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Effect of partial ordering of a two-dimensional system of scatterers on the anisotropy
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The effect of partial ordering of impuritigorrelated along one direction and uncorrelated along
the othey on the kinetic coefficients is considered. It is shown that the geometry of the

spatial impurity distribution by itself has no effect on the diffusion coefficient or conductivity for
scattering by a spherically symmetric potential, and these coefficients remain the same as

for an uncorrelated system of impurities. 98 American Institute of Physics.
[S1063-782628)02210-9

The way that scattering by randomly located impurities 21 o 2
and impurities that randomly occupy sites in a periodic lat-W(Q) = 7[ dxdydz &€ WV(r)e*(z)| , q=k—k’,
tice affect conductivity is now well understood. However,
the 5-doped layers that can now be grown on vicinal surfacegvhere ¢(2) is the quantum-well wave function along the
of semiconductors constitute a class of structures that diffegirectionz, and
from those considered previously, since they exhibit partial N
ordering of the scattering centergt the surface there is a V(= v(r— R))
periodic structure of monoatomic steps, and during doping i

impurities are deposited primarily on these steps, forming T the impurity potentiatwhereR; is the coordinate of the

system of parallel chains. Along such a chain the positions o th impurity). It is easy to showthat

impurities may be treated as completely uncorrelated. In thi
case, the chains themselves form a periodic lattice, whose B 2_77 5
period depends on the angle of misorientation of the surface V(@)= =~ [v(®)|*S(a),
relative to the principal crystal plane. In its geometry this ] ) .
system differs from any studied previously. ExperimentalVnerev(q) is the Fourier transform of the effective two-
studies show that such layers have anisotropic electronicdimensional impurity potential, which for a Coulomb poten-
properties. In this paper we discuss how the geometry of thal is
system of scatterers affects the anisotropy of the kinetic co- 2 re?
efficients. v(q)= 2q
Consider the scattering of an electron localized iAn-a
layer and freely moving only in the plane of the layer. In thiswhile S(q), the so-called structure factor
case, we can write the collision integral in the Boltzmann N
> R
I

[ ex-alzheaaz

2
equation, which determines the correctibnto the equilib- S(q)=

rium distribution functionf,, in the form

@

201 which contains all the information about the system geom-
l(k)= f Z_W(k’ K[ f(k")—f1(K)]d(ex— &), etry. Assuming that the positions of the impurities are en-
m tirely uncorrelated along a chaitthe x direction), and that
@ the chains themselves are positioned on a periodic ldttiee
y direction), we obtain for the structure factor averaged over

whereW(k, k') 8(e— €) is the probability for the electron ) "
( )ole—ew) P y impurity positions

to make a transition from state to statek’ as a result of
elastic scattering. We are interested only in changes in the (2m)
distribution function associated with spatial correlations in ~ (S(Q))=N| 1+
the impurity positions, and ignore the electron density near

an impurity, which, in general, is needed to calculate kinetiovhereN is the total number of impurities in the entire plane,
coefficients. If we assume that the electron wave function irand v is the average number of impurities per unit length of
the plane of the layer is a plane wave, the probabilitychain. The quantitfS(q)) differs from the structure factor
W(k, k') can be written in the form for completely uncorrelated impurities only gt=0. Quali-

)

a

2 2
Vé(qx)En: 5( Qy— ?ﬂn)
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tatively, this behavior 08(q) is connected with the fact that Boltzmann equation, and then add and subtract the resulting

for q,#0 the average number of impurities at the plane-equations. As a result, we find that the functioh satisfies

wave front is constant, and only fay,#0 will oscillations the Boltzmann equation without the singular term in the col-

begin in the averaged number of impurities at this front.  lision integral, and that; satisfies the homogeneous equa-
Equation(3) has a symbolic meaning to a certain extent,tion:

since when we substitute it into E¢l), we obtain the prod- do’

uct of three é-functions, which after integration formally —Tr|u(k,<p—go’)|2(f1’(k’,<p’)—fl’(k,<p))
gives the indeterminate expressiéf0). In order to assign a

meaning to such an expression, we must recall that it was |v(2K|sing)|)|2

obtained from the sung2), in which the total number of

N - ) 2
2f1 (k@) >, 5<2k|3|nzp|—?n):0.
impuritiesN is assumed to be a large but finite number. Then n=1

k|sine|
()

o We emphasize that this separation of the equations for
whereN, is the average number of impurities on one chain.and f; is directly related to the fact that the equation

27v8(0)=N2—N,, (4)

Substituting expressio(8) into Eq. (1), we obtain v(k,9)=v(k,—¢) is valid for the potential. Sincé, is the
i correction for the distribution function caused by external
, m bation, while Eq(7) does not contain the perturbation
ls=N | S lo(k=K)[2(F (k') = F1(K)) S(k—k') — perturbation, '
st J el Ak = Fa(kD & )k’ we must assume thaf =0.

Thus, in calculating the conductivity or diffusion coeffi-
cient for any spherically symmetric potential, the contribu-
tion from the singular part of the collision integral equals
zero and correlated positions of impurities in itself has no
effect on these coefficients.

From these considerations, it does not follow, of course,
that the kinetic coefficients in this system are the same as
The first term on the right side of E¢5) corresponds to the coefficients in the uncorrelated system. For an exact calcula-
collision integral for uncorrelated impurities, and the entiretion, let us say, of the conductivity, it is necessary to take
contribution from spatial correlations is contained in the secinto account the nonuniform distribution density of the elec-

o0

27y 2
+ Té(kx—kx)n;w 5( ky—k)— ?n) lv(k—k")|2

><<f1<k'>—f1<k>)5<k—k'>k—"j. (5)

ond (singulapy term. trons, which immediately leads to anisotropy of the kinetic
Next, we will discuss scattering by a potential with cir- coefficients.
cular symmetry, i.ey (k) =v (k). Then the correction to the We note that the probability of scattering, as we should
distribution function is conveniently cast in the form of a expect, contains the singular part. If we calculate the resi-
sum: dence time for elastic scattering in this system of impurities
T = - - y
where hoJ (2m)3 a a
f1(k,o)=Ff;(k,— o), as was done in Ref. 4 for a three-dimensional periodic lattice
with randomly occupied sites, then according to E2).we
and obtain
fi(ke)=—f1(k—e). 1 1 1
. . .. + — . = + "
After substituting the quantities’ andf; into Eq.(5) and (k) 7 (k)  7e(k)
integrating, the expression for the collision integral takes therhe quantityr, is determined by scattering by randomly lo-
form cated impurities, whiler; is determined by scattering at
do’ o ’ B , “Bragg” angles by the correlated chains:
=N | 5 —fo(ke—¢)[*(f1 (k@) + 11 (K ¢") 1 N m | 2
= > —v| 0—n|27v5(0).
lv(2K|sing|)|? Te ahn:&o,z—ﬁne[k — |l ky+ [KI] [k a
—fi (ko) —fi (ko) +—r—— a y Y
k|sine| €5))
o o Expression(8) implies that fork,=(2#/a)n there is addi-
x2f7 (K, @) >, 5(2k|sin<p|— ?n). (6) tional scattering that is enhanced by a factor ¥ (
n=1

—N,)/N, compared to the incoherent scattering. In this
If the field-dependent part of the Boltzmann equation issense, the situation is analogous to scattering by a crystal
an even function of angléor example, proportional to cgs  lattice: although an external beaplane wave gives rise to
as happens when we calculate the conductivity in a unifornBragg peakgan analog to Eq(8)], for an electron in the
electric field, then the equations fof; and f; separate. crystal with momentum much smaller than the size of the
This can be seen, e.g., if we replage by —¢ in the Brillouin zone the scattering by the lattice is not important at
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all, since the electronic states at the boundary of the BrillouirOrganisatie voor Wetenschappelijk OnderzgiikVO).
zone from which the scattering takes place are unoccupied
due to the relatively small concentration of carriers in these

states.
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