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Abstract—In acute hypotension, an automated drug infusion sys-
tem to control mean arterial blood pressure (MAP) has not been
previously studied, though many investigations have examined
the use of vasodilating drugs to control MAP in postoperative
hypertension. Therefore, we examined an automated control of
MAP during acute hypotension using a neural network (NN) ap-
proach. A proportional-integral-derivative (PID) control, an adap-
tive predictive control using a NN (APCNN), a combined control
of APCNN and PID (APCNN-PID), a fuzzy control, and a model
predictive control were tested in computer simulation based on
the MAP response to norepinephrine (NE) of 25 µg ml−1. In six
anesthetized rabbits, using the NE of 25 µg ml−1, the PID control,
APCNN, and APCNN-PID prevented severe hypotension compared
to an uncontrolled condition. Under PID control, four of the six
animals showed MAP oscillation. Using NE of 50 µg ml−1, the
rabbits recovered from acute hypotension for all systems tested
but showed sustained MAP oscillation during PID control. In
conclusion, utilization of a NN for adaptive predictive control
systems could facilitate the development of an automated drug
infusion apparatus because it provides robust control even when
acute or large perturbations and inter-individual differences in the
sensitivity to therapeutic agents occur.

Keywords—Automated drug infusion system, Norepinephrine,
Rabbits, Proportional-integral-derivative control.

INTRODUCTION

In a clinical setting, it is necessary to regulate many phys-
iological parameters in the presence of disturbances includ-
ing interactions among therapeutic agents, unexpected and
acute changes in hemodynamic variables, and background
noise.9 Many investigators have reported on the use of au-
tomated drug infusion systems using vasodilators in post-
operative hypertension13,18,28 and multiple drug infusion
systems to regulate hemodynamics such as cardiac output
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and mean arterial blood pressure (MAP).9,22 However, in
acute hypotension, an automated drug infusion system to
control MAP has not been studied previously because no
controller was robust enough to handle the associated unex-
pected large disturbances and complex modeling of various
pathological states. If a system could be designed, which
adapted to acute hypotension, and combined with a multiple
drug infusion system,9,22 it would be useful for application
in a clinical setting.

Catecholamines, fluid infusion, and blood transfusion
are required to maintain local circulation to vital organs
during acute hypotension.3,6,26 The catecholamines con-
tribute to the quick recovery of MAP from a state of acute
hypotension.20,31 However, the sensitivity or responsive-
ness to the pharmacological agents generally differs among
patients, and even within the same individual, the effects
of pharmacological intervention could vary with time due
to changes in a patient’s underlying pathophysiology.2 Fur-
ther, the dose-response relationship is usually nonlinear,
which makes a prediction of MAP response difficult. The
cumulative effects of the past intervention on the current
MAP29 also complicate MAP control. Therefore, proper
drug infusion for MAP control largely relies on the ex-
pertise of anesthesiologists and clinicians. Developing a
reliable method for automating the drug infusion system
would improve a patient’s individualized drug therapy and
minimize the total amount of drug required, which may
allow an early tapering off of the drug.

Automated drug infusion systems for controlling MAP
have been constructed previously using proportional-
integral-derivative (PID) algorithms.19,27 As long as the
MAP response to pharmacological intervention does not
change markedly, simple control with PID-tuned parame-
ters works reasonably well. However, the PID controller
cannot achieve maximum performance in all situations be-
cause of the nonlinear time-varying MAP response and
the differences of drug sensitivity among patients.1,13,34

To overcome the limitation of PID control, adaptive
MAP controls have been developed to provide consistent
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performance. These adaptive controllers recursively update
their own parameters so as to compensate for both the time-
varying characteristics of MAP response and the intra-
and inter-individual differences to drug sensitivity.18,28,33

Because the conventional adaptive controls still rely on
a moment-to-moment linearity in MAP response to drug
infusion, they might not be able to adapt to the nonlinear
MAP response when large perturbations such as acute and
severe hypotension1 occur.

A neural network (NN) is a useful tool that can identify
and learn nonlinear time-varying systems even in the pres-
ence of intra- and inter-individual variability in a patient’s
vital signs with large perturbations.15,30 Therefore, an adap-
tive predictive control based on a NN (APCNN) may be more
robust compared to the conventional PID controller in stabi-
lizing the system in the presence of nonlinearities in patient
response and sensitivities to a drug.1,11,17 The purpose of
the present study was to explore the utility of a MAP control
system based on an APCNN algorithm. One limitation of us-
ing an advanced algorithm is that the added computational
expense results in longer times for system identification
compared to a simpler algorithm such as PID control. To
overcome this performance limitation, we also constructed
an APCNN combined with PID control (APCNN-PID). The
performance of the APCNN and APCNN-PID systems was
compared to that of a traditional PID system, using a
hemorrhage-induced acute hypotension condition to alter
MAP. To estimate the effects of the simple adaptive con-
trol using artificial intelligence or the predictive control
compared with APCNN or APCNN-PID, we tested the PID
control based on fuzzy inference or model predictive control
(MPC). Finally, we tested the robustness of each system,
to control MAP, using two different concentrations of a
vasopressor agent, norepinephrine (NE), at concentrations
of 25 and 50 µg ml−1.

METHODS

Modeling of MAP Response

To make a simple model for MAP response to a drug
infusion, we obtained the average step response as MAP
changed from baseline (�MAP) during a 5-min NE in-
fusion at 3 µg kg−1 min−1 in anesthetized rabbits (n = 3)
without hemorrhage [Fig. 1(a)]. The �MAP response (sam-
pling rate = 10 Hz) was averaged every 10 s. We approx-
imated the step response of �MAP to the following first-
order delay system with a pure time delay:

�MAP(t) =

 K ·

[
1 − exp

(
− t − L

T

)]
(t ≥ L)

0 (t < L)
(1)

where K is a proportional gain [mmHg (µg kg−1 min−1)−1],
T is a time constant (s), and L is the pure time delay (s).

FIGURE 1. (a) Step response to norepinephrine (NE) infusion
at 3 µg kg−1 min−1, (b) Unit impulse response to NE infusion,
(c) The absolute error between actual changes in mean arte-
rial blood pressure (�MAP(t)) as the model (�MAPmod(t)) and
�MAPNN(t) showing predicted changes in MAP by a neural
network (NN).

K = 20, T = 49, and L = 10 were acquired from the
approximation of the averaged step response [Fig. 1(a)].

The �MAP response as a model (�MAPmod) was calcu-
lated by the convolution integral in the discrete-time domain
as follows:

�MAP mod (t) =
Nm∑
τ=0

g(τ ) · �T · u(t − τ ) (2)

where

g(t) = K

T
· exp

(
− t − L

T

)

u(t) is the infusion rate of NE (µg kg−1 min−1) and g(t) is the
unit impulse response (mmHg). The g(t) is calculated from
the derivative values of the step response of Eq. (1) [Fig.
1(b)]. �T is the sampling interval (s) and Nm is the finite
number of terms in the model for the unit impulse response.
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K is a proportional gain [mmHg (µg kg−1 min−1)−1], T is
a time constant (s), and L is the pure time delay (s). The
parameters of �MAPmod were �T = 10, Nm = 30, K =
20/3, T = 49, and L = 10.

Design of Controllers

PID Control

We applied the PID algorithm as a velocity form al-
gorithm. The velocity form algorithm determines the drug
infusion rate rather than the total amount of drug infused.
The algorithm can be expressed in the discrete time domain
as follows [Fig. 2(a)],4

�u(t) = KP ·
{

[e(t) − e(t − 1)] + �T

TI
· e(t)

+ TD

�T
· [e(t) − 2 · e(t − 1) + e(t − 2)]

}
(3)

u(t) = u(t − 1) + �u(t)

where u(t) = NE infusion rate (µg kg−1 min−1), �u(t) =
change in u(t), KP = proportional gain [(µg kg−1 min−1)
mmHg−1], TI = integral time (s), TD = derivative time (s),
�T = sampling interval (10 s), e(t) = difference (mmHg)
between a target value and observed MAP at a given time.
PID parameters were determined by the Ziegler–Nichols36

method, resulting in KP = 0.3, TI = 20, and TD = 5.

Adaptive Predictive Control Based on a NN (APCN N )

Figure 2(b) shows a block diagram of an APCNN system.
The APCNN is a control system where the NN shown in
Fig. 3 recursively learns the characteristics of a patient using
their observed �MAP response to NE infusion, and then
determines the predicted output after Np steps. First, in the
closed loop controls, the NN learned about �MAP response
only once every 10 s to prevent overlearning of �MAP
during rapid disturbances or artifacts [“1. Learning Loop” in
Fig. 2(b) and (c)]. Second, the learned �MAPNN response
was used for the prediction of future �MAP responses
by the NN [“2. Prediction Loop” in Fig. 2(b) and (c)].
The initial connection weights for the NN were determined
from the learning-stage results using the �MAPmod [see
Eq. (2)].

Feed-Forward Output Using a NN. Figure 3 shows the
components of a NN. A multilayer feed-forward NN with
two hidden layers was used to emulate the �MAPmod re-
sponse. The NN structure used was a nonlinear autoregres-
sive moving average (NARMA) model1,32 as follows:

�MAPNN(t) = f (�MAP(t − 1), u(t − 1), u(t − 2),

u(t − 3), u(t − 4), u(t − 5), u(t − 6))
(4)

where �MAPNN(t) is the MAP change estimated by the
NN. �MAP(t−1) is the actual MAP change induced by
NE infusion before one sampling interval (10 s) has passed.
The input layer in a NN is composed of the past input and
output. The duration of past NE infusion rate was set to
1 min accounting for the pure time delay in the �MAP
response differing among patients.

The input values are sent through the first hidden layer,
second hidden layer, and output layer (see Feed-Forward
Output Using a NN under Appendix). When the NN calcu-
lates the output, the hyperbolic tangent function is applied
14 times (7 in the first hidden layer and 7 in the second
hidden layer).

Backpropagation Algorithm for Learning. To identify
the MAP response and determine the initial weights in a
NN for MAP controls, the NN was trained using the output
of the �MAPmod response to random inputs. In the present
study, we used the backpropagation algorithm in the online
mode as follows.

All connection weights are adjusted to decrease the error
function by the backpropagation learning rule based on the
gradient descent method.24,25 The error function, E is as
follows:

E = 1

2
· ε2 = 1

2
· [�MAP − �MAPNN]2 (5)

where �MAP is the actual MAP change as a supervised
signal, �MAPNN is the �MAP predicted by the NN before
update of the connection weights, and ε is the difference
between �MAP and �MAPNN. The �MAPNN predicted
by a NN is compared with the actual �MAP, and its error is
calculated by Eq. (5). The error is back propagated through
the network, and the connection weight is generally updated
by the gradient descent of E as a function of the weights.30

w∗ = w + K n · �w (6)

where

�w = ∂ E

∂w
= ∂ E

∂ε
· ∂ε

∂MAPNN
· ∂MAPNN

∂w

= −ε · ∂MAPNN

∂w
,

w* is the weight of each connection after update, w is
the weight of each connection before update, �w is the
modified weight, Kn is the learning rate.

In the present study, the backpropagation algorithm was
performed in the following order: output layer, second hid-
den layer, and first hidden layer (see Backpropagation Al-
gorithm for Learning under Appendix). The total number of
weights in the NN was 120 (105 for layer weights and 15 for
bias, Fig. 3). The combination of a fixed input x0 = 1 and an
extra input weight w0 is known as a bias input (Fig. 31,30).

Determination of Initial Weights in a NN. To determine
the initial weights in the NN for the APCNN and APCNN-PID,
we made the NN learn the �MAPmod response. The starting
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FIGURE 2. The block diagram for a MAP control system. (a) A proportional-integral-derivative (PID) control. (b) An adaptive
predictive control using a neural network (APCNN). (c) APCNN combined with PID control (APCNN-PID). (d) PID control based on
fuzzy inference. (e) Model predictive control (MPC). u (t): infusion rate of NE.r: a target value. e (t): error between the target value
and observed MAP. e (t + i): error between the target value and MAP predicted by the NN (�MAPNN(t + i)) or the model MAP response
(�MAPmod(t + i)). �MAP(t), �MAPNN, and �MAPNN(t + i) are actual changes in MAP, MAP changes by the NN before update, and
changes in MAP predicted by the NN, respectively.
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FIGURE 3. A four-layer feed-forward NN with two hidden layers to emulate the characteristics of a patient. The number of units in
each hidden layer of the NN was set to seven (the same number as the input units). The NN had the unit bias. A hyperbolic tangent
function [tanh(x)] was used as the output of each unit.

weights in the NN before the learning of the �MAPmod

response were assigned at random between −1 and 1. Then,
the infusion rate of NE at −4 ≤ u(t) ≤ 6 µg kg−1min−1

was assigned at random and learning calls were replicated
50,000 times.30 The �MAPmod response during the learning
process contained random noise between 0 and −5. Then,
normalization was performed by dividing all outputs by 50
and the fixed learning rate was Kn = 0.1, which showed
the most suitable number determined by a trial and error
approach. This learning rate was smaller than that used for
the actual MAP controls because it was necessary to avoid
a local minimum.25

The absolute error between the �MAPmod and the
�MAPNN response from the trained NN are shown in
Fig. 1(c). Because of the random noise between 0 and −5,
which emulated the hypotensive disturbances, the learn-
ing result of the NN showed an error of approximately
2 mmHg compared with the �MAPmod data. The trained
NN was used for the following simulation and animal stud-
ies, and the learning rate of the NN was set to Kn = 0.2
under the studies in order to quickly converge to the target
value.24,25,30

As shown in Fig. 4(a), the goal of the APCNN was to cal-
culate the optimal NE infusion rate, u(t), which minimized
the following cost function [J(t)],

J (t) =
Np∑

i=1

[r (t + i) − �MAPNN(t + i)]2 (7)

where Np represents a prediction horizon, r(t + i) is a pre-
scribed target value of MAP control on time point t + i, and
�MAPNN(t + i) is the predicted MAP output by the NN.
The future value of �MAPNN(t + i) can be estimated by the

�MAPNN(t) acquired from the backpropagation algorithm
[Fig. 4(a) and (b)]. J(t) contained the predicted output after
Np steps to suppress sudden changes in NE infusion rate.
The optimal value, Np = 3, was obtained from a simu-
lation using the �MAPmod. A predicted response is also
shown in Fig. 4(a) for Np = 3. The cost function, J(t), was
minimized by a downhill Simplex method for a quadratic
function (see Simplex Method for Quadratic Function under
Appendix16,30).

Combined Control of APCN N and PID (APCN N-P I D)

A NN can have many degrees of freedom to allow the
learning of nonlinear time-varying characteristics of a pa-
tient, which, in turn, precludes the simultaneous optimiza-
tion of stability and performance speed for the APCNN.1,14

Because emphasis is given to stability rather than speed
in the algorithm’s performance, the speed of MAP control
was sacrificed to some extent. To supplement the speed
performance, we constructed an APCNN combined with a
PID control. The PID algorithm in the APCNN-PID oper-
ates when the absolute error between observed MAP and
a target value exceeds 10 mmHg [Fig. 2(c)]. Even when
the PID control is operating, the NN continues learning
the characteristics of a patient. The APCNN-PID used the
same PID algorithm, NN learning rule, and cost function as
those described in the Methods section under PID Control
and Adaptive Predictive Control Based on a NN(APCNN).

PID Control Based on Fuzzy Inference

Fuzzy inference5 is the process of formulating and map-
ping from a given input to an output using fuzzy logic.12,35

To adjust the proportional gain (KP) of the PID controller
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FIGURE 4. (a) Optimization of infusion rate using predicted
response by a NN. (b) An example of minimization of a cost
function by the downhill Simplex method for a quadratic
function.

during the MAP control, a fuzzy inference system was used
[Fig. 2(d)]. The basic structure for the adjustment of KP is
shown in Fig. 5. The inputs to the fuzzy inference system are
the positive change from target value to �MAP(t) (over-
shoot, mmHg) and the difference between �MAP(t−1)
and �MAP(t) (slope, mmHg 10 s−1), and the output is
the proportional gain, KP, on the PID controller. The fuzzy
inference process (Fig. 5) can be described as follows.

Step 1. Fuzzify Inputs. The first step is to take the inputs
and determine the degree belonging to each of the appro-
priate fuzzy sets via membership functions (curves defining
how each point in the input space is mapped to a degree of
a membership function). In the present study, the triangular
membership function formed by straight lines was used.
The adjustment of KP is built on three rules:

Rule 1. IF overshoot is small or slope is small THEN KP

is large.
Rule 2. IF overshoot is middle or slope is middle THEN

KP is middle.
Rule 3. IF overshoot is large or slope is large THEN KP is

small.

Each of the rules depends upon resolving the inputs into
a number of different fuzzy linguistic sets: “overshoot is
small,” “slope is large,” etc. The inputs must be fuzzified
according to each of these linguistic sets. Step 1 in Fig. 5
shows how large the overshoot (rated on a scale of 5 to 15)
or the slope (rated on a scale of 5 to 15) is via its membership
functions [0, 1]. For example, when an overshoot of 8 (given
our graphical definition of “overshoot is small”) is selected,
the degree of membership function corresponds to µ =
0.4 for the “small” membership function. In this manner,
each input is fuzzified over all the qualifying membership
functions required by the rules.

Step 2. Apply Fuzzy Operator. The inputs to the fuzzy
operator are two membership values from fuzzified input
variables in Step 1, and the output is a single value. To
determine the single output as the membership value, the
OR operator was used in the present study12:

µC = max . {µA(x1), µB(x2)} (8)

where µ(·) is the degree of the membership function. A and
B are fuzzy sets in overshoot and slope and serve as inputs
to the antecedent of the fuzzy rules. C is a fuzzy set in
the values selected as the input to the consequent of the
rules. The x(·) is the input to the membership function. For
example, when the antecedent of rule 1 is evaluated, two
different pieces of the antecedent (“overshoot is small” and
“slope is small”) yield the fuzzy membership values 0.4
and 0, respectively. In this case, the OR operator selects the
maximum of the two values, 0.4.

Step 3. Apply Implication Method. A consequent (KP , a
scale of 0.05–0.25) of the three rules is a fuzzy set repre-
sented by a membership function [0, 1] weighting appro-
priately the linguistic characteristics that are attributed to
it. The consequent is reshaped using a function associated
with the antecedent in order to determine a single number.
The input for the implication process is a single number
given by the antecedent, and the output is a fuzzy set. In
the present study, an implication method was used by the
AND operator12:

µE (x3i ) = min . {µC (x3i ), µD(x3i )} i = 0, 1, . . . , 20
(9)

where C contains the values determined by Step 1. D is a
fuzzy set in KP for the antecedent of fuzzy rules. E is a
fuzzy set in the values selected for the aggregation proce-
dure (Step 4). The input range of x(·) was divided by 20 to
discretize the time domain. The AND operator selects the
minimum of the two values as a single number given by the
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FIGURE 5. An example of a fuzzy inference system. The process for fuzzy inference is shown as Steps 1 to 5. The proportional
gain (Kp) in the improved PID control was updated through the process for the fuzzy inference.

antecedent and the membership function of the consequent
(Step 3 in Fig. 5).

Step 4. Aggregate All Outputs. Aggregation is the pro-
cess by which the fuzzy sets that represent the outputs of
each rule are combined into a single fuzzy set. Aggrega-
tion only occurs once for each output variable, just prior
to the fifth and final step, defuzzification. The input of the
aggregation process is the list of truncated output functions
returned by the implication process for each rule. The output
of the aggregation process is one fuzzy set for each output
variable. The aggregation was performed by the selection of
the maximum of two values in the membership functions12:

µF (x3i ) = max . {µE1(x3i ), µE2(x3i ), µE3(x3i )}
i = 0, 1, . . . , 20 (10)

where E1, E2, and E3 are the fuzzy sets determined by
the Steps 1 to 4 under the rules 1, 2, and 3, respectively.

F is a fuzzy set acquired from the result of the aggrega-
tion process. In Fig. 5, all three rules have been placed
together to show how the output of each rule is com-
bined, or aggregated, into a single fuzzy set whose mem-
bership function assigns a weighting for every output (KP)
value.

Step 5. Defuzzify. Because the aggregate of a fuzzy
set encompasses a range of output values, it must be
defuzzified in order to resolve a single output value
from the set. The centroid calculation (center of gravity
of the resulting curve) is used to determine the action
that the controller will actually take. In the present study,
the proportional gain for update, K ∗

P , was calculated as
follows35:

K ∗
P =

∑20
i=0 µF (x3i ) · x3i∑20

i=1 µF (x3i )
(11)
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Model Predictive Control (MPC)

Figure 2(e) shows the diagram of the MPC. The drug
infusion rate is computed to minimize the cost function
[P(t)]:

P(t) =
Np∑

i=1

[r (t + i) − �MAP mod (t + i)]2 (12)

where Np is a prediction horizon, r(t + i) is a prescribed
target value of MAP control on time point t + i, and
�MAPmod(t + i) is a model predicted output on time point
t + i. Np = 3 was used in the present study.

To calculate the future output, �MAPmod(t + i), in the
cost function, P(t), we used the discrete linear step response
model using the �MAPmod(t) described in Methods under
Modeling of MAP Response. The predicted output at the
ith future point is shown as follows:

�MAP mod (t + i) =
i∑

τ=0

g(τ ) · �T · u(t + i − τ )

+
Nm∑

τ=i+1

g(τ ) · �T · u(t − τ ) + d(t)

(13)

where u(·) is the infusion rate of NE (µg kg−1 min−1)
and g(·) is the unit impulse response (mmHg) which is
consistent with that in Fig. 1(b). �T is the sampling interval
(s) and Nm is the finite number of terms in the model of the
unit impulse response. The parameters of �MAPmod where
�T = 10 and Nm = 30 [Eq. (13)] includes 1) the present
and all future moves of the manipulated variables that were
used to solve the cost function, P(t), 2) the past values of the
manipulated variables (completely known at time t), and
3) the predicted disturbance calculated as the difference
between the current measurements and output from the
predicted model [d(t) = MAPmod(t) − actual MAP(t)] at
the tth sampling time. The d(t) represents model mismatch
and unmodeled disturbances that enter the system at time t,
and is assumed to be constant over the prediction horizon
due to lack of an explicit means of predicting the mismatch
or disturbance.22

Simulation Study

Protocol 1

We simulated MAP control using the �MAPmod against
acute hypotension. The exogenous pressure perturbation
was introduced at a constant speed of −18 mmHg min−1

for 2 min, and then maintained at −36 mmHg for 5 min.
Random noise within ±1 mmHg was added to �MAPmod

and acute hypotension to mimic physiological variation.
The target value of MAP control was set at the baseline
MAP, i.e., �MAP = 0. The sampling interval was 10 s and
each controller described below updated the NE infusion

rate every 10 s. The NE infusion rate [u(t)) was bounded
by 0 ≤ u(t) ≤ 6 µg kg−1 min−1]. The controllers used were
the conventional PID controller, APCNN, and APCNN-PID.
To see how the NN parameters changed as a function of
time, the weights in the NN were recorded during APCNN

in the simulation study.

Protocol 2

To study the robustness to the MAP change to the drug,
we simulated MAP control using the �MAPmod [Fig. 1(b)],
which was twice as large as the �MAPmod response against
acute hypotension. Because each controller was designed to
optimize the controller performance under the assumption
of the �MAPmod response [Fig. 1(b)], the twice �MAPmod

response was unknown to all controllers. Random noise
within ±1 mmHg was added to �MAPmod. An exogenous
pressure perturbation was introduced at a constant speed
of −18 mmHg min−1 for 2 min, and then maintained at
−36 mmHg for 5 min. The target value of MAP control
was set at the baseline MAP. The sampling interval was
10 s and each controller updated the infusion rate of NE
every 10 s. The infusion rate of NE [u(t)] was bounded by
0 ≤ u(t) ≤ 6 µg kg−1 min−1.

The controllers used were the conventional PID con-
troller, APCNN, and APCNN-PID. In addition, to increase
robustness during the MAP control, we tested PID control
based on fuzzy inference for adjusting the proportional gain,
KP, during the closed-loop control. MPC was also tested in
order to examine the performance of the simple predictive
control compared with APCNN or APCNN-PID.

Animal Study

The animal study conformed to the Guide for the Care
and Use of Laboratory Animals published by the US Na-
tional Institutes of Health (NIH Publication No. 85-23, re-
vised 1996). The parameter values used in the simulation
were also used in the animal study.

Surgical Preparations

Twelve Japanese white rabbits weighing 2.4–2.7 kg were
anesthetized via intravenous injection (2 ml kg−1) with
a mixture of urethane (250 mg ml−1) and α-chloralose
(40 mg ml−1). The rabbits were ventilated artificially with
oxygen-enriched room air. To maintain the appropriate level
of anesthesia, supplemental doses of the anesthetics were
administered continuously (0.2–0.5 ml kg−1 h−1, i.v.). MAP
was measured using a high-fidelity pressure transducer
(Millar Instruments, Houston, TX, USA) inserted into the
right femoral artery. A catheter was introduced into the
left femoral artery. A computer-controlled infusion pump
(CFV-3200; Nihon Kohden, Tokyo, Japan) was attached
to the arterial line for later arterial blood withdrawal and
re-infusion. A double-lumen catheter was introduced into
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the right femoral vein for administration of anesthetic agent
and NE. Another computer-controlled infusion pump was
used for NE infusion. The NE infusion rate was controlled
through a 12-bit digital-to-analog converter connected to a
laboratory computer. Body temperature was maintained at
around 38◦C with a heating pad throughout the experiment.

Protocols

To test the robustness of each control system, we used
two different concentrations of NE. In Protocol 1 (n = 6),
we used a NE solution of 25 µg ml−1. In Protocol 2 (n =
6), which was performed in another group of rabbits, we
used a NE solution of 50 µg ml−1. In both Protocols 1
and 2, we first determined the volume of blood withdrawal
necessary to induce a MAP fall of approximately 40 mmHg.
The speed of blood withdrawal was calculated so that the
hemorrhage was completed in 2 min. The average speed of
blood withdrawal was 18.2 ± 6.8 ml min−1 in Protocol 1
and 20.2 ± 7.5 ml min−1 in Protocol 2.

In each hemorrhage trial, we recorded baseline MAP
for 1 min prior to the hemorrhage and used the average
baseline MAP as a target value. The arterial blood was
then withdrawn at a predefined constant speed for 2 min
to induce hemorrhage. Thereafter the hemorrhaged state
was maintained for 5 min, rendering a total hemorrhage
period of 7 min. We measured changes in MAP during
hemorrhage under the uncontrolled condition, PID control,
APCNN, and APCNN-PID. After 7 min of hemorrhage, the
blood was slowly re-infused. We performed four trials (ran-
domly ordered), in each rabbit, with a washout period of
20 min. Instantaneous MAP data was sampled continuously
through a 12-bit analog-to-digital converter at 10 Hz and
the MAP data (averaged every 10 s) was used as the system
controlled variable.

Data Analysis

The performance of each controller was compared using
several indices: maximum MAP fall during the initial 2 min
of the hemorrhage (maximum fall), maximum absolute er-
ror between a target and observed MAP value calculated
from the last 2 min of hemorrhage period (maximum error),
and average absolute value of error between a target and
observed MAP value over the entire hemorrhage period (av-
erage error). The elapsed time for MAP that first reached
the target value within −5 mmHg (recovery time) was also
calculated.

Statistical Analysis

All data were presented as mean ± SD. The differences
of the performance indices among controllers were exam-
ined by one-way analysis of variance with repeated mea-

sures and the Bonferroni post hoc test.7 Statistical signifi-
cance was assigned to differences producing p < 0.05.

RESULTS

Simulation Study

Protocol 1

Figure 6 shows the simulation results from using (a)
PID (K P = 0.3, TI = 20, and TD = 5) control, (b) APCNN

(Kn = 0.2, and Np = 3), and (c) APCNN-PID (Kn = 0.2,
Np = 3, KP = 0.3, TI = 20, and TD = 5). Changes in MAP
(left panels) and the NE infusion rate (right panels) are pre-
sented. The fall of MAP was −36 mmHg in 2 min and the
hypotension continued for 5 min. In Fig. 6(a), (b), and (c),
thick lines are MAP responses and thin lines are the uncon-
trolled condition. Dotted lines in Fig. 6(b) and (c) represent
MAP responses predicted by the NN. When the controllers
were activated, MAP returned to the target value. PID con-
trol with fixed parameters provided a quick and stable MAP
regulation in the present simulation [Fig. 6(a), left]. APCNN

showed a maximum MAP fall greater than that of PID con-
trol [Fig. 6(b), left]. The recovery time was longer using
APCNN compared to PID control. The elevation in NE in-
fusion rate was slow in APCNN [Fig. 6(b), right]. APCNN-PID

achieved MAP recovery faster than APCNN [Fig. 6(c), left].
The PID component of the APCNN-PID system operated
from 30 to 60 s when the MAP fall exceeded 10 mmHg.

Figure 7 shows the time series of the weights in the NN
during the simulation study of APCNN in the Protocol 1.
Dotted lines in Fig. 7 represent the weights as bias. During
the initial hypotension for 120 s, the weights as bias in
the output layer [Fig. 7(c)] were dramatically decreased
compared to the other weights, which were only slightly
changed. Because the bias absorbed the offset of the acute
hypotension, they would have kept the trained response
characteristics to the infusion rate of NE in the NN. There-
fore, it appears fine adjustments of the difference between
the actual and NN-predicted MAP response were performed
by modifications to the other weights in the NN.

Protocol 2

Figure 8 shows the simulation results of (a) PID
(KP = 0.3, TI = 20, and TD = 5) control, (b) APCNN

(Kn = 0.2 and Np = 3), and (c) APCNN-PID (Kn = 0.2,
Np = 3, KP = 0.3, TI = 20, and TD = 5) during the un-
expected MAP change to NE, i.e. the magnitude of MAP
change to NE was doubled. Changes in MAP (left panels)
and the NE infusion rate (right panels) are presented. In
Fig. 8(a), (b), and (c), thick lines are MAP responses and
thin lines are the uncontrolled condition. Dotted lines in
Fig. 8(b) and (c) represent MAP responses predicted by
the NN. The fall of MAP was −36 mmHg in 2 min and
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FIGURE 6. Simulation results of (a) PID control, (b) APCNN, and (c) APCNN-PID. The left panels show the MAP responses (thick solid
line) and the uncontrolled condition (thin solid line). Dotted lines in (b) and (c) represent MAP responses predicted by the NN. The
right panels show the NE infusion rate. Acute hypotension of −36 mmHg was completed in 2 min and maintained thereafter.

the hypotension continued for 5 min. Under PID control,
although MAP returned to the target value within approxi-
mately 40 s, sustained MAP oscillation within ±10 mmHg
occurred thereafter [Fig. 8(a), left]. The NE infusion rate cy-
cled between 0 and the predefined maximum value. Under
APCNN, MAP decreased to −10 mmHg at 60 s, returned
to the target value within approximately 120 s, exceeded
the target value by approximately 10 mmHg at 150 s, and
again returned to the target value at approximately 200 s
[Fig. 8(b), left]. Under APCNN-PID, MAP returned to the
target value within approximately 70 s, exceeded the target
value by approximately 10 mmHg at 100 s, and again re-
turned to the target value at approximately 200 s [Fig. 8(c),
left].

Figure 8(d) and (e) shows the simulation results of (d)
improved PID control (initial parameters: KP = 0.3, TI =
20, and TD = 5), and (e) MPC (Np = 3) during the unex-
pected MAP change. Using improved PID control, MAP
returned to the target value within approximately 60 s but
had a slight oscillation within ±5mmHg (Fig. 8(d), left).
The KP was changed from 0.3 as the initial value to 0.187
at 40 s (slope > 5) and 0.193 at 50 s (actual �MAP > 5).

Under MPC, although MAP returned to the target value
within approximately 40 s, sustained MAP oscillation
within ±10 mmHg occurred thereafter [Fig. 8(e), left].
The NE infusion rate cycled between 0 and 6 under the
unexpected MAP change.

Animal Study

Protocol 1

Figure 9 shows typical examples of (a) PID (KP = 0.3,
TI = 20, and TD = 5) control, (b) APCNN (Kn = 0.2
and Np = 3), and (c) APCNN-PID (Kn = 0.2, Np = 3,
KP = 0.3, TI = 20, and TD = 5) obtained from one animal
in Protocol 1. In Fig. 9(a), (b), and (c), thick lines are MAP
responses and thin lines are the uncontrolled condition.
Dotted lines in Fig. 9(b) and (c) represent MAP responses
predicted by the NN. Under PID control, although MAP
returned to the target value within approximately 60 s, four
of six animals showed MAP oscillation within ±10 mmHg
[Fig. 9(a), left]. Under APCNN, MAP returned to the target
value within approximately 120 s, exceeded the target value
by approximately 5 mmHg at 150 s, and again returned



Blood Pressure Control Using a Neural Network 1375

FIGURE 7. Time course of weight change from the weight at the starting time in the NN (�weight) during the simulation study of
APCNN in Fig. 6 (b). (a) Weights between input and first hidden layers, (b) Weights between first and second hidden layers, and (c)
Weights between second hidden and output layers. Weight numbers (W1(i, k), W2(j, i), and W3(j)) in the Figure correspond to those
in Fig. 3. Each weight number was ordered from a high to low weight value at the final time. Dotted lines represent the weights as
bias.
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FIGURE 8. The simulation results of (a) PID control, (b) APCNN, (c) APCNN-PID, (d) PID control based on fuzzy inference, and (e)
MPC under the unexpected MAP change. Left panels are changes in MAP and right panels are the NE infusion rate. Dotted lines in
(b) and (c) represent MAP responses predicted by the NN.

to the target value at approximately 200 s [Fig. 9(b),
left]. Under APCNN-PID, MAP returned to the target value
within approximately 60 s, exceeded the target value by
approximately 8 mmHg at 150 s, and again returned to the
target value at approximately 200 s [Fig. 9(c), left].

Figure 10 summarizes the performance indices obtained
from Protocol 1. All controllers significantly attenuated the
maximum MAP fall. The maximum MAP fall was greater
in APCNN than in PID control. Neither maximum error
nor average error differed among the three controllers. The
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FIGURE 9. Typical examples of (a) PID control, (b) APCNN, and (c) APCNN-PID obtained from one animal in Protocol 1. The left panels
show the MAP responses (thick solid line) and the uncontrolled condition (thin solid line). Dotted lines in (b) and (c) represent
MAP responses predicted by the NN. Arrows indicate the start point of hemorrhage and MAP control. The right panels show the
NE infusion rate.

FIGURE 10. Maximum fall, maximum error, average absolute value of error between the target and observed MAP value (average
error), and recovery time in the uncontrolled condition, PID control, APCNN, and APCNN-PID obtained from Protocol 1. **P < 0.01 vs.
the uncontrolled condition. ##P < 0.01 vs. PID control. #P < 0.05 vs. PID control. ¶¶P < 0.01 vs. APCNN.
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FIGURE 11. Typical examples of (a) PID control, (b) APCNN, and (c) APCNN-PID obtained from one animal in Protocol 2. The left panels
show the MAP responses (thick solid line) and the uncontrolled condition (thin solid line). Dotted lines in (b) and (c) represent
MAP responses predicted by the NN. Arrows indicate the start point of hemorrhage and MAP control. The right panels show the
NE infusion rate.

recovery time was significantly shorter in PID control than
in APCNN and APCNN-PID. The recovery time was signif-
icantly shorter in APCNN-PID than in APCNN. The average
blood loss was 14.1 ± 4.7 ml kg−1 body weight. The av-
erage MAP was decreased from 107.7 ± 9.1 to 73.9 ±
10.2 mmHg at 2 min of hemorrhage under the uncontrolled
condition.

Protocol 2

Figure 11 shows typical examples of (a) PID (KP =
0.3, TI = 20, and TD = 5) control, (b) APCNN (Kn = 0.2
and Np = 3), and (c) APCNN-PID (Kn = 0.2, Np = 3,
KP = 0.3, TI = 20, and TD = 5) in Protocol 2. In
Fig. 11(a), (b), and (c), thick lines are MAP responses
and thin lines are the uncontrolled condition. Dotted lines
in Fig. 11(b) and (c) represent MAP responses predicted
by the NN. Under PID control, although MAP returned
to the target value within approximately 40 s, sustained
MAP oscillation occurred thereafter in all six animals. In
these animals MAP exceed the target value by 20 mmHg

[Fig. 11(a), left]. The NE infusion rate cycled between 0
and the predefined maximum value. Under APCNN, MAP
returned to the target value within approximately 120 s,
exceeded the target value by approximately 10 mmHg
at 150 s, decreased by approximately 5 mmHg at 240 s,
and again reached the target value at approximately 300 s
[Fig. 11(b), left]. Under APCNN-PID, MAP returned to the
target value within approximately 70 s, exceeded the tar-
get value by approximately 10 mmHg at 100 s, and again
reached the target value at approximately 120 s [Fig. 11(c),
left].

Figure 12 summarizes the performance indices obtained
from Protocol 2. All controllers significantly attenuated the
maximum MAP fall. There were no significant differences
in the maximum MAP fall among the three controllers.
Both maximum error and average error were significantly
smaller in APCNN and APCNN-PID than in PID control. The
recovery time was significantly shorter in PID control than
in APCNN and APCNN-PID. The recovery time in APCNN-PID

was significantly shorter than in APCNN. The average blood
loss was 15.5 ± 5.4 ml kg−1 body weight. The average
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FIGURE 12. Maximum fall, maximum error, average error, and recovery time in the uncontrolled condition, PID control, APCNN, and
APCNN-PID obtained from Protocol 2. **P < 0.01 vs. the uncontrolled condition. ##P < 0.01 vs. PID control. ¶¶P < 0.01 vs. APCNN.

MAP decreased from 101.4 ± 9.9 to 68.4 ± 9.4 mmHg at
2 min of hemorrhage under the uncontrolled condition.

DISCUSSION

Prolonged hypotension below 45 mmHg could cause
circulatory insufficiency in vital organs resulting in death.8

The arterial baroreflex is an important negative feedback
mechanism that maintains MAP at normal operating pres-
sure against any pressure disturbance. In the present study,
however, the average MAP fall exceeded −30 mmHg under
the uncontrolled condition (Figs. 9 and 11). This is to say
that the buffering effect of the arterial baroreflex was not
sufficiently strong to prevent acute and severe hypotension
despite the fact that the sympathetic system appears to have
been maximally activated through the baroreflex negative
feedback. All systems tested were able to prevent severe
hypotension by controlling the infusion of NE, which acted
on the heart, capacitance vessels, and resistance vessels to
increase MAP. There might be a considerable reserve in
the circulatory responses to NE even when the sympathetic
system is fully activated through the baroreceptor unload-
ing. Rapid action and the short half-life (approximately
2 min) of NE were convenient for MAP control using the
automated drug infusion systems.

Although PID control did not show MAP oscillation
in the simulation study [Fig. 6(a)], MAP oscillation within
±10 mmHg occurred in four of the six animals in Protocol 1
of the animal study [Fig. 9(a)]. Because PID parameters
were tuned beforehand using a model of MAP response
and fixed during the control periods, PID control could
not optimize the MAP control with respect to individual
animals. In Protocol 2 of the animal study, PID control
failed to stabilize MAP in all animals [Fig. 11(a)]. A large

MAP oscillation was sustained until the study was termi-
nated at 7 min. These results suggest that using the PID
control could endanger patients in clinical settings if the
PID parameters are not individualized, which is unrealistic
because the MAP response to NE infusion, in each subject,
is unknown beforehand.

In the modeling of MAP response to NE, we used an
average step response of 5 min during NE infusion in anes-
thetized rabbits without hemorrhage. If fine tuning of a PID
controller is performed based on the pathological model of
acute hypotension, the result of PID control in the animal
study might have been better compared to the results from
the present study. However, the modeling of MAP response
to a therapeutic agent in acute hypotension is actually quite
difficult due to the complex pharmacological variability and
the various reactions to bleeding.

In contrast to PID control, the NN in APCNN and
APCNN-PID systems offer the ability to adapt to MAP
changes based upon an individual’s measurements, in real
time, and learn the MAP response to NE infusion in re-
spective animals. In Protocol 1 of the animal study, because
hemorrhage itself was not predictable by the NN, �MAP
predicted by the NN differed from measured �MAP in
the initial phase of blood withdrawal [Fig. 9(b) and (c)].
However, �MAP predicted by the NN approximated the
measured �MAP within 2 min, suggesting that the NN had
learned the information required to control MAP. There-
after, the MAP was stabilized at the target value in both
APCNN and APCNN-PID. In Protocol 2 of the animal study,
despite the use of a higher NE concentration, both APCNN

and APCNN-PID could prevent sustained MAP oscillation
[Fig. 11(b) and (c)]. The maximum error and average er-
ror values in APCNN and APCNN-PID were similar between
Protocols 1 and 2 of the animal study, suggesting that the
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control performance was not influenced by NE concen-
tration. In other words, APCNN and APCNN-PID might be
able to adjust themselves for optimal MAP control even
when the MAP response to NE infusion varied significantly
among subjects.

Despite the potential benefit of automated drug infusion
systems for MAP control, they have not been widely applied
to routine clinical practice. One possible reason might be
the difficulty in modeling the nonlinear MAP response to
drug infusion.9 Although various models of MAP response
to drug infusion have been developed for MAP control,22,34

the complexity of these models makes developing a reliable
system controller difficult. In the present study, we used
a simple first-order delay system as the model of MAP
response to NE infusion. The initial connection weights for
the NN were determined from the learning results of a linear
model, yet APCNN and APCNN-PID were able to maintain
stable MAP regulation in the animal study. The flexibility of
a NN coupled with an adaptive control mechanism enabled
controlling the nonlinear system even if the controllers were
initially designed using a linear model for the controlled
system. Because utilization of a NN makes it unnecessary
to construct a complex model for MAP response to drug
infusion, it seems an ideal tool for designing a system to
individualize MAP control in patients.

There are several limitations in the present study. First,
to simplify the controller design we used a single control
variable, i.e. the NE infusion rate. As the fluid infusion and
blood transfusion as well as administration of other drugs
are common in clinical practice, a multivariate control is
mandatory for any reliable automated drug infusion sys-
tem. Because a NN can have a multiple-input layer and
multiple-output layer,1 we will be able to extend APCNN

and APCNN-PID to multivariate control systems. Second,
because we used a threshold value (±10 mmHg) to acti-
vate PID control in APCNN-PID, NE infusion rate changed
discontinuously at �MAP = ±10 mmHg. Although the
discontinuity did not immediately cause the abrupt MAP
change by virtue of the velocity form algorithm imple-
mented for PID control, further refinement is required to
suppress abrupt changes in the NE infusion rate.

The PID control based on fuzzy inference prevented the
MAP response from having oscillations regardless of the
unexpected MAP change [Fig. 8(d)]. We think the ideal re-
sult was due to the adaptive change of the proportional gain
in the PID parameter. As a limitation, the PID controller
based on the fuzzy inference has to be programmed with
the known or experienced rules fit for the various cases
in clinical settings. Because ascertaining all events under
clinical circumstances is difficult, the design based on fuzzy
rules may require an enormous setup stage. Under MPC, the
MAP oscillation within ±10 mmHg occurred under the un-
expected MAP change [Fig. 8(e)] whereas MPC performed
fine under the expected MAP change. In the case where the
error between the MAP response in MPC and the actual

MAP response is large, the cost function containing the
weight of inputs or the model bank would be an effective
way of adjusting the varying therapeutic sensitivities.21 If
the control conditions are within the expected ranges for
the following disturbances; physiological sensitivities to
therapeutic agents, interaction between agents, and vari-
ances of time dependent changes and nonlinearity; then
the improved PID control, the MPC, and the conventional
adaptive control will perform well. However, in the clinical
setting, the control conditions are dynamic and unexpected
patient response may occur. In this case, the model based
predictive control or the fuzzy based control alone may not
be able to adjust for the physiological changes. Therefore,
adding the NN and fuzzy logic to the PID control, APC
and MPC will be more effective for unexpected control
conditions.

In conclusion, PID control, APCNN, and APCNN-PID sig-
nificantly prevented acute and severe hypotension induced
by hemorrhage in anesthetized rabbits. Although PID con-
trol caused sustained MAP oscillation around the target
value, the improved PID control based on fuzzy inference
prevented the MAP from having this oscillation. Under
the MPC, the MAP oscillation occurred under the unex-
pected control condition whereas the MPC performed ide-
ally under expected control conditions. Designing a MPC
or PID control based on fuzzy inference that is robust,
may require an enormous amount of time to accurately
model because of intra- and inter-patient variability in re-
sponse to pharmacological drugs containing nonlinearity,
pure time delay changes, and other unforeseen interactions
and disturbances.10,23 Both APCNN and APCNN-PID showed
more stable MAP control compared to PID control regard-
less of the NE concentration administered. The recovery
time of APCNN-PID was shorter than that of APCNN. De-
spite the simple design based on the first order delay model
with unknown hypotension and drug sensitivity, the con-
trols based on a NN approach were offered a robust control
even in the presence of unexpected hypotension and un-
known drug sensitivity. Therefore, utilization of a NN for
adaptive predictive control would facilitate the develop-
ment of an automated drug infusion system for quick and
stable MAP control. However, further investigations using
controls based on a NN will be required.

APPENDIX

Feed-Forward Output Using a NN

Input Layer to First Hidden Layer

The number of units in the first hidden layer of a NN
was set to seven (the same number as the input units) using
a trial and error approach. First, vector v0 in the first hidden
layer was calculated as follows:

v0(i) =
7∑

k=0

W 1(i, k) · in(k) i = 1, 2, . . . , 7



Blood Pressure Control Using a Neural Network 1381

where W1(i, k) is the weight matrix, and in(k) is the input
to the first hidden layer. The inputs contain the unit bias,
in(0) = 1.

The output of each neuron, v0(i), was transformed into
v(i) through a hyperbolic tangent function:

v(i) = tanh

(
v0(i)

2

)
= 1 − exp[−v0(i)]

1 + exp[−v0(i)]
i = 1, 2, . . . , 7

v(0) = 1 is the bias input to the second hidden layer.

First Hidden Layer to Second Hidden Layer

The number of units in the second hidden layer on a NN
was set to seven (the same number as the first hidden layer
units). z0(·) was calculated as follows:

z0(i) =
7∑

i=0

W 2( j, i) · v(i) j = 1, 2, . . . , 7

where W2(j, i) is the weight matrix, and v(i) is the input to
the second hidden layer. The inputs contain the unit bias,
v(0) = 1.

The output of each neuron, z0(j), was transformed into
z(j) through a hyperbolic tangent function:

z( j) = tanh

(
z0( j)

2

)
= 1 − exp[−z0( j)]

1 + exp[−z0( j)]
j = 1, 2, . . . , 7

z(0) = 1 is the bias input to the next output layer.

Second Hidden Layer to Output Layer

�MAPNN in the output layer was calculated as follows:

�MAPNN(t) =
7∑

j=0

W 3( j) · z( j)

where W3(j) is the weight matrix, and z(j) is the input to the
output layer. The inputs contain the unit bias, z(0) = 1.

Backpropagation Algorithm for Learning

The modification of weights in each layer on the NN can
be described as follows.

Output Layer-Second Hidden Layer

W3∗(j) is the weight matrix after update:

W 3∗( j) = W 3( j) − K n · ε · ∂MAPNN

∂W 3( j)
j = 0, 1, . . . , 7

where

∂MAPNN

∂W 3( j)
= z( j)

z(j) is the input to output layer, which represents the output
of each neuron in a hyperbolic tangent function on the
second hidden layer.

Second Hidden Layer to First Hidden Layer

W2∗ (j, i) is the weight matrix after update:

W 2∗( j, i) = W 2( j, i) − K n · ε · ∂MAPNN

∂W 2( j, i)

j = 0, 1, . . . , 7 : i = 0, 1, . . . , 7 : v(0) = 1

where

∂MAPNN

∂W 2( j, i)
= ∂MAPNN

∂z( j)
· ∂z( j)

∂z0( j)
· ∂z0( j)

∂W 2( j, i)

= W 3( j) · 1 − z( j)2

2
· v(i)

v(j) is the input to the second hidden layer, which represents
the output of each neuron in a hyperbolic tangent function
on the first hidden layer.

First Hidden Layer to Input Layer

W1∗ (i, k) is the weight matrix after update:

W 1∗(i, k) = W 1(i, k) − K n · ε · ∂MAPNN

∂W 1(i, k)

i = 1, 2, . . . , 7 : k = 0, 1, . . . , 7 : in(0) = 1

where

∂MAPNN

∂W 1(i, k)
=


 7∑

j=1

(
∂MAPNN

∂z( j)
· ∂z( j)

∂z0( j)
· ∂z0( j)

∂v(i)

)


· ∂v(i)

∂v0(i)
· ∂v0(i)

∂W 1(i, k)

=

 7∑

j=1

(
W 3( j) · 1 − z( j)2

2
· w2( j, i)

)


· 1 − v(i)2

2
· in(k)

in(k) is the input to the first hidden layer, which represents
the past input to the NN.

Simplex Method for Quadratic Function

Figure 4(b) shows an example of the simplex method
used to solve the quadratic function. The search starting at
u =−1 reached the minimum point quickly. The steps of the
downhill simplex method can be described as follows.16,30

Step 1. Calculate Jx = J(Ux) of input Ux.
Calculate Jy = J(Uy) of input Uy = Ux + Du
(initial change in quantity, ex. 0.1).
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Step 2. Ja = the small number of Jx or Jy, and Ua = the
input of the determined Ja.
The other output is Jb, and the input of Jb is Ub.
IF Du < V (value showing convergence, ex. 0.001)
THEN stop the Steps.

Step 3. Uc = Ua + Du (opposite direction of Ub).
Calculate Jc = J(Uc) in input Uc.
IF Jc < Jb THEN go to Step 4, ELSE go to Step 5.

Step 4. Ud = Uc + Du (opposite direction of Ub).
Calculate Jd = J(Ud) of input Ud.
IF Jd < Jc THEN Du = 2·Du, Jx = Ja, Ux = Ua,
Jy = Jd, and Uy = Ud, ELSE Jx = Jc, Ux = Uc,
Jy = Ja, and Uy = Ua.
Go to Step 1.

Step 5. Calculate Du = Du/2, Ux = Ua, Jx = Ja, Uy =
(Ua + Ub)/2, and Jy = J(Uy) of input Uy.
Go to Step 1.
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