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Effect of partial ordering of a two-dimensional system of scatterers on the anisotropy
of its kinetic coefficients
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The effect of partial ordering of impurities~correlated along one direction and uncorrelated along
the other! on the kinetic coefficients is considered. It is shown that the geometry of the
spatial impurity distribution by itself has no effect on the diffusion coefficient or conductivity for
scattering by a spherically symmetric potential, and these coefficients remain the same as
for an uncorrelated system of impurities. ©1998 American Institute of Physics.
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The way that scattering by randomly located impurit
and impurities that randomly occupy sites in a periodic l
tice affect conductivity is now well understood. Howeve
thed-doped layers that can now be grown on vicinal surfa
of semiconductors constitute a class of structures that d
from those considered previously, since they exhibit par
ordering of the scattering centers.1 At the surface there is a
periodic structure of monoatomic steps, and during dop
impurities are deposited primarily on these steps, formin
system of parallel chains. Along such a chain the position
impurities may be treated as completely uncorrelated. In
case, the chains themselves form a periodic lattice, wh
period depends on the angle of misorientation of the surf
relative to the principal crystal plane. In its geometry th
system differs from any studied previously. Experimen
studies show2 that such layers have anisotropic electron
properties. In this paper we discuss how the geometry of
system of scatterers affects the anisotropy of the kinetic
efficients.

Consider the scattering of an electron localized in ad-
layer and freely moving only in the plane of the layer. In th
case, we can write the collision integral in the Boltzma
equation, which determines the correctionf 1 to the equilib-
rium distribution functionf 0 , in the form

I st~k!5E d2k8

2p
W~k, k8!@ f 1~k8!2 f 1~k!#d~«k2«k8!,

~1!

whereW(k, k8)d(«k2«k8) is the probability for the electron
to make a transition from statek to statek8 as a result of
elastic scattering. We are interested only in changes in
distribution function associated with spatial correlations
the impurity positions, and ignore the electron density n
an impurity, which, in general, is needed to calculate kine
coefficients. If we assume that the electron wave function
the plane of the layer is a plane wave, the probabi
W(k, k8) can be written in the form
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W~q!5
2p

\
U E dxdydz eiqxxeiqyyV~r !w2~z!U2

, q5k2k8,

where w(z) is the quantum-well wave function along th
directionz, and

V~r !5(
j

N

v~r2Rj !

is the impurity potential~whereRj is the coordinate of the
j th impurity!. It is easy to show3 that

W~q!5
2p

\
uv~q!u2S~q!,

where v(q) is the Fourier transform of the effective two
dimensional impurity potential, which for a Coulomb pote
tial is

v~q!5
2pe2

«q E exp~2quzu!w2~z!dz,

while S(q), the so-called structure factor

S~q!5U(
j

N

eiqRjU2

, ~2!

which contains all the information about the system geo
etry. Assuming that the positions of the impurities are e
tirely uncorrelated along a chain~the x direction!, and that
the chains themselves are positioned on a periodic lattice~the
y direction!, we obtain for the structure factor averaged ov
impurity positions

^S~q!&5NF11
~2p!2

a
nd~qx!(

n
dS qy2

2p

a
nD G , ~3!

whereN is the total number of impurities in the entire plan
andn is the average number of impurities per unit length
chain. The quantitŷS(q)& differs from the structure facto
for completely uncorrelated impurities only atqx50. Quali-
6 © 1998 American Institute of Physics
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tatively, this behavior ofS(q) is connected with the fact tha
for qxÞ0 the average number of impurities at the plan
wave front is constant, and only forqxÞ0 will oscillations
begin in the averaged number of impurities at this front.

Equation~3! has a symbolic meaning to a certain exte
since when we substitute it into Eq.~1!, we obtain the prod-
uct of threed-functions, which after integration formally
gives the indeterminate expressiond(0). In order to assign a
meaning to such an expression, we must recall that it
obtained from the sum~2!, in which the total number of
impuritiesN is assumed to be a large but finite number. Th

2pnd~0!5N̄x
22N̄x , ~4!

whereN̄x is the average number of impurities on one cha
Substituting expression~3! into Eq. ~1!, we obtain

I st5NE d2k8

2p
uv~k2k8!u2~ f 1~k8!2 f 1~k!!d~k2k8!

m

k8

1
2pn

a
d~kx2kx8! (

n52`

`

dS ky2ky82
2p

a
nD uv~k2k8!u2

3~ f 1~k8!2 f 1~k!!d~k2k8!
m

k8
. ~5!

The first term on the right side of Eq.~5! corresponds to the
collision integral for uncorrelated impurities, and the ent
contribution from spatial correlations is contained in the s
ond ~singular! term.

Next, we will discuss scattering by a potential with c
cular symmetry, i.e.,v(k)5v(k). Then the correction to the
distribution function is conveniently cast in the form of
sum:

f 1~k,w!5 f 1
1~k,w!1 f 1

2~k,w!,

where

f 1
1~k,w!5 f 1

1~k,2w!,

and

f 1
2~k,w!52 f 1

2~k,2w!.

After substituting the quantitiesf 1
1 and f 1

2 into Eq. ~5! and
integrating, the expression for the collision integral takes
form

I st5NE dw8

2p
uv~k,w2w8!u2~ f 1

1~k,w8!1 f 1
2~k,w8!

2 f 1
1~k,w!2 f 1

2~k,w!!1
uv~2kusinwu!u2

kusinwu

32 f 1
2~k,w! (

n51

`

dS 2kusinwu2
2p

a
nD . ~6!

If the field-dependent part of the Boltzmann equation
an even function of angle~for example, proportional to cosw,
as happens when we calculate the conductivity in a unifo
electric field!, then the equations forf 1

1 and f 1
2 separate.

This can be seen, e.g., if we replacew by 2w in the
-

,

s

n

.

-

e

s

m

Boltzmann equation, and then add and subtract the resu
equations. As a result, we find that the functionf 1

1 satisfies
the Boltzmann equation without the singular term in the c
lision integral, and thatf 1

2 satisfies the homogeneous equ
tion:

E dw8

2p
uv~k,w2w8!u2~ f 1

2~k8,w8!2 f 1
2~k,w!!

1
uv~2kusinwu!u2

kusinwu
2 f 1

2~k,w! (
n51

`

dS 2kusinwu2
2p

a
nD50.

~7!

We emphasize that this separation of the equations forf 1
1

and f 1
2 is directly related to the fact that the equatio

v(k,w)5v(k,2w) is valid for the potential. Sincef 1 is the
correction for the distribution function caused by extern
perturbation, while Eq.~7! does not contain the perturbation
we must assume thatf 1

2[0.
Thus, in calculating the conductivity or diffusion coeffi

cient for any spherically symmetric potential, the contrib
tion from the singular part of the collision integral equa
zero and correlated positions of impurities in itself has
effect on these coefficients.

From these considerations, it does not follow, of cour
that the kinetic coefficients in this system are the same
coefficients in the uncorrelated system. For an exact calc
tion, let us say, of the conductivity, it is necessary to ta
into account the nonuniform distribution density of the ele
trons, which immediately leads to anisotropy of the kine
coefficients.

We note that the probability of scattering, as we sho
expect, contains the singular part. If we calculate the re
dence time for elastic scattering in this system of impurit

t21~k!5
2p

\ E d3q

~2p!3
uV~q!u2d@E~k!2E~k2q!#,

as was done in Ref. 4 for a three-dimensional periodic lat
with randomly occupied sites, then according to Eq.~3! we
obtain

1

t~k!
5

1

t r~k!
1

1

tc~k!
.

The quantityt r is determined by scattering by randomly lo
cated impurities, whiletc is determined by scattering a
‘‘Bragg’’ angles by the correlated chains:

1

tc
5

N

a\ (
nÞ0,

2p
a nP[ky2uku,ky1uku]

m

ukxu
vS 0,

2p

a
nD2pnd~0!.

~8!

Expression~8! implies that forky5(2p/a)n there is addi-
tional scattering that is enhanced by a factor of (N̄x

2

2N̄x)/Nx compared to the incoherent scattering. In th
sense, the situation is analogous to scattering by a cry
lattice: although an external beam~plane wave! gives rise to
Bragg peaks@an analog to Eq.~8!#, for an electron in the
crystal with momentum much smaller than the size of
Brillouin zone the scattering by the lattice is not important



ui
pie
s

ts
ca

cts
d

1118 Semiconductors 32 (10), October 1998 Averkiev et al.
all, since the electronic states at the boundary of the Brillo
zone from which the scattering takes place are unoccu
due to the relatively small concentration of carriers in the
states.

Thus, the geometry of impurity positions ond-doped
vicinal surfaces in itself has no effect on kinetic coefficien
Partial ordering in such a system can manifest itself in s
tering of an external beam of particles~for example, in sur-
face electron holography!.
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