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Electrical Impedance Cardiography Using Artificial Neural Networks

AJITKUMAR P. MULAVARA, WILLIAM D. TIMMONS, MEERA S. NAIR, VINEET GUPTA,
AMARESH A. R. KUMAR, AND BRUCE C. TAYLOR

Department of Biomedical Engineering, The University of Akron, Akron, OH

(Received 12 August 1997; accepted 1 December 1997)

Abstract—This study evaluates the use of artificial neural net- an emergency egredg=or these and other situations, an

works to estimate stroke volume from pre-processed, thoracic gccurate, light weight, and easy-to-use CO monitor
impedance plethysmograph signals from 20 healthy subjects.\yould have substantial benefits.

Standard back-propagation was used to train the networks, with Thermodilutiod* and other indicator dilution

Do.ppler stroke volume estimates as the des'red. output. Th.e method§ are available for accurate and reliable measure-
trained networks were then compared to two classical biophysi- .
ment of stroke volumgSV), but these techniques are

cal approaches. The coefficient of determinatiorf XR00%) . . . . . -
between the biophysical approaches and the Doppler wasNVasive, require a trained physician and use expensive

8.20% and 9.90%, while it was 77.38% between the best neural €Uipment. Dopplgr.ultrasc.)uﬁdi;. widely used in hospi-
network and the Doppler. Among these methods, only the neu- tal enylronmgnts, it is noninvasive, gnd does not require
ral network residuals had a significant zero mean Gaussiana sterile environment. Like the dilution methods, unfor-

distribution (@=0.05). Our results indicate that an invertible tunately, it requires highly skilled technicians and expen-
relationship may exist between thoracic bioimpedance and sive, bulky equipment.

stroke volume, and that artificial neural networks may offer a Electrical impedance cardiograph¢EIC), another
potentially a_dvantag_eoug approach for estimating stroke yolume noninvasive technique, has strong correlations with the
E?Ts?();ﬁglctﬁé?r(:t{;il g?pfgrij‘fgien’dﬁghazzﬁﬁﬁ’fos; tlg ease cardiac cycle(Figure 1. It promises to be accurate, in-

. . T ac . 188 expensive, compact, and user-friendtfy:16:18:20 Hoy-
Biomedical Engineering SocietfS0090-6968)00304-X ever, some investigators claim that EIC is nonrepeatable
and inaccurate(e.g., see Refs. 4 and).60ne of the
authors’ own evaluations of a commercial EIC device
and several published algorithms confirmed these nega-
tive findings®? Others suggest that EIC may be useful
for routine screenin§.

Cardiac outpu(CO), defined as the volume of blood Given these contradictory findings we postulated that
delivered by the heart per minute, is a major clinical the relationship between thoracic impedance and SV may

measure of heart function and oxygen supply to the tis- be too complicated for a simplified first-principles analy-

. . sis as used in earlier investigations. In this paper, we
sues. A decrease in cardiac output can cause low blood 9 pap

duced ti i idosi ﬁxplore the use of an artificial three-layer feed-forward
press_ure, reduced tissue OXYge”a 'On_’ "_’10' osns,_poqr N3 eural network to define the relationship between tho-
function, and shock. In addition to clinical applications,

k racic electrical impedance and SV. Since an artificial
decreased cardiac output can affect the health of other-natwork forms a nonlinear black box, it avoids the sim-

wise normal individuals exposed to severe conditions piification errors associated with the earlier methods.
and extreme environments. For example, jet pilots and
astronauts routinely experience high and low gravities
(G’s). Astronauts especially are placed at risk by sud-

denly returning to Eartl¥' 1 G environment after long In his seminal work, Nyboé? demonstrated that, for
exposures to microgravity. In these cases, decreased CQ, uniformly shaped isotropically conducting volum¥/,
may cause black-outs, dizziness, nausea, and poor judgy change in volume (cii is linearly related taAZ — a
ment — problems that may jeopardize a mission during change in electrical impedanc€) — by

Keywords—Nonlinear processing, Noninvasive monitoring, PI-
ethysmography, Cardiac output, Stroke volume.
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FIGURE 1. A sample of ECG, delta-Z, dz/dt, and CW Doppler
tracings during the cardiac cycle showing the temporal rela-
tionships of these events. The figure demonstrates that the
ejection phase of systole begins with the first zero-crossing
of the dz/dt signal and terminates at the first negative peak
following the R-spike of the ECG. The CW Doppler tracing is
derived from the audio signal that results as a difference in
frequency between the incident and reflected sound. This
signal, recorded at the supra-sternal notch, shows when
blood is ejected into the aortic arch and demonstrates a
good correlation with the landmarks used to determine ven-
tricular ejection time  (7yg).

wherep is the resistivity of the conducto cm), L is
the distance between the voltage sensing electr(mas

et al.

the impedance change due to blood ejection by the heart.
Assuming the thorax was adequately modeled as a uni-
formly perfused cylinder, they estimated stroke volume

by

) dz
pL a TVE
peak
Ksv= 72 2

The Sramek SV Estimator

Sramek! and Bernsteifi approximated the geometry
of the thorax as a truncated cone rather than a cylinder
cone, and both empirically related the subject’s height
and weight to \{pr, the volume of electrically partici-
pating thoracic tissue (cth Hence, each replaced
(pL?/Z,) with their own estimate of Y7, and obtained

dz

VeprTve a

peak

7 ®

Sev=

Sramek’s estimate of pbr was based on anthropometry,
for which the chest circumference was approximated as
three times the distance between the voltage sensing
electrodes. For this paper, we used Sramekgr\Vas
calculated by the Bomed NCCOM3 impedance cardio-
graph(see Experimental Methods belpw

Neural Networks

Standard feed-forward networks consist of three lay-
ers of neuronge.g., see Figure)2Each neuron typically
applies a transfer function, such as an hyperbolic tangent,
to its weighted sum of inputs. Three-layer feed-forward
networks can be used to identify nonlinear processes and
models using gradient descent algorithms. The net in
Figure 2 has a single neuron in the top lay@hose
output is SV; four neurons in the input layeteach
corresponding to an attribute of the thoracic impedance

and Z is the mean basal impedance between these elecsigna); and five neurons in the hidden layer. Hence,

trodes ().

When Nyboer’s methods were later applied to the
human thorax, the impedance signal displayed a periodic
pulsation that was strongly correlated with ventricular
ejection (Figure 1.2%1°-12These correlations have led
several investigators to propose an inverse mapping, re-
lating thoracic impedance to SV.

The Kubicek SV Estimator

Kubicek et al° used the product of\g (s) (ventricu-

lar ejection time and | dz/dt|,e. [the maximum value of
the first derivative of impedanc&)/s)] to approximate

these nets can be conveniently interpreted as nonpara-
metric, nonlinear, black box estimatdrs.

Importance of Bioimpedance Variables

The bioimpedance variables used to estimate the
stroke volume as derived by classic biophysics analysis
are related to important physiological parameters. The
| dz/dt| o« variable was shown to be related to the speed
and force of ventricular contractidA. More recently,
KubiceK found that the peak value of the ventricular
ejection velocity occurred concurrently witlalz/dt|,eq.

This was the case even though the voltages sensed by the
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Doppler 30.7+6.9 years. Subject heights ranged from 1.49 to
1.88 m(mean 1.6& 0.1 m) with weights ranging from
50 to 95 kg(mean 67.8& 15.61 kg.

Following standard procedures, thoracic bioimpedance
was measured with the Bomed NCCOMS3 impedance
cardiograph(Bomed Medical Manufacturing, Ltd., Irv-
ine, CA 92718 and stroke volume was measured with
Hidden Layer the Biosound Genesis Il Echo CardiografBiosound
Corporation, Indianapolis, IN 46250The respiratory ar-
tifacts were minimized by utilizing breath-holds during
measurements. For each subject, six data sets were col-
lected for three supine body positiorteorizontal, 10°
T head down, and 30° head upnd recorded on a TEAC
1 analog tape recordefTeac, America Inc., Montebello,

A CA 90640 for later analysis. The 360 (206X 3) post-
processed data sets included the following parameters: L,
FIGURE 2. Example of a standard three-layer feed forward Vepr, Zo, |dZ/dt|peak, Tve, SV (Dopplen, heart rate,

network. Inputs are weighted at the hidden layer and the ; i i
hidden layer neurons are weighted at the output layer. patient height, weight, age, and gender.

| dz/dt |peax is the maximum value of the first derivative of . .
impedance (€/s), 7y is the ventricular ejection time  (S), Vgpr Kubicek and Sramek SV Calculation

is the volume of electrically participating thoracic tissue .
(cm?®), Z, is the mean basal impedance between these elec- Equatlons(Z) and (3) were used to calculate the Ku-

trodes (Q) and Bias is a constant. bicek (Ksy) and Sramek (&) estimates of SV.

Output Layer

Input Layer

Bias

Neural Network SV Calculation
electrodes placed on the neck and the lower thorax mea-

sure a total impedance change that was a complex inte-
gration of the impedance changes from the aortic valve
to the descending aorta. Bernsfeiconcluded that as

Eight standard three-layer feed-forward neural net-
works were designed, trained, and tested using Neural-
Ware Professional Il PlugNeuralWare Inc., Pittsburgh,
long as(a) the total left ventricular output is not redis- PA 15278. First, the input and the desired output data

tributed, (b) the mean basal impedance is constant, and we(;e transfqrmgd SIO that each variartlale had dzero mean
(c) the distance between the sensing electrodes is fixed,2" nehar unity q PO ardrangevll,fr ,1)' The 360 ata (sjets
the | dz/dt|,c.« reflects changes in peak ascending aortic were then randomized and spliit into a training and test-

blood flow and velocity ing group (=180 each Three basic types of networks
The mean basal impedancegfzhas been related to

were implemented based on their inputee Table &
the amount of fluid in the thora¥!:® Meijer et all’ the NNK (neural net, Kubicektype used variables com-
found the derivative of ¢, with respect to the interelec-

mon to Equation(2) (Kubicek's estimator the NNS
trode distance, to be a satisfactory estimate of thoracic (Néural net, Sramektype used variables common to
fluid volume. Rooset al?®° showed that a relationship

Equation (3) (Sramek’s estimatgr and the EIC type

existed between the mean basal impedance normalizeo“seﬁ variables hcommonl to b(,)th' Tge desired output of
by the interelectrode distance with the total extracellular ¢ het was the Dopp er-estimate SV.

fluid volume in normal volunteers and ambulatory pa- . For each network, a_hyperbollc tangent transfer func-
tients. Further, Bermaet al! suggested that the sensi- tion was used for the input and hidden layer neurons,

tivity of the bioimpedance method was comparable to while the output layer gsed a linear transfgr function.
other methods used in monitoring intrathoracic fluid vol- Standard back-propagation was used to train each net-
ume changes. work, with two stopping criteria: root mean squared

(rms) error (0.00) and maximum iteration count
(999,999. The number of hidden neurons in each net-
work was optimized by trial and error. Once trained, the
Data Collection testing data were used to compare the outputs of the
network modelgtransformed back to full scale and off-
se) with the corresponding Doppler SV.

EXPERIMENTAL METHODS

Simultaneous impedance and Doppler echo velocim-
etry data were obtained from 20 healthy normal subjects.
Details of the experimental methods, protocols, and data
postprocessing may be found in TayférThe subject
population consisted of ten healthy males and ten healthy A regression analysis was performed for each imped-
females ranging in age from 24 to 50 yeam®ean ance SV method versus Doppler. The coefficient of de-

Goodness of Fit
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TABLE 1. Neural network designs. |dz/dt |seqx is the maxi- Stroke Volume
mum value of the first derivative of impedance Qfs), 7y is Regression
the product of the ventricular ejection time (s), Vgpr is the )
volume of electrically participating thoracic tissue (cm®), Lis I R=0.29
the distance between the voltage sensing electrodes (cm)
and Z, is the mean basal impedance between these -
electrodes (). E
v
Termination  Hidden 8
Network Input parameters criterion PEs é
EIC1 Maximum 11 ;
dz ) . . ¢ |
I * 1e Vepr L21/Z,; iteration i
peak count 2
1(Zo)? ¢
4
dz VepriL31/Z 5ot
g Ve VEPT L5 g,
EIC2 dt peak rms error 05 (a) Stroke Volume - Ooppler (ml)
U(Zo)?
EIC3 dz Maximum 09 Stroke Volume
qil Ve iLiZo iteration Regression
peak count - -
R=0.31
dz
ot *7vesLiZo -
EIC4 peak rms error 07 e
w |
¥
NNK1 dz rms error 07 g
ot * 7yg L% 1(Z0)2 :
peak [
5 mf
NNK2 dz Maximum 08 ;o
rriRAG L% 1(Zo)? iteration -
peak count &
S
NNS1 dz rms error 03 C
dt peak* e Vepri1/Zo (b) Stroke Volume — Boppler (ml)
NNS2 dz Maximum 05
rm ive Vepri1/Zg iteration Stroke Volume
peak count Regression
—
=0.87
= |
termination [ (CD)=R?x 100%], the mean erro(ME), z
the standard error of the med8EM), and the rms error o =r
were calculated. Akaike’s final prediction err@ePB*® A |
(which modifies the rms error to account for parsimpny . .
was also determined along with the skewness of the 5 wl
residuals (r-180 for the Kubicek and Sramek equations 2
and the networks The skewness was tested for signifi- ¢ w} .
. . . . . . [
cance with respect to its deviation from a normal distri- &

bution (skewness0) at «=0.05. e @ = w & mw e
Stroke Volume - Doppler {mt)

G

RESULTS

. . FIGURE 3. Exemplar results of regression analysis. The
Th'e network structur'es, the stopping criterion, and the thick lines indicate the 95% confidence limits for the regres-
optimized number of hidden layer neurons are shown in sion. The correlation coefficient is indicated. (a),(b) Results

Table 1. Regressions between the SV estimates fromof the regression analysis of classical biophysics estimates

.. . . (Kubicek and Sramek ) of stroke volume with Doppler.  (c)
b|0|mpedance and Doppler methods are shown in Figure Results of the regression analysis of the best network esti-
3, and the resulting slopes, intercepts, CDs, and standardnate of stroke volume with Doppler.
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TABLE 2. Results of regression analysis between the Dop-

pler stroke volume and predicted model estimates. Residual
H.stogram
Stroke Coefficient of  Standard o -
volume Intercept determination error of the g
measurement  Slope (ml) R?X 100% estimate 5 er
Kubicek 0.74 4294 08.20 47.96 é Lr e
Sramek 0.83  19.40 9.90 47.96 S wf 7%
EIC1 0.94 03.01 76.54 10.01 “
EIC2 0.88 12.50 77.38 09.18 o Hr
EIC3 0.79 18.23 68.64 10.32 & st
EIC4 0.93 04.10 58.27 15.13 %
NNK1 0.83  12.20 56.94 13.82 7 “r
NNK2 0.80  12.68 73.23 09.26 ¢l
NNS1 0.54 40.00 47.06 10.98 b k ' K . ‘ . [ ‘ {
NNS2 0.67 26.69 59.26 10.68 ? Tos 1% 1w @ m o @ w w @ »

Estimated Stroke Volume Residual (ml)

E

error of the estimates are listed in Table 2. Note that the
EIC2’'s CD is nearly seven times larger than the CD of
the Kubicek and Sramek estimators.

ME, SEM, rms, skewness, and FPE for each method
are listed in Table 3, and histograms of the residuals are
shown in Figure 4. Note that the rms error of the Ku-
bicek and Sramek estimators were five times larger than
the networks. Based on skewness, the residuals of the
Kubicek and Sramek SV estimatdfSigure 4a)] showed
a significant deviation from a normal distributionx (
=0.05), while all the networks except for the NNK1
[Figure 4b)] showed no significant deviation af
=0.05).

Residual
Histogram

Frequency of Occurance

-138 -118 -9

DISCUSSION (b) Estimated Stroke Volume Residual (ml)

The cardla_c con_tra_ctlo_n and the aSSO_CIate_d_ eJECtedFIGURE 4. Histograms of the residuals, where the residuals
blood and fluid redistribution affect thoracic bioimped- are defined as the Doppler stroke volume minus the pre-
ance (the forward problem However, it remains to be  dicted Zt_rcike volur(T;)E;- . (a_)O| Refsi(;uals from Iclas?icalkbiom(ljy&

H ICS predictions. esiauals from neural networ redic-
Se:en Whgther the eJeCted_ b'o_ofj volume Can be detelﬁ_tionsp. For clarity, smooth curves are drawn throughp the
mined reliably from thoracic bioimpedandthe inverse midpoint values of each discrete bin. Bins are 10.6 ml each.
problem). The Kolomogorov and Universal Approxima-

tion theorems for neural networks allow one to avoid

TABLE 3. Descriptive statistics for the residuals, where the some of the simplifications necessary for a classical bio-
residuals are the _differences between the Doppler and the physics approach; the results from this study lend cre-
predicted values of stroke volume. dence to this nonlinear black box approach. The classic
Standard ~ Standard  rms biophysics approachdshe Kubicek and Sramek estima-
error of  deviation of error tors) performed poorly, explaining only 8%—10% of the
Model  Mean (ml) mean (m)) mean (m) — (m) — FPE variability in the Doppler SV estimate, while the neural
Kubicek —21.24 3.58 48.07  52.435 1374.69 network EIC2 explained 77%. Similarly, the rms error
Sramek ~ —04.58 3.57 47.94  48.029 1153.38 and FPE were likewise poor for the two biophysics-
EICL  +01.96 0.75 10.04 10211 131.85 based estimators as compared to the E(Cable 3. The
EIC2  -0261 0.70 09.41  09.748 075.53 .
EIC3  —00.79 0.82 1101 11012 113.98 rms for the worst neural net measured at least three times
EIC4 +01.77 1.13 15.15 15.209 173.49 better than the Kubicek and Sramek estimators. The poor
NNK1 ~ +02.47 1.06 1417  14.348 154.41 performance of the Kubicek and Sramek predictors is
m:i +gg-gg %g ig-gi ig-ggg 122-(1%21 also reflected in the skewness of their residuals. All but
NNS2 40129 0.92 1238 12413 10909 one of the neural networks, on the other hand, produced

normally distributed residualse(=0.05). Of these, EIC2
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had the largest CD, the smallest rms error, and the small-assumptions. The neural network approach showed a
est FPE. Even though the EIC2 had the largest numberlarge improvement over classical biophysical approaches.
of inputs of all the nets, it required only a small number The CD increased from a high of 10% for the first
of hidden neurons. principle’s approach to 77% for the best neural network.

We also observed that, as fewer assumptions and con-Still this neural approach needs to be cross validated
straints were imposed on the neural models, their perfor- with other high fidelity CO monitoring methods over a
mance improved. For example, consider net EIC1: 11 larger number of subjects as well as over a wider range
hidden neurons were required to map the inverse func- of physiological variations such as tilt and hydration and
tion. EIC2, on the other hand, used the same inputs, butnonstandard impedance wave forms.
with | dz/dt| e« and 7ye provided separately instead of
pre-multiplied: it only required five hidden neurons and ACKNOWLEDGMENTS
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