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Electrical Impedance Cardiography Using Artificial Neural Networks
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Abstract—This study evaluates the use of artificial neural n
works to estimate stroke volume from pre-processed, thor
impedance plethysmograph signals from 20 healthy subje
Standard back-propagation was used to train the networks,
Doppler stroke volume estimates as the desired output.
trained networks were then compared to two classical bioph
cal approaches. The coefficient of determination (R23100%)
between the biophysical approaches and the Doppler
8.20% and 9.90%, while it was 77.38% between the best ne
network and the Doppler. Among these methods, only the n
ral network residuals had a significant zero mean Gaus
distribution (a50.05). Our results indicate that an invertib
relationship may exist between thoracic bioimpedance
stroke volume, and that artificial neural networks may offe
potentially advantageous approach for estimating stroke volu
from thoracic electrical impedance, both because of their e
of use and their lack of confounding assumptions. ©1998
Biomedical Engineering Society.@S0090-6964~98!00304-X#

Keywords—Nonlinear processing, Noninvasive monitoring, P
ethysmography, Cardiac output, Stroke volume.

INTRODUCTION

Cardiac output~CO!, defined as the volume of bloo
delivered by the heart per minute, is a major clinic
measure of heart function and oxygen supply to the
sues. A decrease in cardiac output can cause low b
pressure, reduced tissue oxygenation, acidosis, poor r
function, and shock. In addition to clinical application
decreased cardiac output can affect the health of ot
wise normal individuals exposed to severe conditio
and extreme environments. For example, jet pilots a
astronauts routinely experience high and low gravit
~G’s!. Astronauts especially are placed at risk by su
denly returning to Earth’s 1 G environment after long
exposures to microgravity. In these cases, decreased
may cause black-outs, dizziness, nausea, and poor j
ment — problems that may jeopardize a mission dur
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an emergency egress.3 For these and other situations, a
accurate, light weight, and easy-to-use CO moni
would have substantial benefits.

Thermodilution14 and other indicator dilution
methods8 are available for accurate and reliable measu
ment of stroke volume~SV!, but these techniques ar
invasive, require a trained physician and use expens
equipment. Doppler ultrasound5 is widely used in hospi-
tal environments, it is noninvasive, and does not requ
a sterile environment. Like the dilution methods, unfo
tunately, it requires highly skilled technicians and expe
sive, bulky equipment.

Electrical impedance cardiography~EIC!, another
noninvasive technique, has strong correlations with
cardiac cycle~Figure 1!. It promises to be accurate, in
expensive, compact, and user-friendly.1,10,16,18,20 How-
ever, some investigators claim that EIC is nonrepeata
and inaccurate~e.g., see Refs. 4 and 6!. One of the
authors’ own evaluations of a commercial EIC devi
and several published algorithms confirmed these ne
tive findings.22 Others suggest that EIC may be use
for routine screening.6

Given these contradictory findings we postulated t
the relationship between thoracic impedance and SV m
be too complicated for a simplified first-principles anal
sis as used in earlier investigations. In this paper,
explore the use of an artificial three-layer feed-forwa
neural network to define the relationship between th
racic electrical impedance and SV. Since an artific
network forms a nonlinear black box, it avoids the sim
plification errors associated with the earlier methods.

BACKGROUND

In his seminal work, Nyboer19 demonstrated that, fo
a uniformly shaped isotropically conducting volumeDV,
a change in volume (cm3) is linearly related toDZ — a
change in electrical impedance (V) — by

DV52S rL2

Z0
2 DDZ, ~1!
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wherer is the resistivity of the conductor (V cm!, L is
the distance between the voltage sensing electrodes~cm!,
and Z0 is the mean basal impedance between these e
trodes (V).

When Nyboer’s methods were later applied to t
human thorax, the impedance signal displayed a perio
pulsation that was strongly correlated with ventricu
ejection ~Figure 1!.2,9,10–12 These correlations have le
several investigators to propose an inverse mapping,
lating thoracic impedance to SV.

The Kubicek SV Estimator

Kubicek et al.10 used the product oftVE ~s! ~ventricu-
lar ejection time! and u dz/dtupeak @the maximum value of
the first derivative of impedance~V/s!# to approximate

FIGURE 1. A sample of ECG, delta-Z, dz/dt, and CW Doppler
tracings during the cardiac cycle showing the temporal rela-
tionships of these events. The figure demonstrates that the
ejection phase of systole begins with the first zero-crossing
of the dz/dt signal and terminates at the first negative peak
following the R-spike of the ECG. The CW Doppler tracing is
derived from the audio signal that results as a difference in
frequency between the incident and reflected sound. This
signal, recorded at the supra-sternal notch, shows when
blood is ejected into the aortic arch and demonstrates a
good correlation with the landmarks used to determine ven-
tricular ejection time „tVE….
-

-

the impedance change due to blood ejection by the he
Assuming the thorax was adequately modeled as a
formly perfused cylinder, they estimated stroke volum
by

KSV5

rL2Udz

dt
U
peak

tVE

Z0
2 . ~2!

The Sramek SV Estimator

Sramek21 and Bernstein2 approximated the geometr
of the thorax as a truncated cone rather than a cylin
cone, and both empirically related the subject’s heig
and weight to VEPT, the volume of electrically partici-
pating thoracic tissue (cm3). Hence, each replace
(rL2/Z0) with their own estimate of VEPT, and obtained

SSV5

VEPTtVEUdz

dt
U
peak

Z0
. ~3!

Sramek’s estimate of VEPT was based on anthropometr
for which the chest circumference was approximated
three times the distance between the voltage sen
electrodes. For this paper, we used Sramek’s VEPT as
calculated by the Bomed NCCOM3 impedance card
graph ~see Experimental Methods below!.

Neural Networks

Standard feed-forward networks consist of three la
ers of neurons~e.g., see Figure 2!. Each neuron typically
applies a transfer function, such as an hyperbolic tang
to its weighted sum of inputs. Three-layer feed-forwa
networks can be used to identify nonlinear processes
models using gradient descent algorithms. The net
Figure 2 has a single neuron in the top layer~whose
output is SV!; four neurons in the input layer~each
corresponding to an attribute of the thoracic impedan
signal!; and five neurons in the hidden layer. Henc
these nets can be conveniently interpreted as nonp
metric, nonlinear, black box estimators.7

Importance of Bioimpedance Variables

The bioimpedance variables used to estimate
stroke volume as derived by classic biophysics analy
are related to important physiological parameters. T
u dz/dtupeak variable was shown to be related to the spe
and force of ventricular contraction.12 More recently,
Kubicek9 found that the peak value of the ventricul
ejection velocity occurred concurrently withu dz/dtupeak.
This was the case even though the voltages sensed b
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579Neural Network Based Impedance Cardiography
electrodes placed on the neck and the lower thorax m
sure a total impedance change that was a complex i
gration of the impedance changes from the aortic va
to the descending aorta. Bernstein2 concluded that as
long as~a! the total left ventricular output is not redis
tributed, ~b! the mean basal impedance is constant, a
~c! the distance between the sensing electrodes is fi
the u dz/dtupeak reflects changes in peak ascending ao
blood flow and velocity.

The mean basal impedance (Z0) has been related to
the amount of fluid in the thorax.1,11,16 Meijer et al.17

found the derivative of Z0 , with respect to the interelec
trode distance, to be a satisfactory estimate of thora
fluid volume. Rooset al.20 showed that a relationshi
existed between the mean basal impedance norma
by the interelectrode distance with the total extracellu
fluid volume in normal volunteers and ambulatory p
tients. Further, Bermanet al.1 suggested that the sens
tivity of the bioimpedance method was comparable
other methods used in monitoring intrathoracic fluid v
ume changes.

EXPERIMENTAL METHODS

Data Collection

Simultaneous impedance and Doppler echo veloc
etry data were obtained from 20 healthy normal subje
Details of the experimental methods, protocols, and d
postprocessing may be found in Taylor.22 The subject
population consisted of ten healthy males and ten hea
females ranging in age from 24 to 50 years~mean

FIGURE 2. Example of a standard three-layer feed forward
network. Inputs are weighted at the hidden layer and the
hidden layer neurons are weighted at the output layer.
z dz/dt zpeak is the maximum value of the first derivative of
impedance „V/s…, tVE is the ventricular ejection time „s…, VEPT
is the volume of electrically participating thoracic tissue
„cm3

…, Z0 is the mean basal impedance between these elec-
trodes „V… and Bias is a constant.
-
-

,

d

30.766.9 years!. Subject heights ranged from 1.49
1.88 m ~mean 1.6860.1 m! with weights ranging from
50 to 95 kg~mean 67.80615.61 kg!.

Following standard procedures, thoracic bioimpedan
was measured with the Bomed NCCOM3 impedan
cardiograph~Bomed Medical Manufacturing, Ltd., Irv-
ine, CA 92718! and stroke volume was measured wi
the Biosound Genesis II Echo Cardiograph~Biosound
Corporation, Indianapolis, IN 46250!. The respiratory ar-
tifacts were minimized by utilizing breath-holds durin
measurements. For each subject, six data sets were
lected for three supine body positions~horizontal, 10°
head down, and 30° head up! and recorded on a TEAC
analog tape recorder~Teac, America Inc., Montebello
CA 90640! for later analysis. The 360 (203633) post-
processed data sets included the following parameters
VEPT, Z0 , u dz/dtupeak, tVE , SV ~Doppler!, heart rate,
patient height, weight, age, and gender.

Kubicek and Sramek SV Calculation

Equations~2! and ~3! were used to calculate the Ku
bicek (KSV! and Sramek (SSV! estimates of SV.

Neural Network SV Calculation

Eight standard three-layer feed-forward neural n
works were designed, trained, and tested using Neu
Ware Professional II Plus~NeuralWare Inc., Pittsburgh
PA 15276!. First, the input and the desired output da
were transformed so that each variable had zero m
and near unity bipolar range~21,11!. The 360 data sets
were then randomized and split into a training and te
ing group (n5180 each!. Three basic types of network
were implemented based on their inputs~see Table 1!:
the NNK ~neural net, Kubicek! type used variables com
mon to Equation~2! ~Kubicek’s estimator!; the NNS
~neural net, Sramek! type used variables common t
Equation ~3! ~Sramek’s estimator!; and the EIC type
used variables common to both. The desired output
each net was the Doppler-estimated SV.

For each network, a hyperbolic tangent transfer fun
tion was used for the input and hidden layer neuro
while the output layer used a linear transfer functio
Standard back-propagation was used to train each
work, with two stopping criteria: root mean square
~rms! error ~0.001! and maximum iteration coun
~999,999!. The number of hidden neurons in each n
work was optimized by trial and error. Once trained, t
testing data were used to compare the outputs of
network models~transformed back to full scale and of
set! with the corresponding Doppler SV.

Goodness of Fit

A regression analysis was performed for each imp
ance SV method versus Doppler. The coefficient of d
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termination @(CD!5R23100%#, the mean error~ME!,
the standard error of the mean~SEM!, and the rms error
were calculated. Akaike’s final prediction error~FPE!15

~which modifies the rms error to account for parsimon!
was also determined along with the skewness of
residuals (n5180 for the Kubicek and Sramek equatio
and the networks!. The skewness was tested for signi
cance with respect to its deviation from a normal dis
bution ~skewness50! at a50.05.

RESULTS

The network structures, the stopping criterion, and
optimized number of hidden layer neurons are shown
Table 1. Regressions between the SV estimates f
bioimpedance and Doppler methods are shown in Fig
3, and the resulting slopes, intercepts, CDs, and stan

TABLE 1. Neural network designs. z dz/dt zpeak is the maxi-
mum value of the first derivative of impedance „V/s…, tVE is
the product of the ventricular ejection time „s…, VEPT is the
volume of electrically participating thoracic tissue „cm3

…, L is
the distance between the voltage sensing electrodes „cm …

and Z0 is the mean basal impedance between these
electrodes „V….

Termination Hidden
Network Input parameters criterion PEs

EIC1 Udz

dt
U
peak

* tVE ;VEPT ,L2;1/Z0 ;
Maximum 11

iteration
count

1/(Z0)
2

EIC2
Z dz

dt
U
peak

;tVE ;VEPT ;L2;1/Z0 ;

1/(Z0)
2

rms error 05

EIC3 Zdz

dt
U
peak

;tVE ;L;Z0

Maximum
iteration
count

09

EIC4
Zdz

dt
U
peak

*tVE ;L;Z0
rms error 07

NNK1 Z dz

dt
U
peak

*tVE ;L2;1/(Z0)
2

rms error 07

NNK2 Z dz

dt
U
peak

;tVE ;L2;1/(Z0)
2

Maximum
iteration
count

08

NNS1 Zdz

dt
U
peak

*tVE ;VEPT ;1/Z0

rms error 03

NNS2 Zdz

dt
U
peak

;tVE ;VEPT ;1/Z0

Maximum
iteration
count

05
d

FIGURE 3. Exemplar results of regression analysis. The
thick lines indicate the 95% confidence limits for the regres-
sion. The correlation coefficient is indicated. „a…,„b… Results
of the regression analysis of classical biophysics estimates
„Kubicek and Sramek … of stroke volume with Doppler. „c…
Results of the regression analysis of the best network esti-
mate of stroke volume with Doppler.
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581Neural Network Based Impedance Cardiography
error of the estimates are listed in Table 2. Note that
EIC2’s CD is nearly seven times larger than the CD
the Kubicek and Sramek estimators.

ME, SEM, rms, skewness, and FPE for each meth
are listed in Table 3, and histograms of the residuals
shown in Figure 4. Note that the rms error of the K
bicek and Sramek estimators were five times larger t
the networks. Based on skewness, the residuals of
Kubicek and Sramek SV estimators@Figure 4~a!# showed
a significant deviation from a normal distribution (a
50.05), while all the networks except for the NNK
@Figure 4~b!# showed no significant deviation (a
50.05).

DISCUSSION

The cardiac contraction and the associated ejec
blood and fluid redistribution affect thoracic bioimpe
ance ~the forward problem!. However, it remains to be
seen whether the ejected blood volume can be de
mined reliably from thoracic bioimpedance~the inverse
problem!. The Kolomogorov and Universal Approxima
tion theorems for neural networks allow one to avo

TABLE 3. Descriptive statistics for the residuals, where the
residuals are the differences between the Doppler and the

predicted values of stroke volume.

Model Mean (ml)

Standard
error of

mean (ml)

Standard
deviation of
mean (ml)

rms
error
(ml) FPE

Kubicek 221.24 3.58 48.07 52.435 1374.69
Sramek 204.58 3.57 47.94 48.029 1153.38

EIC1 101.96 0.75 10.04 10.211 131.85
EIC2 202.61 0.70 09.41 09.748 075.53
EIC3 200.79 0.82 11.01 11.012 113.98
EIC4 101.77 1.13 15.15 15.209 173.49
NNK1 102.47 1.06 14.17 14.348 154.41
NNK2 104.53 0.75 10.01 10.967 105.12
NNS1 200.85 1.05 14.07 14.055 118.04
NNS2 101.29 0.92 12.38 12.413 109.09

TABLE 2. Results of regression analysis between the Dop-
pler stroke volume and predicted model estimates.

Stroke Coefficient of Standard
volume Intercept determination error of the

measurement Slope (ml) R23100% estimate

Kubicek 0.74 42.94 08.20 47.96
Sramek 0.83 19.40 9.90 47.96

EIC1 0.94 03.01 76.54 10.01
EIC2 0.88 12.50 77.38 09.18
EIC3 0.79 18.23 68.64 10.32
EIC4 0.93 04.10 58.27 15.13
NNK1 0.83 12.20 56.94 13.82
NNK2 0.80 12.68 73.23 09.26
NNS1 0.54 40.00 47.06 10.98
NNS2 0.67 26.69 59.26 10.68
e

-

some of the simplifications necessary for a classical b
physics approach; the results from this study lend c
dence to this nonlinear black box approach. The clas
biophysics approaches~the Kubicek and Sramek estima
tors! performed poorly, explaining only 8%–10% of th
variability in the Doppler SV estimate, while the neur
network EIC2 explained 77%. Similarly, the rms err
and FPE were likewise poor for the two biophysic
based estimators as compared to the EIC2~Table 3!. The
rms for the worst neural net measured at least three ti
better than the Kubicek and Sramek estimators. The p
performance of the Kubicek and Sramek predictors
also reflected in the skewness of their residuals. All b
one of the neural networks, on the other hand, produ
normally distributed residuals (a50.05). Of these, EIC2

FIGURE 4. Histograms of the residuals, where the residuals
are defined as the Doppler stroke volume minus the pre-
dicted stroke volume. „a… Residuals from classical biophys-
ics predictions. „b… Residuals from neural network predic-
tions. For clarity, smooth curves are drawn through the
midpoint values of each discrete bin. Bins are 10.6 ml each.
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582 MULAVARA et al.
had the largest CD, the smallest rms error, and the sm
est FPE. Even though the EIC2 had the largest num
of inputs of all the nets, it required only a small numb
of hidden neurons.

We also observed that, as fewer assumptions and
straints were imposed on the neural models, their per
mance improved. For example, consider net EIC1:
hidden neurons were required to map the inverse fu
tion. EIC2, on the other hand, used the same inputs,
with u dz/dtupeak and tVE provided separately instead o
pre-multiplied: it only required five hidden neurons a
produced an even better rms error. If this observation
correct, it may be beneficial to also breakVEPT into its
constituent parts: gender~which has a well known effec
on SV!, chest circumference, height, weight, and bu
~length between electrodes is already provided!. Inclu-
sion of body position~tilt ! may also have improved th
performance since the data were specifically collected
elucidate tilt effects. However, if tilt were included,
would complicate any practical EIC design, since
would require extra sensors on the body. Hydration
another factor that may help the net, but it also wou
require extra sensors and complicate the design~tilt and
hydration were factors not considered in this analysis!. It
may be possible to completely remove constraints
assumptions from the SV calculations by using the r
impedance wave form itself as the input to a neural n
This would require a major restructuring of the netwo
and is the topic of future work.

A major limitation of our study was its small size an
narrow population. Also, the use of Doppler Echo C
diography as the gold standard may be problematic
cause of its inherent variability. Future studies need
target a larger population of both healthy and disea
subjects and utilize a higher fidelity CO monitor~such as
a Thermodilution cardiograph! instead of a Doppler Echo
Cardiograph.

A neural network model that could accurately det
mine stroke volume based on impedance measurem
would present a significant breakthrough in cardiolog
An easy to use, inexpensive, portable cardiograph wo
have wide applications in the clinical setting, spo
physiology, and space studies, to name a few, and
tentially lead to improved patient care. However, furth
research is needed to clarify the reliability and scope
the neural solution.

CONCLUSIONS

Our results indicate that an invertible relationship e
ists between thoracic bioimpedance and stroke volu
Furthermore, we have shown that artificial neural n
works offer a potentially advantageous method for e
mating SV from thoracic electrical impedance, both b
cause of their ease of use and their lack of confound
-
r

-

t

-

ts

-

.

assumptions. The neural network approach showe
large improvement over classical biophysical approach
The CD increased from a high of 10% for the fir
principle’s approach to 77% for the best neural netwo
Still this neural approach needs to be cross valida
with other high fidelity CO monitoring methods over
larger number of subjects as well as over a wider ran
of physiological variations such as tilt and hydration a
nonstandard impedance wave forms.
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