on the image since dispersion is
estimated inaccurately and the image column bright�
ness is average.

Three facts were established during the experimen�
tal studies. First, the above assumption that atmo�
spheric parameters are constant along columns was
completely confirmed. Second, it was indicated that
analytical model characteristic points can theoreti�
cally be used to reduce the statistical correction data
into the physical system of values. Third, it was
revealed that analytical models of the atmospheric
radiation transfer can be used (using the model devel�
oped at the Institute of Physics of the Atmosphere,
Russian Academy of Sciences as an example) if the
metrological parameters are determined very accu�
rately during imaging, and the smallest errors in these
parameters result in a substantial decrease in the
atmospheric correction effectiveness, which is
observed as HF SC distortions. The statistical atmo�
spheric correction is largely free of this disadvantage.

HYPERSPECTRAL INFORMATION 
COMPLEXING

In different spectral channels, objects can be repre�
sented differently: they can be lighter in some chan�
nels and darker than surrounding objects in other
channels. In this case the discernibility of objects var�
ies in different channels. In a traditional approach to
the combination of channels via averaging, individual
objects substantially lose contrast with respect to the
channels where they are most distinct. The problem of
formation of one or several images, where all observed
scene objects are represented very accurately, is stated.
Such a problem statement has theoretical back�
grounds (Eremeev et al., 2012).

Assume that we have a hyperspectral sensor with
K spectral channels and a panchromatic sensor that
operates in the same wavelength range. Two bright�
ness vectors  =  and  =1B ( )11 12 1, , , KB B B… 2B

4365

793
1 6 11 16 21 26 30 35 40 45 50

Channel number

B
ri

gh
tn

es
s 

(A
D

C
 c

od
e)

3651

2936

2222

1507

(а) 2788

1363
1 6 11 16 21 26 30 35 40 45 50

Channel number

B
ri

gh
tn

es
s 

(A
D

C
 c

od
e)

2503

2218

1933

1648

(b)

Fig. 5. SCs before and after the atmospheric correction: (a) dense vegetation, (b) open soil.
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 will be formed when a hyperspectral
sensor is used to image two points of the Earth’s sur�

face. Two brightness values  =  and B2 =

 when a panchromatic sensor is used to

image the same points. We consider the measures of
discernibility of these points on panchromatic and
hyperspectral images. For a panchromatic image, we
accept the following parameter as a measure of dis�
cernibility of two points:

 

For a hyperspectral image, as a measure of
discernibility it is natural to accept the distance
between two points in the spectral zonal space, having
normalized this measure so that the variation range
would coincide with measure 

 

We consider the ratio of these two measures:

 

Hyperspectral imaging does not give additional infor�
mation in order to improve the image resolution only
at  . The best conditions for
integrating hyperspectral data are created as spectral
zonal components neutralize one another .

Several algorithms for integrating multispectral
images based on some principles were proposed (Ere�
meev, 2012a; Eremeev et al., 2012). We consider the
algorithm based on the polynomial representation of
SCs and on an analysis of the polynomial relative posi�
tion and average brightness level. For example, three
variants are possible when SC is approximated by a
polynomial of order 3: a polynomial crosses the aver�
age level ( ) at one, two, and three points. Parameter γ is
correspondingly calculated for these cases.

In the first case the measure describing the SC vari�
ation character is defined as

where  k1 is the number of the
channel where a polynomial crosses the average
brightness level,  is the brightness of SC approxi�

mated by a polynomial in channel k,  is the SC aver�

age brightness level of initial HIS,  = 
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and   If a polynomial and the aver�
age brightness level intersect at two points,

where  =   is the second point

where a polynomial crosses the  level,  =

   and 

When a polynomial crosses level  at three points,

where  =   =   =

    and

The  integration result is formed as 
Figure 6a presents the image obtained as a result of

averaging all HSI spectral channels from the ProSpec�
Tir�V aviation sensor (USA); Fig. 6b shows the result
of integration according to the described algorithm.

The synchronous panchromatic and (or) spectral
zonal imaging of the Earth with a multiply higher spa�
tial resolution (degree of detail) are usually performed
when HSI is formed. It is necessary to integrate video
information with a high spectral resolution with the
data of very detailed imaging the Earth in order to
obtain HSI with high spectral and spatial resolutions.

We consider one of the algorithms for solving this
problem (Akhmetov and Stratilatov, 2011; Eremeev,

2012a, 2012b). Assume that  HSIs

and the  spectral zonal image were
obtained for the same scene; in this case the repetition
periods of nodes (m, n) and (r, s) strongly differ; i.e.,

  The algorithm for integrating B
and D is based on the modulation of spectral compo�
nents Bk by images Di:

where  is the kth component of resultant HSI,

  = 

 =   is the HSI

kth component reconstructed at dense grid nodes 
by operator Φ.

Figure 7 presents the result of the HSI B and multi�

zone image D integration as image 

1 1,n k= 2 1.n K k= −

( ) ( )

( ) ( )

3
1 2 3 1 2 3 1

3
1 2 3 1 2 3 1

, 0;

, 0,

S S S n n n S

S S S n n n S

⎧− ⋅ ⋅ ⋅ ⋅ <⎪
γ = ⎨

⋅ ⋅ ⋅ ⋅ >⎪⎩

2S ( )
2

1

,
k

kk k
B B

=

−∑ 2k

B 3S

( )
2

,
K

kk k
B B

=

−∑ 1 1,n k= 2 2 1,n k k= − 3 2.n K k= −

B

( ) ( )

( ) ( )

4
1 2 3 4 1 2 3 4 1

4
1 2 3 4 1 2 3 4 1

, 0;

, 0,

S S S S n n n n S

S S S S n n n n S

⎧− ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ <⎪
γ = ⎨

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ >⎪⎩

1S ( )
1

0
,

k

kk
B B

=

−∑ 2S ( )
2

1

,
k

kk k
B B

=

−∑ 3S

( )
3

,
K

kk k
B B

=

−∑ 1 1,n k= 2 2 1,n k k= − 3 3 2,n k k= −

4 3.n K k= −

*B * .B B= + γ

{ }, 1,mnkB B k K∈ =

{ }∈ =, 1,rsiD D i I

1,R M � 1.S N �

( )* , 1 ,rsi rsk
rsk k

i k

D B IB B i ent k
KD B

⋅
= ⋅ = +

*
rskB

{ }* * , 1, ,rskB B k K∈ = i kD B
= =

∑ ∑1 1

1 ,
R S

rsi rskr s
D B

RS

kB
1 1

1 ,
M N

mnkm n
B

MN = =

∑ ∑ ( )rsk mnkB B= Φ

( ),r s

*.B



IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS  Vol. 50  No. 9  2014

MODELS OF FORMATION AND SOME ALGORITHMS 875

(а) (b)

Fig. 6. Results of aviation hyperspectral image processing: (a) averaging of all HSI spectral channels, (b) integration.

B

D

B*

Fig. 7. Result of B integration with D.
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The SC reconstruction accuracy was experimen�
tally studied at points (r, s) that do not coincide with
nodes (m, n). For this purpose, HSI with a low spatial
resolution  and image D were modulated.

 and  were formed

from initial HSI  by rarefying read�
ings by factors of 5, 10, 20, and 30 and by averaging the

 components over corresponding spectral ranges

. Then, we compared  with

the integration result 

The following values were obtained at K = 105 and
µ = 10: when integration was performed with the sin�
gle�zone (panchromatic) image ( ): E = 1.1124%;
during the integration with the three�zone image
( ): E = 0.9128%. The dependence of the error
value (E) on µ was analyzed. At µ = 5, 10, 20, and 30,
E = 0.68, 0.91, 1.16, and 1.27%, respectively.

CONCLUSIONS

We considered the HSI formation models, mea�
sures of image element similarity, new possibilities of
image contour processing, a decrease in the HSI
dimensionality, atmospheric distortion statistical cor�
rection, and integration of hyperspectral information
with the data from other imaging systems. The studies
in these directions were performed in the scope of the
Resurs�P space system (FGUP GNP RKTs TsSKB�
Progress, Samara, a leading developer). The algo�
rithms considered in this work have been reduced to
software complexes. They passed all types of tests, and
were installed at the exploiting organization the Scien�
tific Center for the Earth Online Monitoring, the Rus�
sian Space System corporation, Moscow. The main
scientific results of the performed studies are as
follows:

(1) We studied several measures of similarity
between different hypercube elements based on com�
paring these measures with SC. We analyzed the effect
of additive multiplicative noise in different HSI chan�
nels on the quality of the measures of difference
between its elements. We proposed a new measure of
similarity between HSI elements noncritical to the
noise effect.

(2) We studied different approaches to a decrease in
the hyperspectral information volume without a sub�
stantial loss of the spectral resolution. Specifically, we
considered the polynomial algorithm for representing
SC. We indicated that this algorithm makes it possible
to reach an almost fourfold decrease in the calcula�
tions and a multiple decrease in the hyperspectral

B�
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information volume without a substantial loss of the
clustering and HSI contour processing quality.

(3) We proposed an atmospheric distortion statisti�
cal correction model based on a direct analysis of HSI.
In contrast to the analytical multifactor atmospheric
models, statistical correction makes it possible to sub�
stantially increase the HSI contour processing, clus�
tering, and classification quality.

(4) We considered several HSI integration technol�
ogies: both hypercube channels and HSI integration
with information from other imaging systems. Using
the data from the ProSpecTir�V aviation system, we
indicated that the usage of such technologies makes it
possible to substantially improve the object resolution.
The integration of hyperspectral resolution with a low
spatial resolution with information from other imag�
ing systems with a much higher resolution makes it
possible to form a new hypercube with high spatial and
spectral resolutions.
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