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Abstract—A solution to the Liouville equation for a one-electron density matrix in relation to ahomogeneous
semiconductor in amagnetic field is obtained using perturbation theory. Expressionsfor the conductivity tensor
and electron-momentum relaxation rate are obtained for the case of scattering by ionized impurities. These
expressions provide a sufficiently accurate description of the concentration and magnetic field dependences of
the longitudinal conductivity of a nondegenerate electron gas in the quantum limit that have been observed in
some studies. No explanation for these dependencesis found in the context of the current theory of magnetore-
sigtivity. An explanation of the temperature dependences of the components of the conductivity tensor is sug-
gested for a degenerate electron gas in magnetic fields that correspond to the quantum limit. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

It is known that, in a magnetic field, the electron
energy spectrum of semiconductorsis quantized. How-
ever, for a = Aw/kT < 1, where w = gB/misthe cyclo-
tron frequency, the effect of quantization appears, in
most cases, to be small and electron transport can be
described using the Boltzmann transport equation. It
follows from this eguation that a magnetic field sub-
stantiadly affects transverse (with respect to the field)
transport phenomena if wt = uB > 1, where p is the
electron mohility. In the longitudinal direction, trans-
port effects are independent of a magnetic field.

In aquantizing magnetic field, for a > 1, the use of
the transport equation for the electron distribution func-
tion cannot be applied to adescription of transverse gal-
vanomagnetic effectsin semiconductors (for which the
magnetic field vector B is perpendicular to the current-
density vector j). Moreover, this approach cannot, in
principle, describe a number of specific effects related
to quantization. The problem of transverse galvano-
magnetic effects has been exactly solved by Adams and
Holstein using the density matrix method [1]. Accord-
ing to [1-3], the character of conductivity in the pres-
ence of a magnetic field in the quantum limit does not
substantialy differ from the case of classica high
fields. The only differenceisthat the density of statesat
the Fermi level and the relaxation times depend on the
magnetic field [4, 5]. According to [1], the longitudinal
conductivity of electrongaso,, (B ||j ||2) doesnot differ
from the classical expression.

However, further studies have shown that in the case
of scattering by ionized impurities, the expressions for

0,, and o, obtained in [1-3] are not quite exact in the
guantum limit [4]. It was assumed that this circum-
stance is related to the fact that it is necessary to take
into account the effects of screening and the quasi-one-
dimensional character of electron motion in thefield of
a charged impurity. However, in the traditiona
approach, a consistent consideration of these effects[1]
does not describe a humber of features of magne-
totransport. With regard to these effects, the longitudi-
nal conductivity o,(B,) for a nondegenerate electron
gas increases with the magnetic field in the ultra-quan-
tum limit when only the lowest Landau level isoccupied,
due to the suppression of small-angle scattering [4];
moreover, the greater the increase in conductivity, the
smaller the electron concentration. In InSb, this pattern
in the dependence of 0(B,) was observed at atemper-
atureof T=30K only for arelatively high electron con-
centration (n = 10 cm3). At lower €lectron concentra-
tions, the opposite field dependence was observed [6].
For electron concentrations of n = 10 cm3, the dis-
agreement between theory and experiment can be up to
a factor of 40. In the context of the existing theories,
this fact has no explanation. For a degenerate electron
gas in doped semiconductors in a temperature range
from 0.05 to 15 K in the ultra-quantum limit, a rather
strong temperature dependence of the diagonal compo-
nents of the conductivity was observed (see review [4]
and the references therein). Longitudinal resistivity
pL(B, monotonically decreases with increasing tem-
perature, whereas transverse conductivity o,,(B,) and
resistivity p(B,) (j || X, B || 2 depend nonmonotoni-
cally on temperature. At the same time, the Hall con-
ductivity ,(B,) varies only very slightly with temper-
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ature. It isimpossible to explain these temperature depen-
dencesin the context of the theory developed in [1].

Recently, it has been shown that, in some cases, a
consistent consideration of quantization in a magnetic
field is important when formulating an adeguate
description of galvanomagnetic effects[7, 8]. However,
in [7, 8], the case of scattering by ionized impurities,
which is very important from the experimental point of
view, was not analyzed. In this study, the transport equa-
tion for a density matrix in arbitrary magnetic fields is
solved for scattering by ionized impurities, assuming
that the departure from equilibriumissmall. Expressions
for the momentum relaxation rate are also obtained and
compared with the available experimental results.

2. THEORY

It is known that, in a magnetic field, the matrices of
electron momentum components normal to the field
have no diagonal elements. Dueto thisfact, the electron
transport in a quantizing magnetic field cannot in prin-
ciple be described using the Boltzmann transport equa-
tion. Generaly, the most complete microscopic
description of a state in a quantum system is a descrip-
tion using the statistical operator (the density matrix) R.
In the Schrédinger representation, it obeys the Liou-
ville equation

S 0R

if 3t
In what follows, we restrict the analysis to a one-elec-
tron approximation. We assume that the magnetic field B
isdirected along the z axis, j || x, and the electric field E,
is also directed aong the x axis.

The properties of a system considered in the one-
electron approximation are described by the Hamilto-
nian operator

H=Hy+W+U = H,+W+U, (2

where H, is the Hamiltonian of an electron in a mag-
netic field, Wis the operator of the interaction of elec-
trons with phonons or impurities, and U = —gE x isthe
potential-energy operator. Generally, the electric cur-
rent density can be calculated using the relation

j = Tr(RJ), (3

where Tr(...) denotes the trace of an operator and J is
the current-density operator in amagnetic field. To cal-
culate the current, we must find the statistical operator
using Eqg. (1). To solve this equation, we treat the sum
W+ U in expression (2) as a perturbation.

If we choose the vector potential of the magnetic
field inthe gage A = (0, Bx, 0), then the wave functions
of the operator Hy and of the electron energy for a
homogeneous semiconductor are described by the well-
known relations in the Landau representation [9]. In
this representation, an electron state |iClis described by
aset of quantum numbers (n, k, k,, and s).

= [H,R]. )
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We solve Eq. (1) using the method of successive
approximations. A justification of this method and the
procedure for deriving an approximate equation are
described in detail in [10]. For steady-state conditions,
using the chosen basis of wave functions, we obtain
from Eq. (1)

(E1—E))Rpp +UgRy, —RpUg +iTS, = 0, (4)
where

2 = 22{5(E2— Es)[MJ1r4(543— Ri3)M3sRs,
3

— (814 — Rug)My5RsMs,] +8(E; — Ej) 5)

x [R14M25(653 — Rgg)M3, — M13R34Mj15(552 -Rg)[} -

Here, M;; are the matrix elements of the interaction of
electrons with charged impurities; the form of these
elements depends on the method used to describe this
interaction.

It iswell known that, strictly speaking, Eg. (1) does
not describe the irreversible behavior of an electron
system. To obtain irreversible behavior, we must use
additional arguments [1]. For this purpose, we may
either modify the Hamiltonian or take advantage of
some artificial mathematical method that permits us to
describe the interaction of the system with the medium.
The most common method is derived from the assump-
tion on aninitial approximation for the diagonal part of
the density matrix, i.e., for the distribution function. We
represent the density matrix as

Ry = F1015 + Go0(Kyq —Kyp), (6)

where Gy, = G, ,, (K, k). If the electric field does not

affect the spatial uniformity of the electron system, the
quantity F, = F(E;,) isusualy chosen in the form of the
Fermi—Dirac distribution function, which depends on
the energy and quasi—Fermi level E- The choice of F;
is actually based on the principle of local equilibrium,
widely used in the theory of semiconductors. At high
temperatures, this approximation is quite satisfactory.
However, at low temperatures, it is necessary to take
into account corrections to the distribution function
related to the combined effect of the electric field and
relaxation processes. Such acorrection wasobtainedin[1]
for the first nonvanishing order in scattering,. However,
it can only be applied to high fields. A general proce-
dure for obtaining the corrections is described in [10].
It consistsin expansion of the Gibbs statistical operator
in the interaction potential treated as a perturbation. In
the approximation linear in an electric field, the distri-
bution function can be written as

+9h
oE

where U,; is the potential-energy matrix element and
Z is the function representing the result of summation

Fy UnZ, (7)
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over all the high-order scattering terms. Generaly, this
function depends on the magnetic field, relaxation
parameters, and the distribution function and can be
determined by solving Eg. (1) for the diagonal elements
of the density matrix. Then, from (6), we obtain

oF
Ry, = a:l lUllzgélZ +G,0(ky1 —Kyp).  (8)

In this study, we do not analyze the exact form of the
function Z. Instead, we restrict the analysis to first
approximation in magnetic field. A standard solution to
the Boltzmann transport equation for the distribution
function shows that its nonequilibrium part can be writ-
ten as[11]

ik
af = .

In the case of amagnetic field, we find

__1ikF w[BE] +VBE
mIE B(v?+w’)

where v is the momentum relaxation frequency. We
omit the term proportional to E. The consideration of
this term improves the accuracy of the calculation of
the function P, which is determined below. However,
in this study, we disregard this problem. Then, we
obtain

7qOF w(k[BE])
moEB(v? + w?)
©)
e, 2 W’ OF o
—-q XaEV +(;)2 116EV2+(.02.

Comparing this expression with (7), we obtain

2
(V)

2 2°
vV +w

We seethat Z = 0 for B = 0 and, in the high-field limit,
Z=1.Infact, in[1], the distribution function was writ-
ten (although not explicitly) in form (9) withZ=1. The
divergence of the solutionsin thelow-field region [1] is
mainly related to the fact that the field dependence of
Z isdisregarded.

Z =

We now search for a solution of Eq. (4) linear in G.
We restrict further consideration of the interaction of
electrons with a charged impurity to the case of a
screened Coulomb potential. Then, we use (4), (5), and
(8) to obtain

(En=En+ iV Gon+ Unn(Frn—Fn)
—i/2(n+1)g\E,P,,—i#%B,, = 0,

(10)
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where

I
v =y Idygz[(l Fo)Kn + FoKnl Any

: a1)
* 3 LA FKu * Fikal A

=0

an =

0 9F\
|:(l —-F,+ Fm) D_(;Er—nlj

Im
% |Cmm n+I|A +(l+F _F
IZO ml n

n)D OF,D

T3E 0 (12

I
z |Cn e m+||Amli|(6m,n+l + 6m,n—l)l

=0

nm - VJ.dyDZ[(l Fn)Cmm r1+IC':'I,m—n+l

+ chmln_mHGn—mH,l]Aml

In
+Z[(l Fm)Cnn m+IGI,n—m+|

—n+ D
+FnC:II.m " IGm—n+I,I]AnI%

A = s—{[2y+a’+(x+by)] "~

2bn|

+[2y+a”+(x=by) 3,

b = x*+2(n-1),

_mg'NN
R G A

N* is the concentration of ionized impurities, k, = 1/r,
risthe screening radius, and K isthe permittivity of the

semiconductor. The functions K, (y) and C\"(y), as

well as the method of integration applied to the matrix
elements, are described in the Appendix. We see that
the required function G appears in Eq. (10) as a sum.
Therefore, in contrast to scattering by phonons|[7, 8], it
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is impossible to obtain a ssmple solution for G. How-
ever, the solution to Eg. (10) can be always written as

Unm(Fn_ Fm) + i’\/z(n + 1)qu)\an

Gom = E _E +ihv._

(13)

The accuracy of the calculation of v,,,, depends on a
number of parameters and on the chosen procedure for
the solution to Eqg. (10). Using the results obtained in

the Appendix, we can show that v\% G,,,, > B, Using
this inequality, we can solve Eq. (10), eg., by the
method of successive approximations. In the first
approximation, we may set B, = 0. These questions
will be considered in more detail below. The result for
the components of the conductivity tensor is

O = o )hZ(””)
dk|: nn+1(F n+1)+wpn,n+1i|
I w’ +Vn n+1 ’

(2 e hz(n+1)

n+1) Vn n+1Pn n+1i|
w’ +Vn n+1

(14)

xy

Idk [oo(F

where F, = F(E,). We see that the structure of these
equations coincides with that of the equations describ-
ing scattering by phonons[7, 8]. Therefore, to account
for the combined effect of different relaxation mecha-
nisms, we have to represent v and P as sums over these
mechanisms. In addition, the obtained expressionsindi-
cate that the function Z depends on the magnetic-level
number n and can be written more correctly in theform

(15

2
w

Znne1 T o
W +Vn,n+1

Using these results, we can easily show that the longi-
tudinal conductivity o,,(B,) is described by a standard
expression [11].

For high magnetic fields (w > v), Eq. (13) formally
transforms into the expression obtained in [1]. How-
ever, a substantial difference is that, in contrast to [1],
in the low-field limit, this equation transforms into the
well-known expressions for the conductivity tensor ina
semiconductor [11]. Furthermore, in this study, we
obtain a more exact expression than (11) for the fre-
quency of ionized impurity scattering v,,,, in high mag-
netic fields (see below).
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3. CALCULATION OF THE FREQUENCY
OF ELECTRON SCATTERING

Equation (10) is Fredholm’s equation of the second
kind, which satisfies al the conditionsfor absolute con-
vergence. Therefore, we use the method of successive
approximations in the calculations. In first approxima-
tion, we set B, = 0. To obtain the second approxima
tion, we take the fact that G, is a generalized (sym-
bolic) function into account. In Eg. (10), we replace

(O) m bY U @nd omit the term proportional to P,,,,. This

term correspondsto scattering effectsthat are quadratic
in frequency. The consideration of these effects can be
important in an analysis of magnetotransport in semicon-
ductors with a low charge-carrier mobility. Taking into
account the & functions in the collision integral, we
derive the following equaity from the integrand in (10):

aKzZ kz3
G mon+1(Kysi Ky = G ==,
I,m=n I( z3 24) nmak23 nmk22

Using this equality in the collision integral, we obtain
the following approximation for the scattering fre-
quency:

=G

v = qhwN’
" 16mKe./2m
J_ (16)
J-dy|: mnl(pZ) Zb ( nml(pl)i|-
Here,
b2n(pP) = fiw(n—m)+pf, i=1,2,
o _RKG . _ i B
o= g ) B
i—bu(P)]I (1 +F,—Fy
Dnml(pi) — |:[p I(p)]( . z
pilwy + (b, —pi)” + EJ

[p|+bnl(p)](1+F Fm)i|
pl[hwy-'- (bnl + pl) + Es]

For a nondegenerate electron gas, we replace the
summation in (16) by integration and, in the limit of a
zero magnetic field, obtain

q4N+
8TK/2mp

(17)

1 1 }
X - ’
[(IE— p)’+E, (JE+p) +E,
wherep = p; = p,.

Now, we calculate the scattering frequency in the
absence of amagnetic field directly from Eq. (5). Inthis
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Fig. 1. The energy dependence of the rate of momentum
relaxation induced by ionized impurities when (1) calcu-
lated using formula (18) and (2) calculated using the
Brooks—Herring theory.

case, the electron state |iClis described by a set of quan-
tum numbers (k,, k,, k,, and s). An equation similar to
Eg. (10) is obtained from Eq. (5). In the absence of a
magnetic field, the frequency of the momentum relax-
ation depends only on the total electron energy. The
iterative procedure of the solution converges well, and,
in the second approximation, the well-known Brooks—
Herring formula for the frequency of momentum relax-
ation v, isobtained. We note here that further iterations
only dightly improve the accuracy of the calculations.

We can see that frequency (16) depends on energy
and k,. However, the frequency vg, depends only on
energy. Thiscircumstanceisdueto the differenceinthe
sets of quantum numbers used in the analysis in the
absence and in the presence of amagnetic field. In order
to obtain an expression for the scattering frequency
from (16) that is equivalent to vg,, it iS necessary to

take into account that p = JEcos® and average over
the angle. The average frequency is given by

dT sm@D
V= H%ven

After simple calculations, we obtain the following
expression from (16):

_ 60x
v= — 2% (18)
15 + 4052 + 8x*
Here,
o gNT
ES 7 16mkl.2mEY?
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The obtained expression differs from the Brooks—
Herring formula. The disagreement is caused by a dif-
ferencein the convergence of theiterative procedurefor
the calculations with different sets of quantum num-
bers. Figure 1 showsthe results of the cal culation of the

relaxation frequencies V and vg. We can see that the
difference in the results is neverthel ess not very large.

4. CALCULATION OF THE CONDUCTIVITY
OF ELECTRON GAS AND COMPARISON
WITH THE EXPERIMENTAL RESULTS

First, we consider the temperature dependence of
the conductivity of a degenerate electron gas in the
ultra-quantum limit. In this case, for the transverse con-
ductivity, w > v and (13) can be used to obtain

(19)

- _79

= ——(dk,P
XX ( 2T[)2 ﬁJ- z! 01
Using this formula in the calculations, we must take
into account that, for a degenerate electron gas in a
semiconductor, the Fermi energy in high magnetic
fields is low. For example, for InSb with an electron
concentration of n = 10'® cm= at B = 5 T, the Fermi
energy is Er = 1.5 meV and the ratio Ez /KT is small if
the temperature is not too low. Therefore, the procedure
in which the derivative of the distribution function is
replaced by the & function isnot quite exact. Taking this
circumstance into account, we use (12) to obtain the
following approximate expression for the function

nn+1-

oF
Po = (1+F) E_a_E(HVm(EF)-
Here,
Voo = ﬁwcl N mf«/_coody
- 8rik

[Garraer e Gy
(hwv+4E.+E)® (hwv+EY)?
Substituting this expression into (19) and then integrat-
ing, we find that the conductivity g, in the ultra-quan-

tum limitis

c)-xxo

Oxx = 21

[1+ exp- kTD}

where 0, is the conductivity at atemperature of zero.
Thus, for n =10 cm3, g,, decreases by afactor of 1.4
as the temperature changes from 3to 10K. Since g, is
virtually independent of temperature and in the ultra-
quantum limit, o,, > 0, it follows that p,, aso
decreases with temperature, in good agreement with the
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experimental results [4]. Using (16), we can obtain a
similar dependence of g,

From thisanalysis, we can see that, for a degenerate
electron gas in a semiconductor, the temperature cor-
rections for the diagonal components of the conductiv-
ity tensor are not large and do not modify themainform
of the magnetic field dependence. At the sametime, the
obtained results allow usto interpret the experimentally
observed dependences.

For nondegenerate semiconductors, the situation is
different. Aswas noted in Section 1, the existing theory
cannot explain the experimentally observed depen-
dences of the longitudinal resistivity p,, on the electron
concentration n and magnetic field B,. Therefore, we
need to analyze this case in more detail. The desired
dependences can be obtained using expression (16).
However, to improve the accuracy of the calculations,
we must take into account anumber of factorsthat were
not discussed above.

First, it is necessary to take into account the depen-
dence of the concentration of activated impurities and,
accordingly, the electron concentration on the magnetic
field. Second, if not all the impurity atoms are ionized
or the semiconductor is compensated, the electron con-
centration ng;, which is used for the calculation of the
screening radius, can differ from the concentration of
freecarriersn=N*. Inthis case, screening can be aso due
to localized carriers moving between the centers[12]. For
example, if, in an n-type semiconductor with the donor
concentration Np, there are some acceptors, whose con-
centration is N, < Np, then

Ngt = N+ (Np—Ny—n)(Ny +n)/Np.

It follows from this relation that, in our case, when
calculating the Debye radius r,, we should replace n
by ny. We should note that taking this fact into account
does not strongly affect the calculated dependences.
Third, we must take into account the relatively weak
scattering by the deformation potential of acoustic
phonons (DA), for which the frequency of momentum
relaxation in a magnetic field was calculated in [7, 8].

Figure 2 shows the magnetic-field dependence of
the longitudinal magnetoresistivity p,(B,) for doped
InSb (for two different electron concentrations) calcu-
lated taking into account the above factors. This depen-
dence is expected to be observed in the low-field limit.
For the calculations, we used the following parameters
from [5]: the Lande factor g = —40 and the momentum
relaxation time 1p(300 K) = 40 ps. The impurity ion-
ization energy was taken to be E; = 5 meV. The calcu-
lation shows that the shape of the curvesfor therelative
longitudinal magnetoresistivity weakly depends on Eg
inafairly widerange of Ey. The calculated curves agree
with the experimental results[13] at an accuracy of no
worse than 20% in the entire range of field variation.
We note here that no decrease in resistivity was
observed in the experimental curve for n=102cm=3in
the region of low fields. Under the specified conditions,
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Fig. 2. The magnetic field dependence of the longitudinal
resistivity at T = 30 K for semiconductors with the electron

concentrations n = (1) 1012 and (2) 102 cm™3.

at an average thermal energy, the parameter (E/E)Y? in
Fig. 1isequal to 1.1 for the higher electron concentra-
tion and to 11 for the lower concentration. We can see
from Fig. 1 that the scattering frequencies calculated
using the two formulas are approximately equal. There-
fore, the presence of aregion of decreasing resistivity
in the calculated curves may indicate that, for weak
magnetic fields, it is necessary to take into account
other scattering mechanisms.

5. CONCLUSIONS

Thus, the results obtained in this study allow us to
describe the frequency of electron-momentum relax-
ation by ionized impurities in arbitrary magnetic fields
much more precisely. These results also make it possi-
ble to describe the temperature dependences of the
diagonal components a,, and o, of the conductivity
tensor of a degenerate electron gasin the ultra-quantum
limit, without taking localization effects into account.
In a nondegenerate electron gas, the obtained expres-
sions satisfactorily describe the dependence of the lon-
gitudinal conductivity g,, on the electron concentration
and magnetic field over a wide range of variation in
these parameters.

APPENDIX

Integration of Matrix Elements
and Orthogonal Polynomials

Using the equdity k, = k,, we can represent the
screened Coulomb potential as follows:

ep(ks) _ 1
4tr (2m)

d’q .
exp(iqgr).
3Iq2+k§ p(iqr)
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Then, the product of the matrix elementsin (5) can be

reduced to the integral
d®
4 5(kys —kys + G)
24 k )
X 6( k23 - I(zl + qz)é(kyZ - I(y4 + ky3 - kyl)
X 6(k22 - kz4 + k23 -k

MMy, = Z"DKD N I(

zl) I S
where

.= J‘dxldxzfn%z—%’)\%f p%(z + %’)\%

x £ B+ 21 F - In Bexplia,(x, — %)l

If we introduce the definition

J’dyf %

I+ T

x exp(igycy) = expD 23 Zn|s
then we obtain

I s = exp(—x)zm, Z:p’

G = Jo+qr, x = (qA)?/2,

1

Jmi2"!
J'dyexp( Y Haly + }EH H+ 2015

Using these relations, we can easily show that

11

Id¢llm pn — 2T[6pn m+|Cnn m+|

where

ZnI =

=

10.

11.

12.

CE,T_mH = eXp(_x)zmlz’r:,n—m+|-

Cﬂjl = K = Ky = exp(—X)ZZm»

Jch n— m+| 6nm'
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