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Abstract—The oscillating part of the longitudinal conductivity of layered crystals is considered within the
quasi-classical approximation, where both the electric field and quantizing magnetic field are perpendicular to
the layers. Our approach differs from the conventional one by taking into account both the nonparabolicity of
a narrow conduction miniband and the dependence of the Fermi surface size in the direction of the magnetic
field on charge-carrier concentration. This approach makes it possible to consider not only the standard case,
with open Fermi surfaces, but also the case of closed Fermi surfaces. It is shown that, for closed Fermi surfaces,
the existence of frequencies that do not correspond to extreme cross sections of the Fermi surfaces cut by planes
normal to the magnetic field can serve as a criterion for the narrowness of the conduction miniband, which
determines the translational motion of charge carriers across the layers. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

If it is assumed that there are many Landau levels in
the allowed band of a crystal, the Lifshitz–Kosevich
theory of magnetic susceptibility [1] and the Kosevich–
Andreev theory of transport coefficients [2, 3] are valid
in the quasi-classical approximation. Furthermore,
interband transitions are not forbidden, and charge-car-
rier scattering probabilities are either the same as they
would be in the absence of a magnetic field or oscillate
with the variations in a magnetic field [4]. The
Kosevich–Andreev theory was developed for a case in
which electric and magnetic fields are mutually perpen-
dicular. However, experimental studies of the oscilla-
tions of transport coefficients, in particular, of ther-
mopower, are quite often performed for a situation in
which an electric field (or temperature gradient) and a
magnetic field are parallel. Moreover, neither the Lif-
shitz–Kosevich theory nor the Kosevich–Andreev the-
ory take into account the explicit form of the nonpara-
bolicity of a conduction band and the dependence of the
size of the Fermi surface along the direction of a mag-
netic field on charge-carrier concentration. However,
there exist numerous highly anisotropic crystals with
layered structures where the motion of the charge carri-
ers in the layer plane is described using the effective
mass approximation and the motion in the perpendicular
direction by the tight-binding approximation or by some
nonparabolic dispersion relation [5]. Examples of such
crystals include transition metal dichalcogenides [6],
intercalated graphite compounds (synthetic metals) [7],
multinary semiconductor compounds with superlat-
tices (in particular, II–VI–VII compounds) [8], quasi-
two-dimensional organic conductors [9], etc. The aim
of this study is to describe, within the quasi-classical
approximation, the oscillations of electrical conductivity
1063-7826/05/3903- $26.00 0325
and to establish the conditions for the applicability of this
description to crystals in which the electric and magnetic
fields are parallel to each other (longitudinal electrical
conductivity) and are perpendicular to the layers.

It should be noted that layered conductors are usu-
ally considered as being quasi-two-dimensional, i.e.,
conductors for which the Fermi energy is much greater
than the width of the narrow conduction miniband,
which determines charge-carrier motion in a direction
normal to the layers. The theory relating to the Shubni-
kov–de Haas effect (in a magnetic field perpendicular
to the current) for such crystals has already undergone
a sufficiently detailed development in the quasi-classi-
cal approximation [9]. However, there are also layered
crystals that, though they are described by a model of
the band-spectrum characteristic of quasi-two-dimen-
sional crystals, are not quasi-two-dimensional in the
above sense. The Fermi energy in these crystals is
smaller than the width of the narrow miniband that
determines the motion of electrons across the layers;
however, these quantities are comparable, which means
that the usual effective mass approximation is not valid
[7, 8]. Nevertheless, these crystals can be transformed
into a quasi-two-dimensional form by doping. In this
study, we derive expressions that describe the oscillat-
ing part of the longitudinal electrical conductivity in
crystals of both types.

2. RESULTS AND DISCUSSION

The most general expression for the energy levels of
charge carriers in a layered crystal in a quantizing mag-
netic field perpendicular to the layers is

(1)ε n kz,( ) µ*H 2n 1+( ) W x( ),+=
© 2005 Pleiades Publishing, Inc.
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where µ* = µB(m0/m*); µB is the Bohr magneton; n is
the number of the Landau level; m* is the effective
mass of an electron in the layer plane, which is, for sim-
plicity, assumed to be isotropic; kz is the component of
the quasi-momentum in the direction perpendicular to
the layers; H is the quantizing magnetic field; W(x) is
the charge-carrier dispersion relation, which is not par-
abolic and describes the carrier motion in the direction
normal to the layers; x = akz; and a is the distance
between the translationally equivalent layers.

When describing the Shubnikov–de Haas effect in
the quasi-crystal approximation for charge-carrier scat-
tering by acoustic phonons, we assume, for simplicity,
that the relaxation time of the longitudinal quasi-
momentum does not depend on the carrier energy and
that the temperature dependence of this time obeys the
Bloch–Grüneisen law [10]. Then, the relaxation time is
given by

(2)

where, for the crystal under consideration, τ0 is a con-
stant that has the dimensions of time and describes the
scattering intensity, and ΘD is the Debye temperature of
the crystal.

The conductivity is obtained from the Kubo for-
mula [11] by summation over the Landau levels, which
can be precisely performed for spectrum (1) using the
longitudinal quasi-momentum relaxation time given
by (2) for any form of the function W(x). In the approx-
imation ζ/kT @ 1 and ∆/kT @ 1, we obtain the following
expression for the magnetic-field-independent part of
the conductivity:

(3)

and the oscillating part of the conductivity assumes the
form

(4)

In (4),  denotes the temperature-related damping
factor of the oscillations,

(5)

In (3)–(5), ζ is the Fermi energy measured from the bot-
tom of the narrow conduction miniband and W '(x) is
the derivative. The integration in (3) and (4) is per-
formed only with respect to positive values of x.

Using formulas (3) and (4), we can now calculate
the conductivity for the dispersion relations W(x).

τ τ 0 ΘD/T5( ),=
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h4T5
--------------------------------------- W' x( )( )2 x,d
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The simplest tight-binding dispersion relation,
which is used to describe a warped Fermi surface of a
layered crystal, is written as [5]

(6)

where ∆ is the half-width of the narrow miniband in the
direction normal to the layers. For this dispersion law,
as well as for nonquasi-two-dimensional crystals, i.e.,
for ζ ≤ 2∆, the magnetic-field-independent part of the
conductivity assumes the form

(7)

and the oscillating part is

(8)

where Jm(y) are the Bessel functions of the real argu-
ment y, and Cm are the modulating coefficients defined
by the relations

(9)

(10)

When deriving formula (8), we expanded the oscil-
lating part of the integrand in (4) in the Bessel functions
of integer index using dispersion relation (6) [12]. In
expansion (8), there are many Bessel functions, since,
for ζ ≤ 2∆, the Fermi surface of a layered crystal is
closed and occupies the region [–κζ; κζ] within the one-
dimensional Brillouin zone. For ζ > 2∆, the Fermi sur-
face is open, and the integration in (4) should be per-
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formed over the entire Brillouin zone; therefore expres-
sion (4) can be written in the more compact form

(11)

Let us analyze these results in more detail. First, we
should note that, initially, the magnetic-field-indepen-
dent part of the longitudinal electrical conductivity
increases monotonically with κζ, i.e., with the charge-
carrier concentration. It then attains a maximum, and
finally becomes independent of the carrier concentra-
tion as the Fermi level crosses the top of the narrow
miniband. This behavior occurs because any restriction
imposed on the free motion of the charge carriers
reduces the conductivity of the crystal.

We now consider the oscillating component of the
electrical conductivity. General formula (4) for the con-
ductivity differs from the conventional expression in
the explicit allowance it makes for the dependence of
the Fermi surface size along the direction of the mag-
netic field on the carrier concentration as a result of a
restriction of the region of integration with respect to x
[13, 14]. This restriction is quite justified, since the
“disappearance” of the Fermi surface implies that the
oscillating component of the conductivity vanishes.
Therefore, it follows from (8) that not only the frequen-
cies but also the amplitudes of the conductivity oscilla-
tions depend on the charge-carrier concentration via the
concentration dependence of the Fermi energy. For the
considered specific case of a layered crystal with a
superlattice, this dependence is determined by the mod-
ulating coefficients of the Bessel functions defined by
expressions (9) and (10). The series in r and l in expres-
sion (8) converge quite rapidly. However, for the spe-
cific case in which ζ = ∆, a more compact formula with-
out trigonometric factors can be obtained from (8):

(12)

This circumstance is a direct consequence of disper-
sion relation (6), which is representative of the small
width of the conduction miniband and is characteristic
of crystals with superlattices. However, when the mag-
netic field is so weak that there are a large number Lan-
dau levels in the narrow conduction miniband, we may
use the traditional quasi-classical approximation in (4),
which is not based on any model assumptions about the
form of the function W(x), i.e., about the character of

σosc
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the warping of a cylinder (which is actually the Fermi
surface of the layered crystal). To apply this approxi-
mation to (4), we must retain the first nonvanishing
terms in the expansions of W(x) and W '(x) in x near the
extreme cross sections of the Fermi surface cut by the
planes normal to the direction of the magnetic field.
Furthermore, we must evaluate the integrals obtained
using the method of steepest descent and the subse-
quent differentiation with respect to the parameter. The
result for the oscillating component of the longitudinal
conductivity is

(13)

In this formula, Wex and | | are values of the func-
tion W(x) and the modulus of its second derivative at the
extremum points (if there are several extrema, then the
sum in (13) must be taken over all the extrema belong-
ing to the Fermi surface). The plus sign at the initial
phase and the minus sign at the amplitude correspond
to the minimal cross section, and the opposite signs cor-
respond to the maximal cross section of the Fermi sur-
face. In contrast to the traditional formula [2, 3, 9], in
expression (13), the magnetic-field dependence of the
oscillation amplitude and the curvature of the Fermi
surface near the extreme cross sections is different, and
cosines are replaced by sines. These differences are
exclusively due to the fact that, in this study, we con-
sider the longitudinal electrical conductivity whereas,
in the traditional approach, the transverse conductivity
is considered.

If, in formulas (8) and (11), we use an asymptotic
limit in the form ∆/µ*H @ 1, then, retaining only the
leading terms in the asymptotic expansions of the
Bessel function [12], we see that the oscillating compo-
nent of the conductivity vanishes in an identical man-
ner. By including the subsequent terms in these expan-
sions, we obtain two quasi-classical formulas of type (13):
the first for a Fermi surface with one extreme cross sec-
tion (cut by the kz = 0 plane) when 0 < ζ < 2∆ and the
second for a Fermi surface with three extreme cross
sections (cut by the kz = 0 plane and the kz = ±π/a
planes) when ζ > 2∆. We then combine these formulas
into the single expression

(14)
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In this expression, θ(y) is the θ-pulse step function.
In this context, we should note that, in the traditional
approach, we always obtain a formula for the Fermi
surface with three extreme cross sections. At the same
time, from an analysis of the geometry of the Fermi sur-
face, it follows that, for 0 < ζ ≤ 2∆, this surface has only
one extremal cross section; however, this case was not
considered in [9]. It is also can be seen in (14) that, in
the traditional quasi-classical approach, in which the
dependence of the size of the Fermi surface along the
direction of the magnetic field on the charge-carrier con-
centration is disregarded, the oscillating component of
the conductivity changes abruptly with variations in ζ.
At the same time, formulas (8) and (11) predict that the
conductivity dependence on ζ is continuous. Such a
contradiction can be explained by the fact that, in the
model under consideration, the Fermi surfaces are
closed for 0 < ζ < 2∆ and open for ζ > 2∆. It can also be
explained in a purely mathematical form: the formulas
for the series summation over r, which appear after
passing to the asymptotic representations of the Bessel
function [11] in (8), are incorrect for κζ = 0 and κζ = π.
Furthermore, it is clear from the expression itself that
expression (14) is valid only if the Fermi level is not too
close to the bottom or top of the narrow conduction
miniband, whereas the general formulas (8) and (11)
are valid for any relation between ζ and ∆. In addition,
the quasi-classical condition, for which formula (2) is
valid, must be satisfied; i.e., a large number Landau lev-
els must lie below the Fermi level in the narrow conduc-
tion miniband.

This contradiction can be resolved if we note that,
even for ζ < 2∆, the oscillating component of the con-
ductivity of a layered crystal contains two, rather than
one, sets of oscillation frequencies. These frequencies
can be defined by the formulas

(15)

(16)

The first of these sets is always associated with the
maximal cross section of the Fermi surface cut by the
kz = 0 plane. The second set is not associated with any
cross section of the Fermi surface cut by the plane per-
pendicular to the direction of the magnetic field if 0 <
ζ < ∆. However, it is associated with two nonextreme
cross sections of the Fermi surface cut by the planes

if ∆ < ζ < 2∆ and with two minimal cross sections of the
Fermi surface cut by the kz = ±π/a planes if ζ > 2∆. The
contribution of the harmonics with frequencies (16)
increases if the ratio ζ/∆ increases and the ratio ∆/µ*H
decreases, i.e., if the Fermi level lies closer to the top of
the miniband and the miniband is narrower, leading to

hl
H lζ

2µ*
----------,=

hl'
H l ζ 2∆–

2µ*
--------------------.=

kz
3 2ζ /∆–( )arccos
a

------------------------------------------±=
larger anisotropy of the layered crystal. This behavior is
caused by the fact that a decrease in the ratio ∆/µ*H
leads to a decrease in the dephasing of the oscillations
related to the nonextremal cross sections of the Fermi
surface. A similar decrease in dephasing can be also
caused by an increase in the ratio ζ/∆. Such behavior
may be accounted for by a slower change, as the Fermi
level approaches the top of the miniband, in the areas of
the cross sections of the Fermi surface regarded as
functions of the longitudinal quasi-momentum. In the
quasi-classical approximation, at ζ < 2∆, the contribu-
tion of frequencies (16) is only a small correction, on
the order of µ*H/∆, to formula (14); i.e., this contribu-
tion gives rise to a fine structure when ζ < ∆ or beats
when ζ < ∆. However, if ζ = ∆, frequencies (15) and
(16) are indistinguishable.

We can illustrate the appearance of non-quasi-clas-
sical frequencies of the conductivity oscillations by
expanding the integrand in (4) (taking into account (6))
in the Bessel functions of half-integer index [12], which
are elementary functions expressed in terms of the
products of sines and cosines by polynomials. A similar
procedure was used in [14] for magnetic susceptibility.
Then, the amplitudes of the oscillations with different
frequencies depend continuously on the charge-carrier
concentration, i.e., on ζ, thus ensuring the continuity of
the change in the oscillating component of the conduc-
tivity dependence on ζ. However, the statement about
the presence of non-quasi-classical oscillation frequen-
cies is not true for all dispersion relations. For example,
if we calculate the conductivity with formulas (3) and
(4) using a purely quadratic function W(x), we obtain
the following formulas for the monotonic and oscillat-
ing components:

(17)

(18)

Here,  is the longitudinal electron effective mass,
and Ci(y) and Si(y) are the cosine and sine Fresnel inte-
grals, respectively (the other notation is specified
above). Formula (18), as well as formulas (8) and (11)
for a crystal with superlattice, take into account the effect
of the charge-carrier concentration dependence of the
Fermi surface size along the direction of the magnetic
field on the oscillations of the longitudinal conductivity.
When passing to the asymptotic limit ζ/µ*H @ 1 in (18)
and retaining only the leading terms in the expansions
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of the Fresnel integrals, we obtain a formula of type
(14) for the Fermi surface with a unique stationary
cross section cut by the kz = 0 plane. Thus, we find that,
for ζ < 2∆ in the traditional quasi-classical approxima-
tion, dispersion relation (6) is virtually parabolic. In the
same way, without using the method of steepest
descent, we can also obtain formula (13) for a general
case. Using the expansions of the Fresnel integrals in
the Bessel functions of half-integer index [12], we can
show that, for a parabolic dispersion relation, having a
finite size of the Fermi surface along the direction of the
magnetic field does not result in the appearance of non-
quasi-classical oscillation frequencies. Moreover, this
conclusion is valid not only for a quadratic dispersion
relation but also for a linear relation of the form

(19)

which is used, for example, to describe the band struc-
ture of graphite and synthetic metals based on graphite
intercalation compounds (∆0 is a parameter of the
model and has the dimensions of energy) [6]. For this
dispersion relation, we obtain the following formulas
for the components of the longitudinal conductivity of
the crystal:

(20)

(21)

Formula (21) describes the oscillations of the longi-
tudinal conductivity related to the only stationary (maxi-
mal) cross section of the Fermi surface cut by the kz = 0
plane; this circumstance is quite understandable if we
take into account that, for model (19), the Fermi surface
of the crystal consists of two cones with contacting
bases. If we try to apply formula (13) to model (19), we

obtain an obviously incorrect result,  = 0, since, in
this model, W ''(x) ≡ 0. Thus, we arrive at the conclusion
that the presence of harmonics with non-quasi-classical
frequencies in the oscillating component of the longitu-
dinal conductivity and the deviation of the field depen-
dence of the oscillation amplitudes from the “H3/2 law”
under the conditions of applicability for the quasi-clas-
sical approximation can serve as a measure of the non-
parabolicity of the conduction band. Furthermore, it
can be seen from (13), (14), and (21) that, due to the
quasi-classical condition, in each of the cases consid-
ered, the oscillating component of the conductivity is
small compared to the magnetic-field-independent com-
ponent. Comparing these results with those of [1, 2], we
see that, under the quasi-classical conditions, the longi-
tudinal magnetooscillation effects are much less pro-
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nounced than the transverse effects. However, in lay-
ered crystals, the magnitude of the former effects may
be larger because of the pronounced anisotropy of the
electronic spectrum.

Using an elementary model of the band spectrum of
a layered crystal as an example, we now analyze the
limits of the applicability of the obtained results. For
this purpose, we should take into account that the
phonon energy is approximately kT at low temperatures
and the scattering-induced change in the energy of the
longitudinal motion of an electron cannot exceed the
width of the narrow miniband 2∆ if we disregard the
Umklapp processes. Therefore, the scattering-induced
change in the number of the Landau subband is esti-
mated to be

(22)

The second term on the right-hand side is approxi-
mately equal to 100 for m* = m0, ∆ = 0.01 eV, and mag-
netic fields of approximately 1 T; therefore, the quasi-
classical condition is satisfied, intersubband transitions
are not suppressed, representation (2) for the relaxation
time is valid, and the results obtained above are correct.
However, under conditions in which the Shubnikov–de
Haas effect is clearly pronounced, it is not always pos-
sible to disregard the suppression of intersubband tran-
sitions. Indeed, at low temperatures, where qza ! 1
(qz is the longitudinal component of the phonon wave
vector), the absolute value of the scattering-induced
change in the energy of the longitudinal motion of an
electron does not exceed qza∆. Therefore, taking into
account that qz = 2πkT/hs, where s is the velocity of
sound in the crystal, we use the condition δn ≤ 1 to esti-
mate the freeze-out temperature for intersubband tran-
sitions:

(23)

This temperature is, of course, lower than 2µ*H/k.
For m* = m0, ∆ = 0.01 eV, s = 5 × 103 m/s, and a =
10 nm, we obtain Tf = 0.074 K in magnetic fields of
approximately 1 T. At first sight, this condition for the
freeze-out of intersubband transitions seems to be quite
restrictive, especially if we take into account that, gen-
erally, magnetoinsulating experiments are performed at
much higher temperatures [13]. However, if, taking into
account the magnitude of the factor of the thermal
smearing of the oscillations determined by (5), we
write the condition necessary for the Shubnikov–
de Haas effect to be clearly pronounced in the form

(24)

then, for the same parameters values, we obtain T ≤
0.068 K; i.e., the temperature must be lower than Tf .

Expression (23) has a quite clear physical meaning.
If we set ∆ = 0 in this expression, we will transform the
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system of Landau subbands into a system of discrete
levels for which Tf = 2µ*H/k. This formula allows us to
understand why, in typical metals, e.g., alkali metals,
even in a situation where the Shubnikov–de Haas effect
is well pronounced, the intersubband transitions do not
freeze out and the quasi-classical approximation of the
above sense is valid. For the purpose of estimation, if
we set ∆ = 5 eV, a = 0.5 nm, and s = 5 × 103 m/s in (23),
we find that 2πa∆/hs ≈ 850; this value has the same
order of magnitude as the ratio 2µ*H/kTf. Thus we see
that, even if the thermal smearing of the oscillations is
negligible, intersubband transitions in typical metals
are important and, therefore, the quasi-classical
approximation is valid. A different situation is realized
in semimetals, e.g., in bismuth. If a magnetic field of
about 1.25 T is applied to a Bi crystal along the long
bisector ellipsoid axis of the constant-energy surface
for a conduction band with the effective mass m*/m0 =
8.2 × 10–3, the distance between the Landau levels is
2µ*H/k ≈ 204 K [13]. If we also take into account the
data [13] on the value of the Fermi energy for electrons
and, for the purposes of estimation, set 2∆ = 0.03 eV =
348 K, then the ratio ∆/µ*H = 1.71; moreover, accord-
ing to (22), we may assume that, in the observation of
the Shubnikov–de Haas effect, the intersubband transi-
tions are frozen out. The freeze-out temperature in this
case can be determined from inequality (24), which
gives a temperature value equal to 10.3 K, in satisfac-
tory agreement with experiment [15]. A similar situa-
tion is encountered in highly anisotropic layered crys-
tals. However, in this situation we must take into
account the effect of the magnetic field on charge-car-
rier scattering and, since the quasi-classical approxima-
tion is no longer valid, use the formulas from [16]
rather than the formulas of this study. In addition, we
should note that the authors of [4] consider oscillations
of the scattering probability of charge carriers as the
main cause of the Shubnikov–de Haas effect. This is
equivalent to the assumption that the relaxation time is
inversely proportional to the density of states in the
magnetic field, with an allowance made for the effect of
all the lower lying Landau subbands on the density of
states. However, the resulting correction to the oscillat-
ing component of the conductivity does not affect the
oscillation frequencies.

3. CONCLUSIONS

Thus, we have shown that, under the conditions of
the applicability of the quasi-classical approximation,
the presence of frequencies in the spectrum of the oscil-
lations of the longitudinal conductivity that are not asso-
ciated with the stationary cross sections of the Fermi sur-
face cut by planes normal to the field, as well as the devi-
ation of the field dependence of the corresponding
amplitudes from the linear law or “the 3/2 law,” can
serve as a measure of the deviation of the dispersion
relation, which describes the charge carrier motion,
from linear or parabolic, respectively. Furthermore, it is
shown that, in crystals with narrow conduction mini-
bands or with small values of the Fermi energy and
small transverse charge-carrier effective masses, the
intersubband transitions in the Shubnikov–de Haas
effect can freeze out. This freeze out is, at least, in qual-
itative agreement with the experiment and with the the-
oretical results obtained by previous authors without
using the assumption of the nonparabolicity of the con-
duction band. On the basis of the results obtained dur-
ing the preparation of this publication, it should be
noted that, in order to study fine details of the topology
of the Fermi surface of conducting materials (especially
unconventional ones), it is necessary to perform the
experiments in strong quantizing magnetic fields, i.e.,
in the region of large deviations from the traditional
quasi-classical approximation. However, for this pur-
pose, the topology the Fermi surface must be first
parametrized, e.g., on the basis of rough calculations of
the band structure, and the optimum set of orientations
of the magnetic field for which these deviations are pro-
nounced most clearly must be determined.
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