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Abstract—A model predictive control strategy to simulta
neously regulate hemodynamic and anesthetic variables in c
cal care patients is presented. A nonlinear canine circula
model, which has been used to study the effect of inotropic
vasoactive drugs on hemodynamic variables, has been exte
to include propofol pharmacokinetics and pharmacodynam
Propofol blood concentration is used as a measure for dept
anesthesia. The simulation model is used to design and tes
control strategy. The optimization-based model predictive c
trol strategy assures that constraints imposed on the drug
sion rates are met. The physician always remains ‘‘in the loo
and serves as the ‘‘primary controller’’ by making propof
blood concentration setpoint changes based on observa
about anesthetic depth. Results are shown for three simul
cases:~i! congestive heart failure,~ii ! postcoronary artery by-
pass, and ~iii ! acute changes in hemodynamic variable
© 2000 Biomedical Engineering Society.
@S0090-6964~00!00701-3#

Keywords—Biomedical control systems, Predictive contro
Physiological models, Intravenous anesthesia, Propofol.

INTRODUCTION

Critical care physicians maintain certain patient st
variables within an acceptable operating range by inf
ing several drugs. For example, in the case of patie
with congestive heart failure, measured variables such
mean arterial pressure~MAP! and cardiac output~CO!
are of primary importance and are maintained using
dium nitroprusside~SNP! and dopamine~DPM!. In ad-
dition, physicians may be required to administer an
thetics and monitor the depth of anesthesia~DOA!
during surgical procedures. The physician uses her
own senses for other variables which are not easily m
sured, and often infers anesthetic depth from a numbe
measurements and patient responses to surgical pr
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dures. The current clinical practice is to use man
adjustment of drug infusion rates with drip intraveno
~IV ! and/or programmable pumps. The cardiac nurse
physician are responsible for monitoring the measu
‘‘outputs’’ ~MAP and CO! and adjusting the manipulate
‘‘inputs’’ ~drug infusion rates!, thereby serving as
closed-loop controllers. The goal of the research p
sented in this article is to develop an automated appro
to regulate the measured outputs~obtained from cur-
rently available sensors! by adjusting the flow rates o
programmable pumps~also currently available!. This au-
tomated approach will free the cardiac nurse and ph
cian of some of the more mundane duties and all
them more time to monitor the patient for conditions th
are not easily measured.

Clinical trials have been conducted for the sing
input single-output problem of adjusting the infusion ra
of sodium nitroprusside to regulate mean arterial pr
sure using a feedback control algorithm. Our long-te
goal is to extend this technology to the multiple inp
multiple output problem of adjusting several drug a
anesthetic infusion rates to regulate several outputs~in-
cluding depth of anesthesia!. It is important to conduct
extensive simulation-based studies to be assured o
robust control algorithm~one able to handle extrem
patient variability!, before moving to animal experiment
and clinical trials. The objective of this article is t
present the results of an extensive simulation study.

In this article we explore the use of a model pred
tive control ~MPC! strategy to regulate drug infusion
Model predictive controllers are a class of controlle
which employ an identifiable model to predict the futu
behavior of the system over an extended prediction
rizon and compute the optimal drug infusion to achie
desired states. An important issue in the design of d
infusion systems is the need to impose bounds on d
ages and infusion rates to avoid overdosing or drug t
icity. For example, sodium nitroprusside, used in redu
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72 RAO, BEQUETTE, and ROY
ing hypertension, should be infused less than
mg kg21 min21 to avoid cyanide build up; for the case o
low cardiac contractility, dopamine infusion should b
maintained within its inotropic range of 4 –
mg kg21 min21. Alternatively, the physician may want t
specify an operating range of MAP instead of a spec
setpoint. While most control strategies handle such c
straints in an ad hoc manner, the primary advantage
MPC is its ability to handle constraints explicitly. It
optimization-based framework allows computation of t
optimal infusion rates subject to input and output co
straints. For example, constraints on drug infusion ra
and output variables~such as maintaining CO above
minimum value! can be explicitly specified and the re
sulting control action will satisfy them.

Control of Hemodynamic Variables

Initial research in hemodynamic control has focus
on single-input single-output control of MAP, whil
more recent work has considered the control of sev
hemodynamic variables by the infusion of multip
drugs. A detailed review of blood pressure control
provided by Isaka and Sebald.10 Recently, Kwoket al.12

reported on clinical trials of automated blood press
regulation during open-heart surgery. There has a
been a significant research effort in the simultane
control of MAP and CO by manipulating the infusio
rate of two drugs~usually sodium nitroprusside an
dopamine!. One of the more advanced studies on sim
taneous control of CO and MAP utilizing multiple dru
infusion was done by Vosset al.20 Yu et al.23 used a
multiple model adaptive approach in canine experime

Control of Anesthetic Variables

Research on control of the depth of anesthesia d
from the 1950s, and was reviewed by O’Haraet al.14

Manual administration of anesthetics has often produ
undesirable oscillations in blood concentration of an
thetic and DOA. Continuous variable-rate infusions ha
been known to improve the anesthesiologists’ ability
titrate the drug to the desired effect.17 Kenny and
White11 used computer controlled infusion pumps bas
on pharmacokinetic model equations where progra
mable pumps deliver anesthetics at variable rates
maintain a desired blood concentration. The infusion p
files are programmed based on prediction using a p
macokinetic model that describes the drug assimilat
and accumulation in the body.

Much recent drug infusion work has focused on t
use of the intravenous anesthetic agent propofol~PFL!.
Propofol is currently gaining widespread acceptance
induction and maintenance of general anesthesia, as
as for sedation and local and regional anesthesia.
primary advantages of propofol are~i! it produces rapid
f

l

s

-

ll

onset of anesthesia,~ii ! it provides a clear, rapid emer
gence from anesthesia, and~iii ! there is a lack of accu-
mulation, which allows prolonged drug infusion. Prop
fol infusion brings about a change in cardiovascu
functions such as depression of MAP, CO, heart ra
and vascular resistances. Critical care patients req
tight monitoring under the influence of such disturbanc
and, hence, simultaneous regulation is vital.

Objectives of This Article

In this article, we present model predictive contr
approaches for simultaneous regulation of hemodyna
and anesthetic states of critical care patients. We us
canine circulatory model to mimic clinical condition
requiring critical care of cardiovascular functions. Th
control study is a natural extension to earlier work
Rao et al.16 which used MPC for automation of hemo
dynamic drug infusion.

In the next section, we describe the simulation mo
of the canine circulatory system and present extensi
to incorporate the pharmacokinetics~PK! and pharmaco-
dynamics ~PD! of propofol. This provides a realistic
simulation platform to design and test advanced con
strategies of both hemodynamic and anesthetic sta
Then we introduce the model predictive control structu
proposed to simultaneously control hemodynamic a
anesthetic states. In another section, we present clo
loop simulation results. We then discuss and summa
our results and indicate the focus of our current resea

SYSTEM DESCRIPTION

The overall control objective is to maintain the hem
dynamic variables MAP, CO, and mean pulmonary ar
rial pressure~MPAP! at desired setpoints while simulta
neously controlling the anesthetic states~DOA! desired
by the anesthesiologist. Sodium nitroprusside is adm
istered for arterial vasodilation; dopamine is used as
inotrope to enhance cardiac performance; phenyleph
~PNP! is an arterial vasoconstrictor and nitroglycer
~NTG! is a venodialator. Control of DOA is achieved b
altering the propofol infusion and hence the propo
blood concentration~PFC!.

Depending on the patient’s status, one or more of
four drugs will be chosen to maintain the three hemod
namic variables. We assume that the attending physic
has already evaluated the patient’s status and determ
the proper model and drug therapy. The model predict
controller uses measurements of the hemodynamic st
and determines optimal infusion rates to achieve the
sired setpoints.

When implementing a complex control strategy, su
as the control of hemodynamic and anesthetic state
critical care patients, it is necessary to perform detai
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73Regulation of Hemodynamic and Anesthetic States
simulation studies before moving to animal experimen
Clearly it is important that the simulation model used
realistic and exhibits qualitatively similar behavior as t
physical system. Here we describe extensions to a ph
ological model of a canine circulatory system, which w
have used in the past as a basis for control system
signs. These were later shown to be successful in la
ratory experiments.15,23

The model used in this article to describe the effect
inotropic and vasoactive drugs on a physiological syst
was initially developed by Yuet al.22 and it has been
used~in various forms! in a number of simulation studie
~for example, by Gopinathet al.,5 by Held and Roy,6 by
Huang and Roy,8 and by Raoet al.16!. We have revised
the model to include the pharmacokineti
pharmacodynamic effects of propofol based on para
eters obtained from Tackleyet al.19 and from Fragen.3

The parameters were fine tuned to simulate and ma
open-loop results from experiments on dogs reported
Nakaigawaet al.13

Physiological Model Description

A schematic of the circulatory system model is show
in Fig. 1. The physiological model consists of three s
of equations including~i! circulatory system equations
which describe the effect of specific body parameters
the hemodynamic variables,~ii ! drug effect relationships,
which describe the influence of the infused drugs on
specific body parameters, and~iii ! equations which de-
scribe the effect of the arterial baroreceptors in blo
pressure regulation. Yuet al.22 used an electric circuit
analogy to describe the lumped parameter model of
circulatory system. The forcing function is the time

FIGURE 1. Schematic of the physiological model. Details of
the baroreflex model are presented in Fig. 2. The extensions
made in the nonlinear model for propofol effects are indi-
cated by dashed lines.
-

-
-

varying elastance of the heart. The maximum value
this elastance,Emax, is used to characterize ventricula
contractility. Body compartments and blood vessels
represented as capacitances and the viscous forces
resistance to blood flow in the systemic and pulmon
vasculature are modeled as resistors. MAP is then
voltage measured after the left ventricle, and CO is
current flow measured at that point in the circuit. All th
circulatory system elements are described in terms of
following ~time-varying! body parameters:~a! heart rate
~HR! — affects the contraction time of the ventricle
which in turn affects the cardiac output;~b! maximum
elastance (Emax) — used to characterize ventricular co
tractility; ~c! unstressed venous volume (Vus-ven) — a
measure of venous contraction;~d! systemic resistance
(Rsys) — the resistance to blood flow through the smal
blood vessels;~e! critical closing pressure (Pcrit) — the
minimum pressure required to prevent collapse of blo
vessels in the pulmonary circulation;~f! venous and ar-
terial compliances (Cven, Caor, Cpul-art! — the capaci-
tance of the blood vessels.

The first set of equations describing the volume-flo
relationships for each ‘‘descriptive vessel,’’ in the bod
are of the form

dVi~ t !

dt
5Qi 2~ t !2Qi 1~ t !, ~1!

wherei is the vessel being considered (i 51, . . . ,7),Qi 2

represents flow in from the previous vessel, andQi 1

represents the flow out to the next vessel. There
seven descriptive vessels; the left ventricle, the la
arteries, the small arteries, the venous system, the r
ventricle, the pulmonary artery, and the pulmonary ve
In addition, the following equation describes th
pressure-flow relationships for the large and small ar
ies ~vessels 2 and 3!:

dQ2~ t !

dt
5

P2~ t !2P3~ t !

L
, ~2!

whereL is a constant inertance element. The next se
equations describes the time dependent concentratio
the drugs in the descriptive vessels.

dmj ,i~ t !

dt
5~Cd~ t !Q~ t !! j ,i 22~Cd~ t !Q~ t !! j ,i 1

2S m~ t !

t1/2
D

j ,i

, ~3!

where j refers to the drug and thei represents the vesse
being considered.m is the mass of the drug in the vesse
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74 RAO, BEQUETTE, and ROY
Cd is the drug concentration in the vessel,V is the vessel
volume (Cd5m/V), andt1/2 is the half life of the drug.

The pharmacodynamic equations describing the dr
effect relationship are given by the following:

dEff~ t !

dt
5k1Cd

p~ t !~Effmax2Eff~ t !!2k2Eff~ t !; ~4!

Eff is the quantitative measure of the effect of a drug
its affected parameter in the compartment where the
fect is assumed to be concentrated. Effmax is the maxi-
mum effect of the drug,p is the power to which the
concentration is raised, andk1 and k2 are reaction rate
constants. The drug-effect parameters on the varia
and the relevant chambers in which the drug is assum
are given in Table 1.

The baroreflex model developed by Wesselinget al.21

describes the effects of arterial baroreceptors in sh
term MAP regulation. We use a modified version of t
baroreflex, shown schematically in Fig. 2. The barorefl
model uses MAP as input to modifyVus-ven, Rsys, Emax,
and HR. The baroreflex input~BFC! is calculated as

BFC5
exp~c~MAP~ t !2MAPref!!

11exp~c~MAP~ t !2MAPref!!
~5!

where MAPref is a nominal value of MAP andc is an
empirical constant.

The model naturally splits into two time scales:~i!
drug masses and drug-effect variables that remain c
stant over a heartbeat and~ii ! volume, blood flow rate,
and baroreflex state variables that change during e
heartbeat. The outputs MAP, MPAP, and CO are cal
lated from the integrated values of vessel flow and pr
sure relationships. The symptomatic changes in blo
pressure and cardiac output associated with patie

TABLE 1. Pharmacodynamic parameters „compiled from
work of Gopinath et al. „Ref. 5… and Huang „Ref. 7…. The PFL
parameters values are those of Fragen „Ref. 3…, and were

tuned to match experimental results.

Drug (effect site) Effmax p k2 EC50

SNP (Rsys , Pcrit) 0.635 1.0 0.025 1.706

SNP (Vus-ven) 225.0 1.0 0.00625 0.936
DPM (Emax) 1.3 6.11 1.1316E-3 4.0
DPM (Rsys) 0.5 1.46 0.0125 92.26
PNP (Vus-ven) 32.2 1.0 0.055 1.1

PNP (Rsys Pcrit) 0.821 1.0 0.05 1.6

PNP (Cven) 0.525 1.0 0.0625 1.8

NTG (Rsys , Rpv) 0.6252 1.0 0.0231 1.91

NTG (Vus-ven) 235 1.0 0.01325 1.5
NTG (Cven) 0.85 1.0 0.02273 3.851
NTG (Cpul-art) 0.462 1.0 0.02354 3.421
PFL (BFC,Caor) 0.75 1.0 0.0084 2.5
s

-

h

’

conditions and drugs effects can be simulated by alter
one or more of the body parameters. For example, one
the causes of congestive heart failure~CHF! is a reduc-
tion in the effective contractility of the heart. CHF i
modeled by reduction ofEmax by 50%–70% in the left
ventricle. The associated dopamine therapy to incre
ventricular contractility affectsEmax. Vasodilatory action
of sodium nitroprusside reducing resistance to blood fl
is modeled by reducingRsys and increasingVus-ven.
These effects are computed using Eq.~4!.

Details of the model equations and parameters are
provided for sake of brevity. The reader is referred to Y
et al.22 and Gopinathet al.5 for a complete description of
the model equations and the solution procedure. Hua7

extended the model to incorporate the effects of pheny
phrine and nitroglycerin on venous complianceCven and
pulmonary arterial complianceCpul-art in the canine cir-
culatory model. In the following sections we propos
extensions of the model to incorporate pharmacokine
and pharmacodynamics of propofol.

Model Extensions for Anesthetic Effects

While physiological models like the one describe
above provide better insights into drug distribution in th
body, they require extensive data. Hence as a first le
approximation of anesthetic effects, the pharmacokine
model adopted in this study is a three compartme
model that has been widely used and successfully imp
mented in clinical practice for open-loop computer a
sisted target controlled infusions. Shafer an
co-workers18 have developed STANPUMP, a softwar
for computer controlled drug infusion that is freely ava
able at their WWW server. Roy and co-workers report
using STANPUMP with Tackley parameters for estima
ing propofol concentration in canine experiments duri

FIGURE 2. Baroreflex model structure, equations, and pa-
rameters.
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75Regulation of Hemodynamic and Anesthetic States
their investigations of fuzzy logic based DOA estimati
using midlatency auditory evoked potential~MLAEP!.9

Although they have used human data for predict
plasma concentrations, their results were good. For
studies we adopt the parameter set of Tackleyet al.19

The three compartment concentration model wh
describes the distribution and assimilation of a drug
given by the following set of differential equations:

dC1~ t !

dt
52@k101k121k13#C1~ t !1k21C2~ t !

1k31C3~ t !1
I ~ t !

V1
, ~6!

dC2~ t !

dt
5k12C1~ t !2k21C2~ t !, ~7!

dC3~ t !

dt
5k13C1~ t !2k31C3~ t !, ~8!

whereCi is the drug concentration in compartmenti, ki j

are the rate constants for drug distribution from compa
ment i to compartmentj ~in keeping with the accepte
standard in the pharmacokinetic literature!, I is the infu-
sion rate andV1 is the apparent volume of the centr
compartment. The drug is infused into and eliminat
from the central compartment~compartment 1!, which
essentially constitutes blood or plasma. The drug in
central compartment reversibly distributes between t
hypothetical peripheral compartments representing w
perfused tissue~compartment 2! and poorly perfused tis
sues ~compartment 3!. While anesthesiologists use th
model to predict and maintain a desired amount of
esthetic concentration in the blood open loop, we inc
porate the model equations to simulate the distribution
propofol in the circulatory system. The drug-effect re
tionships for propofol are computed using Eq.~4! and
the parameters reported in Table 1. With a combin
PK/PD mechanism, it is now possible to quantify t
magnitude of propofol effects at the active sites.

A number of studies have established that propo
affects cardiovascular parameters such as vascular r
tance, arterial compliance, and baroreflex. This in tu
causes the depression of MAP, CO, and heart r
Cullen et al.1 discussed the effect of propofol on baror
flex activity of humans. They showed marked reflex
setting in baseline arterial pressures as reasons for s
ing down the heart rate which allowed lower arter
pressure as compared to the awake state. We simu
this effect by altering the MAPref value associated with
the baroreflex input shown in Eq.~5! and Fig. 2. It can
be noted that this also alters the systemic vascular re
r

s-

.

-

e

-

tance as observed in most propofol studies. Based
Deryck et al.2 we also alter arterial complianceCaor in
the model equations to simulate the cardiovascular al
ations by propofol. The extended anesthetic model co
bined with the physiological model is now capable
simulating the cardiovascular changes associated w
propofol infusion. Predicted propofol concentration
used as a measure of DOA.

Tuning of Model Parameters for Propofol Effects

All of the propofol related parameters used in t
model were obtained from a variety of sources of hum
and animal experiments discussed earlier. Also th
studies involved different premedication and the supp
menting of opiates and sedatives. Obviously, there i
possibility of error arising in the prediction of hemody
namic and anesthetic states. The parameters hence
quire tuning and the following procedure was adopte

The sensitivity of the model to variations in circula
tory parameters was analyzed to verify that within t
operating range of drug and anesthetic concentratio
the model is capable of simulating changes in MAP a
heart rate as observed in experimental studies cited in
literature. The propofol model parameters were then fi
tuned by running a number of open-loop simulations
closely reproduce results from experiments. Nakaiga
et al.13 have studied the effects of propofol infusion o
cardiovascular hemodynamics, coronary circulation, a
myocardial metabolism in open-chested dogs. They p
sented detailed hemodynamic data and plasma con
tration of propofol for various~steady! infusion rates
from 6 mg kg21 hr21 to 21 mg kg21 hr21. A relevant
summary of the experimental results is presented al
with those obtained by simulations on our canine circ
latory model in Table 2. However, Nakaigawaet al.13

did not report values of hemodynamic variables befo
propofol infusion, but used results at 6 mg kg21 hr21

infusion as baseline values. Hence, we provide a m
meaningful comparison of our model simulations wi
their experimental results using normalized values in F
3. Open-loop simulations were performed on the mo
for each of the infusion rates that lasted 30 minutes. T
steady state model predictions of MAP, CO, and he
rate are normalized using the values obtained from th
mg kg21 hr21 data set. Plasma concentrations are p
sented as is. It can be observed that MAP and plas
concentration values are reasonably close to the exp
mental values. Even though the experimental heart
values show nonlinear behavior, model predictions
within acceptable ranges. There is however a large m
match in the values for cardiac output. Due to the lack
sufficient data, we were unable to match CO values w
out compromising MAP, HR, and plasma concentrati
predictions. However, it should be noted that the C
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TABLE 2. Comparison of experimental and simulated results. Mean values of experimental
results are reported along with the Standard Error of the Mean ranges in parentheses.

Propofol Infusion Rate (mg kg21 hr21)

Experimental Results
(Nakaigawa et al. a) 0 6 9 12 15 18 21

Plasma Concentration (mg/ml) - 2.9(0.3) 4.3(0.3) 5.4(0.5) 6.4(1.2) 9.4(0.7) 11.5(0.7)
MAP (mm Hg) - 117(6) 113(8) 108(8) 103(6) 98(5) 93(7)
CO (ml kg21 min21) - 140(10) 120(10) 100(10) 90(10) 90(10) 90(10)
HR (beat/min) - 126(8) 131(8) 128(6) 120(6) 114(6) 108(7)

Simulation Results

Plasma Concentration (mg/ml) 0.0 2.9 4.3 5.8 7.3 8.7 10.2
MAP (mm Hg) 119 88 81 76 72 69 67
CO (ml kg21 min21) 131 115 111 108 106 104 103
HR (beat/min) 122 107 104 102 101 99 98

aReference 13.
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depression reported from these experiments appears t
unusually large. Propofol is known to cause a min
reduction in CO.

The model is simulated using MATLAB/SIMULINK,
which provides a transparent translation of control s
tem design to the nonlinear process. This allows dir
comparisons of control strategies developed by differ
researchers and is now available on the website htt
www.rpi.edu/;royr/roy_sftwr.html.

FIGURE 3. Comparison of simulation results with experimen-
tal results of cardiovascular changes due to steady propofol
infusion. Experimental values are denoted by circles along
with the Standard Error of the Mean ranges. Since Na-
kaigawa et al. „Ref. 13… did not provide baseline values at
zero propofol infusion, the steady state values for MAP, CO,
and HR are normalized based on data for an infusion rate of
6 mg kg 21 hr21.
e

/

CONTROL SYSTEM DESIGN

Control Structure

Closed-loop strategies require a feedback signal in
cating the measure of MAP, CO, MPAP, and DOA. T
measurements of MAP and MPAP can be obtained
frequently as desired. In the past, CO measurement
volved techniques such as the Fick method or indica
dilution with sampling time of about 12–15 minute
Currently available continuous-cardiac-output~CCO!
monitors are capable of providing CO measurements
ery 30 seconds. Several indicators have been sugge
for monitoring DOA based on hemodynamics, electroe
cephalogram~EEG!, electromyogram~EMG!, auditory
evoked potentials~AEPs!, and anesthetic concentration
Although many inroads have been made to infer DOA
will be some time before it becomes a common co
trolled output. Since the DOA is directly related to th
anesthetic blood concentration we assume that a mod
used to predict the propofol concentration~PFC!, and
that the physician changes the propofol concentrat
setpoint based on observations of the patient. The p
sician then serves as an ‘‘outer loop controller’’ in
multivariable cascade control strategy, shown in sc
matic form in Fig. 4. The simultaneous hemodynam
anesthetic control problem exhibits essentially one-w
coupling, that is, it is assumed that the propofol infusi
affects hemodynamic variables~MAP, CO, and MPAP!,
but the hemodynamic drugs do not interact with propo
directly to affect the propofol blood concentration. Hen
we decouple the controllers for PFC and hemodynam
variables.

Model predictive control is an optimization-based a
proach which has been successfully applied to a w
variety of control problems. MPC uses a model to p
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77Regulation of Hemodynamic and Anesthetic States
dict the system response to future control moves a
optimizes manipulated variables to minimize the pr
dicted error subject to operating constraints. The ba
idea, shown in Fig. 5, is to select a sequence ofM future
control moves to minimize an objective function~usually
the sum of the square of predicted errors! over a predic-
tion horizon of P sample intervals. Using a model, th
system response to changes in the manipulated vari
is predicted. TheM moves of the manipulated variable
are selected such that the predicted response has min
setpoint tracking error. Since new measurement inform
tion will be available in the next sampling instance, on
the first computed change in the manipulated variable
implemented and the optimization is repeated at e
sampling interval based on updated measurements of
output variables. A review of MPC is provided by Garc
et al.4 In drug delivery applications, Gopinathet al.5

used a nonlinear prediction model in a MPC framewo
to control a 232 drug infusion system. Yuet al.23 have
applied a variant of MPC~multiple model adaptive-
predictive control! to a 232 drug infusion problem,
where a bank of controllers is used to account for no
linearities.

The manipulated variables~drug infusion rates! u are
computed to minimize a quadratic objective function

min
u(k)...u(k1M21)

J5 (
i 5k11

k1P

ei
TQei1 (

i 5k

k1M21

Dui
TRDui

~9!

subject to absolute and rate constraints on the man
lated variables,

umin,ui,umax,

FIGURE 4. Control structure for hemodynamic variables and
DOA. PFC is used as an indicator of DOA. Based on model
predictions and secondary measurements, a physician
serves as an outer-loop controller providing PFC setpoints
to maintain the patient in asleep/awake states.
e

al

e

-

ui 212Dumax<ui<ui 211Dumax,

where, at each sampling instancei, ei is a vector of
model predicted errors (ei5r i2yi), yi is a vector of
model predicted outputs~MAP, CO, MPAP, and PFC!
over a prediction horizon ofP, r i is the desired setpoint
ui is the vector of manipulated variables~SNP, DPM,
PNP, NTG, and PFL! over a control horizonM, and Q
andR are output and input weighting matrices. The pr
diction horizonP is chosen on the basis of the open-loo
settling time. The control horizonM is used to tighten or
detune the controller. In general, larger values ofM for
an input will result in more aggressive action. This yield

FIGURE 5. Model predictive control: „a… At the current sam-
pling instance k, a model is used to predict the output be-
havior of the system P sample intervals into the future based
on the past states and M future control moves. The future
control moves are optimally estimated to minimize predicted
error from the setpoint. Feedback is achieved by implement-
ing only the first of the M moves. „b… Based on the actual
measurements of the output at the k 11th instance, the
model predictions are corrected as an additive disturbance
to account for model mismatch and unmeasured distur-
bances. The optimization procedure is repeated in a reced-
ing horizon framework to compute a new set of moves.
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78 RAO, BEQUETTE, and ROY
faster response, but the closed-loop system is less ro
to disturbances.M is chosen on the basis of an allowe
trade-off between these considerations. The out
weighting matrixQ is a diagonal matrix used to assig
weights to the components of the error function, cor
sponding to each output in the optimization step.
larger weight for an output will result in tighter contro
The input penalty matrixR is also a detuning paramete
and is used to penalize control action in the object
function. This parameter is especially useful when
large M is used.

The prediction model is given in a generic form as

ẋ5 f ~x,u!,

y5g~x!,

where the outputy is a function of the model statesx and
the inputsu. The optimization is a quadratic program
ming ~QP! problem and absolute, and rate constraints
the manipulated variable are included as linear inequ
ties.

The MPC strategy, in its most general form, places
restriction on the type of prediction models or its stru
ture. The model can range from simple linear trans
function to complex nonlinear physiological model d
scribed in the previous section. The complexity of t
model however increases the computational load and
ear approximations are hence used for predictions.

Linear Prediction Model

In this work we use discrete linear step response m
els. The advantage is that the model can be obtai
online, without any assumptions about structural or pa
metric uncertainties in the model description. The inp
output representation of MPC is based on the finite s
response~FSR! or the finite impulse response~FIR! con-
volution model. This is a nonparametric representation
the process and is simply the open-loop response
unit step or a unit impulse input. The output prediction
computed by convolving the model impulse respon
with the history of manipulated variable (u(k21),u(k
22), . . . ,) from the current sampling instancek and
given by

y~k!5(
i 51

N

Hiu~k2 i !,

whereHi is the ith impulse response coefficient matri
N is the number of terms in the model, and is usua
chosen to correspond to the settling time of the mod
This ensures that we use information about any con
move that might have been made in the past until
tsystem settles to the steady state arising from that con
move. The predicted output at thejth future point is
given by

y~k1 j !5(
i 51

j

HiDu~k1 j 2 i !

1 (
i 5 j 11

N

HiDu~k1 j 2 i !1d~k!.

The prediction of output involves three terms on t
right-hand side. The first term includes the present a
all future moves of the manipulated variables which a
to be determined so as to solve Eq.~9!. The second term
includes the past values of the manipulated variables
is completely known at timek. The third term is the
predicted disturbance which is calculated as the diff
ence between the current measurements and output o
predicted model, i.e., (d(k)5ym(k)2y(k)) at the kth
sampling instant. This is the ‘‘additive disturbance
which accounts for model mismatch and unmodeled d
turbances that enter the system and is assumed to
constant over the prediction horizon due to lack of
explicit means of predicting the mismatch or disturban

In our simulation framework the nonlinear physiolog
cal model serves as thecanine patientand a linear ap-
proximation step response model is used in model p
dictions.

RESULTS

In this section, we present the simulations to demo
strate the controller performance in setpoint tracking a
disturbance rejection.

Due to the limitations of on-line sensors and instr
mentation, the control of hemodynamic variables is
sentially multirate. Our controller design and simulatio
are based on the slow sampled variable~CO! with a 0.5
min sampling interval. Normally distributed noise with
standard deviation of 2 mm Hg and 3 ml kg21 min21

units was added to the pressure and cardiac output m
surements, respectively.

The prediction horizonP is chosen as 20 sample in
tervals ~approximately equal to the settling time of th
slowest response in the system! along with a control
horizon M of two time steps. The PFL controller uses
control horizon of one time step. The change in outp
variables is of the same magnitude, but control of MA
is assigned a higher priority over the other two variabl
Hence the weightsQ in the objective function are as
signed in a ratio of 2:1:1~MAP:CO:MPAP!. The input
weightsR are set to zero and any large changes in d
infusion rate is constrained by imposing velocity co
straints as follows:



c-
a

ine

an-
is

0
or

ob-
s.
ed
y
in-
n-
ion

e
an

m-

of
on

o
u-

ine

an-
tiv
-
e
d

s.
ic

nin

e
a

ller
to

ed
as

op.
and
is

the
7
at
ion
le-
-
the
in-

n-

be
he
FL
eral
wn
lso
de-
ted

ces
is

85

s

nd
ons
the

nt
an-
per-
are

re-
ute

of
CO

ith
t
se

y.

79Regulation of Hemodynamic and Anesthetic States
0<SNP,PNP,NTG<10 mg kg21 min21,

4<DPM<7 mg kg21 min21,

uDSNP,DPNP,DNTGu<0.2 mg kg21 min21,

uDDPMu<0.5 mg kg21 min21.

The drug velocity constraints thus prevent large flu
tuations in drug dosage. Note that dopamine is used
an inotrope and hence the infusion rates are constra
to the inotropic range of 4–7mg kg21 min21. There are
no constraints necessary for propofol delivery. The tr
sient performance criterion for the closed-loop system
a maximum allowable settling time of approximately 1
minutes for MAP and MPAP and 15–20 minutes f
CO.

We have specified exact setpoints while the real
jective is to maintain outputs within a range of value
For example, CO is usually required to be maintain
above 95 ml kg21 min21. This could be accomplished b
using output constraints, but this can easily lead to
feasible solutions in the optimization problem or to u
stable closed-loop behavior. Studies on optimizat
methods for such infeasibilities are in progress. W
present results for cases that require anesthetization
simultaneous control of hemodynamic variables co
monly encountered in critical care.

In the following sections we present examples
clinical situations which require simultaneous regulati
of hemodynamic and anesthetic states. The efficacy
the model predictive controller is demonstrated by sim
lating a dog in closed loop using the nonlinear can
circulatory model.

Case 1: Congestive Heart Failure

This case involves maintaining hemodynamic and
esthetic states of a simulated canine under conges
heart failure~Fig. 6!. Due to the lowered heart contrac
tility, the MAP and CO are low and require dopamin
infusion in the inotropic range. The MPAP is high an
nitroglycerin is infused to lower it to normal range
Sleep is induced by PFL infusion and the hemodynam
variables are maintained at the desired levels. The ca
circulatory model is initialized with values of MAP~88
mm Hg!, CO ~65 ml kg21 min21), MPAP ~40 mm Hg!,
retaining 24% of normal baseline contractility of th
heart. After stabilizing the hemodynamic variables,
propofol concentration setpoint of 6mg/ml is sought to
induce sleep. Figure 6 shows the results of the contro
infusing dopamine, phenylephrine, and nitroglycerin
raise MAP and CO and lower MPAP to the desir
setpoints. Propofol infusion begins at 10 minutes and
s
d

d

f

e

e

a result the MAP and CO values are observed to dr
The controller compensates by increasing dopamine
lowering nitroglycerin. At around 40 minutes, the PFC
lowered to 4 mg/ml and the PFL infusion is suitably
altered. It can be noted that dopamine infusion is in
meanwhile maintained in its inotropic range of 4–
mg kg21 min21 and saturates its upper constraint
around 40 minutes. The controller maintains the infus
at this constraint and optimally manipulates the pheny
phrine and nitroglycerin infusion. In a clinical environ
ment, the resulting offset can trigger an alarm so that
anesthesiologist can take alternative action such as
jecting a short acting drug or increasing the DPM co
straint permitting it to act as ana-drug.

Case 2: Post-Coronary Artery Bypass

Patients that have come off bypass are required to
maintained in their sleep state to allow recovery of t
circulatory system in the cardiac intensive care unit. P
is induced to maintain a sleep state and, after sev
hours, the patient is slowly awakened by stepping do
the PFL infusion. Inotropic and vasoactive drugs are a
infused to maintain the hemodynamic variables at
sired ranges. The post-surgical hypertension is regula
using sodium nitroprusside, while dopamine enhan
the heart contractility to improve CO. The MPAP
lowered using nitroglycerin. A simulated dog with 50%
baseline contractility, MAP~110 mm Hg!, CO ~105
ml kg21 min21) and MPAP~25 mm Hg! requires regu-
lation of its hemodynamic variables at setpoints of
mm Hg MAP, 110 ml kg21 min21 CO and 18 mm Hg
MPAP during propofol induction. As in the previou
case, a PFC setpoint of 6mg/ml is desired to induce
sleep. Although this procedure of PFL induction a
graded reduction lasts several hours, for our simulati
we have chosen a shorter time scale for lowering
PFC setpoint~4 mg/ml at 70 minutes and 2mg/ml at 100
minutes!. As seen in Fig. 7, we lower the PFC setpoi
after the controller maintains the hemodynamic and
esthetic states steady at desired values. The initial hy
tension and the changes associated with PFL infusion
regulated by manipulating the drug infusion.

Case 3: Acute Changes in Hemodynamic Variables

This case is presented to demonstrate disturbance
jection of hemodynamic changes associated with ac
interruption~and restoration! of aortic blood flow such as
clamping-unclamping in aneurysm repair. Unclamping
an aortic vessel results in hypotension and a drop in
due to lowered systemic vascular resistance~SVR!. We
initialize the nonlinear model for a hypertensive dog w
lower than normal~70%! baseline contractility. To tes
the robustness of the model predictive controller we u
a linear model identified on a dog with 50% contractilit
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FIGURE 6. Case 1: Simulated
canine with CHF requiring main-
tenance of hemodynamic vari-
ables during anesthesia.
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MAP is lowered from 110 to 90 mm Hg, while main
taining CO at 110 ml kg21 min21 and MPAP at 18 mm
Hg. Like above, the dog is put to sleep with a setpoint
6 mg/ml. The infusion of sodium nitroprusside contro
the lowering of MAP. Dopamine~and phenylephrine to a
small extent! counteracts the propofol effects. It is a
sumed that the patient’s artery is declamped at ab
35 minutes. To aid in counteracting the hypotensi
due to declamping the anesthesiologist lowers the
point of PFC to 4mg/ml, just enough not to awake
the patient. At 40 minutes, the PFC setpoint is rais
back to 6mg/ml to ensure good DOA. We simulate th
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FIGURE 7. Case 2: Control of
hemodynamic and anesthetic
states of a patient in postbypass
intensive care. The sleep state
maintained by propofol infusion
and the patient is gradually
awakened by reducing the pro-
pofol dosage. Although this pro-
cedure lasts several hours, we
have simulated it for shorter
time scales after the hemody-
namic variables are observed to
be stabilized.
ut
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declamping by lowering the baseline SVR by abo
40% in the model. The SVR value is then slowly ramp
up to mimic natural recovery and stabilization. Propo
infusion is initialized at 5 minutes and the PFC s
point is lowered to 4mg/ml between 30 and 40 minute
As shown in Fig. 8, the controller regulates MAP a
CO initially using sodium nitroprusside and phenylep
rine. The dopamine infusion then assists in regulat
MAP, CO, and MPAP throughout the procedure. T
drug infusion rates are suitably altered to reject t
disturbance associated with a drop in SVR due to
clamping.

In all three cases the controller was able to achie
desired performance criteria.
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FIGURE 8. Case 3: Simulation of
a disturbance such as a sharp
drop in SVR associated with
aortic declamping on a dog with
70% contractility. To demon-
strate the robustness of the
controller, a linear model identi-
fied based on 50% contractility
is used. Declamping is simu-
lated by dropping the SVR val-
ues by 40% at about 35 minutes.
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DISCUSSION

Automation of drug administration can potentially im
prove the quality of care in surgical and intensive ca
environments. We present simulation studies to dem
strate the applicability of model predictive control
automate regulation of blood pressure and cardiac ou
 t

and anesthetic states. The controller is shown to regu
the hemodynamic variables in the presence of drug d
age constraints. Performance criteria specified in term
transient settling time~10 minutes for MAP and MPAP
and 15–20 minutes for CO! are achieved in all three
examples.

Due to the optimization framework, constraints can
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83Regulation of Hemodynamic and Anesthetic States
explicitly imposed on both the controlled and manip
lated variables. The simulation results presented h
absolute and velocity constraints applied on the mani
lated variables~drug infusion!. In addition, imposing
constraints on the controlled variables~outputs! allow
specification of operating ranges~such as maintaining
cardiac output above 95 ml kg21 min21). However, this
is likely to make the QP problem too restrictive, that
when computing future moves there may exist no va
for which the drug infusionand the predicted response
are within the permitted range. Such infeasibilities a
usually handled by~1! using a infinite prediction horizon
and removing the constraints in the initial portion of t
prediction horizon or~2! relaxing the constraints an
penalizing the violation~constraint softening!. Studies on
optimization methods for such infeasibilities are
progress.

The controller uses a prediction model in an optim
zation framework to compute drug infusion rates. MP
performance relies significantly on the accuracy of
prediction model. This simulation study uses linear s
response models and assumes that an accurate l
model is available for each patient condition. In case
we show the controller’s ability to handle deviations
model accuracy. However, this does not imply that
nominal linear model is sufficient to handle different
all clinical conditions.

To implement this control strategy in a clinical o
experimental environment an important issue to be
dressed is the availability of prediction models and ide
tification of their associated parameters. Also, drug s
sitivities vary from patient to patient, and even within th
same patient at different times, so it is important
develop strategies which change the prediction mode
line. As stated earlier, the MPC framework places
restriction on the type of model or its structure. Hen
we can draw from advances made in areas of adap
model identification, artificial neural networks, fuzz
logic or rule based mechanisms to provide drug respo
predictions. Along the same lines, fuzzy logic based
pervisory mechanisms8 can help in choosing a suitabl
model from a bank of models that mimic various patie
conditions. Nonlinear model reduction strategies can a
be considered.

SUMMARY AND CURRENT WORK

A model predictive control strategy to control hem
dynamic and anesthetic variables in critical care patie
is presented. The efficacy of the multivariable control
is demonstrated by closed-loop simulations using a
culatory model of a dog. We have extended a nonlin
canine circulatory model to include hemodynam
changes associated with propofol infusion. The accur
of predicting propofol effects can be improved subject
availability of more experimental data. Meanwhile, t
ar

extended model provides a framework in which to sim
late clinical conditions requiring simultaneous control
hemodynamic and anesthetic states. A linear model
used for the model predictions, and closed-loop simu
tions were performed on the nonlinear model. Since d
sensitivity varies from patient to patient, and even with
the same patient at different times, it is important
develop strategies that change the patient model on l
One possible approach, which we have used on
input-two output systems, is multiple model adapti
control ~based on using a bank of linear models to ca
ture the nonlinear and uncertain behavior!.

The control strategy presented in this article should
considered part of a hierarchical control structure wh
involves modules to assess the patient’s status and
evaluate the effectiveness of the current control strate
Clearly it is important to always keep the physician
the loop through proper monitoring and alarm function
A current research effort is to extend multiple mod
adaptive control to the problem of simultaneous cont
of hemodynamic and anesthetic variables. We are a
further developing methods to integrate DOA measu
ments using MLAEP and a hierarchical superviso
module to aid in patient diagnostics.
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