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Abstract—A model predictive control strategy to simulta- dures. The current clinical practice is to use manual
neously regulate hemodynamic and anesthetic variables in criti- adjustment of drug infusion rates with drip intravenous

cal care patients is presented. A nonlinear canine circulatory .
model, which has been used to study the effect of inotropic and (IV) and/or programmable pumps. The cardiac nurse and

vasoactive drugs on hemodynamic variables, has been extendedhysician are responsible for monitoring the measured
to include propofol pharmacokinetics and pharmacodynamics. “outputs” (MAP and CQ and adjusting the manipulated

Propofol blood concentration is used as a measure for depth of“inputs” (drug infusion rates thereby serving as
anesthesia. The simulation model is used to design and test theclosed-loop controllers. The goal of the research pre-

control strategy. The optimization-based model predictive con- din thi icle i d | d h
trol strategy assures that constraints imposed on the drug infu- SENt€d I this article Is to develop an automated approac

sion rates are met. The physician always remains “in the loop” t0 regulate the measured outpuisbtained from cur-
and serves as the “primary controller” by making propofol rently available sensorsdy adjusting the flow rates of
oo oo et s e oo e Smacprogfammable pumpso curenty avaiable his au
2ases:(i) congestivepheart failurgjji) postcoronary artery by- to,mated approach will free the cardiac nurse and physi-
pass, and(iii) acute changes in hemodynamic variables. Cian of some of the more mundane duties and allow
© 2000 Biomedical Engineering Society. them more time to monitor the patient for conditions that
[S0090-696400)00701-3 are not easily measured.

Clinical trials have been conducted for the single-
input single-output problem of adjusting the infusion rate
of sodium nitroprusside to regulate mean arterial pres-
sure using a feedback control algorithm. Our long-term

INTRODUCTION goal is to extend this technology to the multiple input
multiple output problem of adjusting several drug and

Critical care physicians maintain certain patient state anesthetic infusion rates to regulate several outfats
variables within an acceptable operating range by infus- cluding depth of anesthesialt is important to conduct
ing several drugs. For example, in the case of patientsextensive simulation-based studies to be assured of a
with congestive heart failure, measured variables such asrobust control algorithm(one able to handle extreme

Keywords—Biomedical control systems, Predictive control,
Physiological models, Intravenous anesthesia, Propofol.

mean arterial pressureMAP) and cardiac outpu{CO) patient variability, before moving to animal experiments
are of primary importance and are maintained using so- and clinical trials. The objective of this article is to
dium nitroprusside(lSNP and dopamingDPM). In ad- present the results of an extensive simulation study.

dition, physicians may be required to administer anes- In this article we explore the use of a model predic-
thetics and monitor the depth of anesthegl@OA) tive control (MPC) strategy to regulate drug infusion.
during surgical procedures. The physician uses her/hisModel predictive controllers are a class of controllers
own senses for other variables which are not easily mea-which employ an identifiable model to predict the future
sured, and often infers anesthetic depth from a number ofbehavior of the system over an extended prediction ho-
measurements and patient responses to surgical procerizon and compute the optimal drug infusion to achieve
desired states. An important issue in the design of drug
Address correspondence to B. Wayne Bequette, Department of infusion SYStemS is the need t.O IMpose _bounds on dos-
Chemical Engineering, Rensselaer Polytechnic Institute, 110 Eighth @9€S and infusion rates to avoid overdosing or drug tox-
Street, Troy, NY 12180-3590. Electronic mail:bequette@rpi.edu icity. For example, sodium nitroprusside, used in reduc-
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ing hypertension, should be infused less than 10 onset of anesthesidii) it provides a clear, rapid emer-
#g kg tmin~?! to avoid cyanide build up; for the case of gence from anesthesia, afid) there is a lack of accu-
low cardiac contractility, dopamine infusion should be mulation, which allows prolonged drug infusion. Propo-
maintained within its inotropic range of 4-7 fol infusion brings about a change in cardiovascular
ug kg~tmin~1. Alternatively, the physician may want to  functions such as depression of MAP, CO, heart rate,
specify an operating range of MAP instead of a specific and vascular resistances. Critical care patients require
setpoint. While most control strategies handle such con- tight monitoring under the influence of such disturbances
straints in an ad hoc manner, the primary advantage of and, hence, simultaneous regulation is vital.

MPC is its ability to handle constraints explicitly. Its

optimiza.tion-t.)ased framevvprk alloyvs computation of the Objectives of This Article

optimal infusion rates subject to input and output con-

straints. For example, constraints on drug infusion rates In this article, we present model predictive control
and output variablegsuch as maintaining CO above a approaches for simultaneous regulation of hemodynamic
minimum value can be explicitly specified and the re- and anesthetic states of critical care patients. We use a

sulting control action will satisfy them. canine circulatory model to mimic clinical conditions
requiring critical care of cardiovascular functions. This
Control of Hemodynamic Variables control study is a natural extension to earlier work by

- ) ) Rao et al'® which used MPC for automation of hemo-
Initial research in hemodynamic control has focused dynamic drug infusion.

on single-input single-output control of MAP, while
more recent work has considered the control of several
hemodynamic variables by the infusion of multiple
drugs. A detailed review of blood pressure control is

: 12
provided by Isaka and SebaltiRecently, Kwoket al. simulation platform to design and test advanced control

reported on clinical trials of automated blood pressure giategies of both hemodynamic and anesthetic states.
regulation during open-heart surgery. There has alsoThen e introduce the model predictive control structure
been a significant research effort in the simultaneous proposed to simultaneously control hemodynamic and
control of MAP and CO by manipulating the infusion  gnesthetic states. In another section, we present closed-

rate of two drugs(usually sodium nitroprusside and 445 simulation results. We then discuss and summarize
dopaming. One of the more advanced studies on simul- - resyits and indicate the focus of our current research.
taneous control of CO and MAP utilizing multiple drug

infusion was done by Vosstal® Yu et al?® used a
multiple model adaptive approach in canine experiments. SYSTEM DESCRIPTION

In the next section, we describe the simulation model
of the canine circulatory system and present extensions
to incorporate the pharmacokinetit®K) and pharmaco-
dynamics (PD) of propofol. This provides a realistic

The overall control objective is to maintain the hemo-
dynamic variables MAP, CO, and mean pulmonary arte-
Research on control of the depth of anesthesia datesrial pressur MPAP) at desired setpoints while simulta-

from the 1950s, and was reviewed by O’Hagaall? neously controlling the anesthetic stat&0A) desired
Manual administration of anesthetics has often produced by the anesthesiologist. Sodium nitroprusside is admin-
undesirable oscillations in blood concentration of anes- istered for arterial vasodilation; dopamine is used as an
thetic and DOA. Continuous variable-rate infusions have inotrope to enhance cardiac performance; phenylephrine
been known to improve the anesthesiologists’ ability to (PNP) is an arterial vasoconstrictor and nitroglycerin
titrate the drug to the desired efféét.Kenny and (NTG) is a venodialator. Control of DOA is achieved by
White!! used computer controlled infusion pumps based altering the propofol infusion and hence the propofol
on pharmacokinetic model equations where program- blood concentratiofPFQ.

mable pumps deliver anesthetics at variable rates to Depending on the patient’s status, one or more of the
maintain a desired blood concentration. The infusion pro- four drugs will be chosen to maintain the three hemody-
files are programmed based on prediction using a phar-namic variables. We assume that the attending physician
macokinetic model that describes the drug assimilation has already evaluated the patient’s status and determined

Control of Anesthetic Variables

and accumulation in the body. the proper model and drug therapy. The model predictive
Much recent drug infusion work has focused on the controller uses measurements of the hemodynamic states
use of the intravenous anesthetic agent propGRL). and determines optimal infusion rates to achieve the de-

Propofol is currently gaining widespread acceptance for sired setpoints.

induction and maintenance of general anesthesia, as well When implementing a complex control strategy, such
as for sedation and local and regional anesthesia. Theas the control of hemodynamic and anesthetic states in
primary advantages of propofol afg it produces rapid critical care patients, it is necessary to perform detailed
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PATIENT varying elastance of the heart. The maximum value of
this elastanceE,,,, IS used to characterize ventricular
contractility. Body compartments and blood vessels are
represented as capacitances and the viscous forces and
resistance to blood flow in the systemic and pulmonary
vasculature are modeled as resistors. MAP is then the
voltage measured after the left ventricle, and CO is the
HR current flow measured at that point in the circuit. All the
1 5 Map circulatory system elements are described in terms of the
Nt > g following (time-varying body parametersia) heart rate
e | Ros | Circutatory > (HR) — affects the contraction time of the ventricle,
. Vi System MPAP which in turn affects the cardiac outpuiy) maximum
P prC elast.a_mce Ena) — used to characterize ventricular con-
| S - tractility; (c) unstressed venous volumé&/ f.,.) — a

Cuen, Coor, Cpptn measure of venous contractiofg) systemic resistance
(Rsy9 — the resistance to blood flow through the smaller
blood vessels(e) critical closing pressureR.;;) — the
FIGURE 1. Schematic of the physiological model. Details of minimum pressure required to prevent collapse of blood
the baroreflex model are presented in Fig. 2. The extensions . . .
made in the nonlinear model for propofol effects are indi- vessels in the pulmonary circulatioff) venous and ar-
cated by dashed lines. terial compliances Qyen, Caors Cpurad — the capaci-
tance of the blood vessels.

The first set of equations describing the volume-flow
relationships for each “descriptive vessel,” in the body
are of the form

Baroreflex -

PFL ~i

.
4

SNP

Drug

DPM — Effects

-t

PNP

tvovy

NTG ~;

simulation studies before moving to animal experiments.
Clearly it is important that the simulation model used is
realistic and exhibits qualitatively similar behavior as the
physical system. Here we describe extensions to a physi-

ological model of a canine circulatory system, which we dvi(t) =Q, ()= Q;, (1) 1)
have used in the past as a basis for control system de- dt . ree

signs. These were later shown to be successful in labo-

ratory experiments>?* wherei is the vessel being considereid«(1, . . .,7),Q;_

The model used in this article to describe the effect of represents flow in from the previous vessel, a@d,
inotropic and vasoactive drugs on a physiological system represents the flow out to the next vessel. There are
was initially developed by Ywetal? and it has been  seven descriptive vessels; the left ventricle, the large
used(in various formg in a number of simulation studies  arteries, the small arteries, the venous system, the right
(for example, by Gopinatiet al.® by Held and Roy’, by ventricle, the pulmonary artery, and the pulmonary vein.
Huang and Roy,and by Raoet al'®). We have revised  In addition, the following equation describes the
the model to include the pharmacokinetic/ pressure-flow relationships for the large and small arter-
pharmacodynamic effects of propofol based on param- jes (vessels 2 and)3
eters obtained from Tacklegt al!® and from Fragenr.

The parameters were fine tuned to simulate and match dO,(t)  P,(t)—Pa(t)
open-loop resul}g from experiments on dogs reported by dzt =2 1 3 , (2
I

Nakaigawaet a

Physiological Model Description wherelL is a constant inertance element. The next set of

) i . equations describes the time dependent concentration of
A schematic of the circulatory system model is shown 4 drugs in the descriptive vessels.

in Fig. 1. The physiological model consists of three sets
of equations includingi) circulatory system equations,

which describe the effect of specific body parameters on m=(cd(t)Q(t))j - = (Ca(HQ); i+

the hemodynamic variable&j) drug effect relationships, dt ' ’

which describe the influence of the infused drugs on the m(t)

specific body parameters, ariii) equations which de- —( 71/2) , ©)]
ji

scribe the effect of the arterial baroreceptors in blood
pressure regulation. Yet al?? used an electric circuit

analogy to describe the lumped parameter model of the wherej refers to the drug and thierepresents the vessel
circulatory system. The forcing function is the time- being considerednis the mass of the drug in the vessel,
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TABLE 1. Pharmacodynamic parameters  (compiled from )
work of Gopinath et al. (Ref. 5) and Huang (Ref. 7). The PFL - TsKi:’l + Vus
parameters values are those of Fragen (Ref. 3), and were K =2500 %
tuned to match experimental results. ©=600s *

6=100s Vis-base

Drug (effect site) Effax p ks, ECs = -
- Ke

SNP (Ryys, Per) 0.635 1.0 0.025 1.706 o] Tse1 —b?—»
SNP (Vys.ven) 225.0 1.0 0.00625 0.936 t=138s
DPM (Emay) 1.3 6.11  1.1316E-3 4.0 MAP Ll srcl | _K 6=02s HRy
DPM (Rsys) 0.5 1.46 0.0125 92.26 Ts+1l - R
PNP ( Vus-ven) 32.2 1.0 0.055 1.1 K=1.0 - Ke SyS
PNP (Rsys Per) 0821 1.0 0.05 16 e R ol %
PNP (Cyen) 0525 10 0.0625 1.8 jbos Ry bue
NTG (Ruys Rpy) 06252 1.0 0.0231 1.91
NTG (Vis.ven) 235 1.0 0.01325 1.5 | ke® Emax
NTG (Cyen) 0.85 10 002273  3.851 K=-048 | TS*! 4'(%#
NTG (Cputar) 0.462 1.0 0.02354 3.421 T=100s
PFL (BFC, Cy,) 0.75 1.0 0.0084 25 §=30s Emax-base

FIGURE 2. Baroreflex model structure, equations, and pa-
rameters.

Cg4 is the drug concentration in the vessélis the vessel
volume (Cy=m/V), and 1y, is the half life of the drug.

The pharmacodynamic equations describing the drug-
effect relationship are given by the following:

conditions and drugs effects can be simulated by altering
one or more of the body parameters. For example, one of
the causes of congestive heart failifeHF) is a reduc-
dEF(1) tion in the effective contractility of the heart. CHF is
_ p _ _ . modeled by reduction oE,,,, by 50%—70% in the left
ar KGO (Effma EIF(1) ~IGEM(D; - (4) ventricle. The associated dopamine therapy to increase
ventricular contractility affect&, ... Vasodilatory action
Eff is the quantitative measure of the effect of a drug on of sodium nitroprusside reducing resistance to blood flow
its affected parameter in the compartment where the ef-is modeled by reducingRs,s and increasingVs.ven
fect is assumed to be concentrated. gffis the maxi- These effects are computed using E4).
mum effect of the drugp is the power to which the Details of the model equations and parameters are not
concentration is raised, arld andk, are reaction rate  provided for sake of brevity. The reader is referred to Yu
constants. The drug-effect parameters on the variableset al?? and Gopinattet al® for a complete description of
and the relevant chambers in which the drug is assumedthe model equations and the solution procedure. Hlang
are given in Table 1. extended the model to incorporate the effects of phenyle-
The baroreflex model developed by Wesseliigl 2! phrine and nitroglycerin on venous complianCg,, and
describes the effects of arterial baroreceptors in short- pulmonary arterial complianc€.o in the canine cir-
term MAP regulation. We use a modified version of the culatory model. In the following sections we propose
baroreflex, shown schematically in Fig. 2. The baroreflex extensions of the model to incorporate pharmacokinetics
model uses MAP as input to modi¥sven Rsys: Emax and pharmacodynamics of propofol.
and HR. The baroreflex inpyBFC) is calculated as

Model Extensions for Anesthetic Effects

__eXp(C(MAP(1) —MAP)) ) While physiological models like the one described
1+exp(c(MAP(t) — MAP ) above provide better insights into drug distribution in the
body, they require extensive data. Hence as a first level
where MARg; is a nominal value of MAP and is an approximation of anesthetic effects, the pharmacokinetic
empirical constant. model adopted in this study is a three compartment
The model naturally splits into two time scale$) model that has been widely used and successfully imple-
drug masses and drug-effect variables that remain con-mented in clinical practice for open-loop computer as-
stant over a heartbeat arfil) volume, blood flow rate, sisted target controlled infusions. Shafer and
and baroreflex state variables that change during eachco-workers® have developed STANPUMP, a software
heartbeat. The outputs MAP, MPAP, and CO are calcu- for computer controlled drug infusion that is freely avail-
lated from the integrated values of vessel flow and pres- able at their WWW server. Roy and co-workers reported
sure relationships. The symptomatic changes in blood using STANPUMP with Tackley parameters for estimat-
pressure and cardiac output associated with patients’ing propofol concentration in canine experiments during

BFC
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their investigations of fuzzy logic based DOA estimation tance as observed in most propofol studies. Based on
using midlatency auditory evoked potentidLAEP). Deryck et al? we also alter arterial compliand@,,, in
Although they have used human data for predicting the model equations to simulate the cardiovascular alter-
plasma concentrations, their results were good. For ourations by propofol. The extended anesthetic model com-
studies we adopt the parameter set of Tacldewpl!® bined with the physiological model is now capable of
The three compartment concentration model which simulating the cardiovascular changes associated with
describes the distribution and assimilation of a drug is propofol infusion. Predicted propofol concentration is

given by the following set of differential equations: used as a measure of DOA.
dCy(t) Tuning of Model Parameters for Propofol Effects
ar [Kiot K12t ki3] C(t) +kaiCo(t) J P
All of the propofol related parameters used in the
[(t) model were obtained from a variety of sources of human
+k3103(t)+v—1, (6) and animal experiments discussed earlier. Also these

studies involved different premedication and the supple-
menting of opiates and sedatives. Obviously, there is a
dGCy(1) —k ) — koiC 7 possibility of error arising in the prediction of hemody-
dat KaCa(D) —kaCo (L), @ namic and anesthetic states. The parameters hence re-
quire tuning and the following procedure was adopted.
dCs(t) The sensitivity of the model to vari_ations in _cir_cula—
T=k13C1(t)—k31C3(t)v (8) tory pgrameters was analyzed to verlfy that within .the
operating range of drug and anesthetic concentrations,
the model is capable of simulating changes in MAP and
whereC; is the drug concentration in compartmenk;; heart rate as observed in experimental studies cited in the
are the rate constants for drug distribution from compart- literature. The propofol model parameters were then fine
menti to compartmenj (in keeping with the accepted tuned by running a number of open-loop simulations to
standard in the pharmacokinetic literatyreis the infu- closely reproduce results from experiments. Nakaigawa
sion rate andV; is the apparent volume of the central et all® have studied the effects of propofol infusion on
compartment. The drug is infused into and eliminated cardiovascular hemodynamics, coronary circulation, and
from the central compartmericompartment )1, which myocardial metabolism in open-chested dogs. They pre-
essentially constitutes blood or plasma. The drug in the sented detailed hemodynamic data and plasma concen-
central compartment reversibly distributes between two tration of propofol for various(steady infusion rates
hypothetical peripheral compartments representing well from 6 mgkg *hr ! to 21 mgkghri. A relevant
perfused tissuécompartment 2and poorly perfused tis- summary of the experimental results is presented along
sues (compartment B While anesthesiologists use the with those obtained by simulations on our canine circu-
model to predict and maintain a desired amount of an- latory model in Table 2. However, Nakaigave all®
esthetic concentration in the blood open loop, we incor- did not report values of hemodynamic variables before
porate the model equations to simulate the distribution of propofol infusion, but used results at 6 mgkdr !
propofol in the circulatory system. The drug-effect rela- infusion as baseline values. Hence, we provide a more
tionships for propofol are computed using Ed) and meaningful comparison of our model simulations with
the parameters reported in Table 1. With a combined their experimental results using normalized values in Fig.
PK/PD mechanism, it is now possible to quantify the 3. Open-loop simulations were performed on the model
magnitude of propofol effects at the active sites. for each of the infusion rates that lasted 30 minutes. The
A number of studies have established that propofol steady state model predictions of MAP, CO, and heart
affects cardiovascular parameters such as vascular resisrate are normalized using the values obtained from the 6
tance, arterial compliance, and baroreflex. This in turn mgkg *hr ! data set. Plasma concentrations are pre-
causes the depression of MAP, CO, and heart rate.sented as is. It can be observed that MAP and plasma
Cullen et al! discussed the effect of propofol on barore- concentration values are reasonably close to the experi-
flex activity of humans. They showed marked reflex re- mental values. Even though the experimental heart rate
setting in baseline arterial pressures as reasons for slow-values show nonlinear behavior, model predictions are
ing down the heart rate which allowed lower arterial within acceptable ranges. There is however a large mis-
pressure as compared to the awake state. We simulatematch in the values for cardiac output. Due to the lack of
this effect by altering the MAR; value associated with  sufficient data, we were unable to match CO values with-
the baroreflex input shown in E@5) and Fig. 2. It can out compromising MAP, HR, and plasma concentration
be noted that this also alters the systemic vascular resis-predictions. However, it should be noted that the CO
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TABLE 2. Comparison of experimental and simulated results. Mean values of experimental
results are reported along with the Standard Error of the Mean ranges in parentheses.

Propofol Infusion Rate (mg kg™t hr™1)

Experimental Results

(Nakaigawa et al. ?) 0 6 9 12 15 18 21
Plasma Concentration (ug/ml) - 29(0.3) 4.3(0.3) 5.4(0.5) 6.4(1.2) 9.4(0.7) 11.5(0.7)
MAP (mm Hg) - 117(6) 113(8) 108(8) 103(6)  98(5) 93(7)

CO (mlkg™* min~1)
HR (beat/min)

140(10) 120(10) 100(10) 90(10) 90(10)  90(10)
126(8) 131(8) 128(6) 120(6) 114(6)  108(7)

Simulation Results

Plasma Concentration (ug/ml) 0.0 2.9 4.3 5.8 7.3 8.7 10.2
MAP (mm Hg) 119 88 81 76 72 69 67
CO (mlkg™* min~1) 131 115 111 108 106 104 103
HR (beat/min) 122 107 104 102 101 99 98

aReference 13.

depression reported from these experiments appears to be CONTROL SYSTEM DESIGN
unusually large. Propofol is known to cause a minor
reduction in CO. Control Structure

The model is simulated using MATLAB/SIMULINK,
which provides a transparent translation of control sys-
tem design to the nonlinear process. This allows direct
comparisons of control strategies developed by different
researchers and is now available on the website http://
www.rpi.edui~royr/roy_sftwr.html.

Closed-loop strategies require a feedback signal indi-
cating the measure of MAP, CO, MPAP, and DOA. The
measurements of MAP and MPAP can be obtained as
frequently as desired. In the past, CO measurement in-
volved techniques such as the Fick method or indicator
dilution with sampling time of about 12-15 minutes.
Currently available continuous-cardiac-outpy€CO)
monitors are capable of providing CO measurements ev-

oo ery 30 seconds. Several indicators have been suggested

11 14 for monitoring DOA based on hemodynamics, electroen-
5, 1z cephalogram(EEG), electromyogram(EMG), auditory
g % , %\ evoked potential$AEPS9, and anesthetic concentrations.
%oe §08 % AI_though many_inroads havg been made to infer DOA, it
go_s % § ' % % % % will be some time before it becomes a common con-
= 06 trolled output. Since the DOA is directly related to the
0T 04— anesthetic blood concentration we assume that a model is
PFL Infusion rate(mglkg/hr) PFL Infusion rate(mg/kg/hr) used to predict the propofol concentratigRFQ, and
s 2 that the physician changes the propofol concentration

setpoint based on observations of the patient. The phy-
sician then serves as an “outer loop controller” in a
multivariable cascade control strategy, shown in sche-

HR/HR(reference)
Plasma conc of PFL{ug/mly

1 6 matic form in Fig. 4. The simultaneous hemodynamic/
09 4 anesthetic control problem exhibits essentially one-way
o8 % , coupling, that is, it is assumed that the propofol infusion

% PrL infusion rato(maighy ® PrL nfusion rate(mgighy affects hemodynamic variabléMAP, CO, and MPAP,

_ S . _ but the hemodynamic drugs do not interact with propofol
FIGURE 3. Comparison of simulation results with experimen- directly to affect the propofol blood concentration. Hence
tal results of cardiovascular changes due to steady propofol .
infusion. Experimental values are denoted by circles along we decouple the controllers for PFC and hemodynamic
with the Standard Error of the Mean ranges. Since Na- variables.
kaigawa et al. (Ref. 13) did not provide baseline values at i~ ; imMizatinn. _
zero propofol infusion, the steady state values for MAP, CO, Model p_redlctlve control is an optlmlzat|9n based a.p
and HR are normalized based on data for an infusion rate of proach which has been successfully applied to a wide

6 mgkg ~thrt, variety of control problems. MPC uses a model to pre-
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Hemodynamic
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| Controller rates_| Patient > Sensors
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FIGURE 4. Control structure for hemodynamic variables and
DOA. PFC is used as an indicator of DOA. Based on model
predictions and secondary measurements, a physician
serves as an outer-loop controller providing PFC setpoints

to maintain the patient in asleep/awake states.

dict the system response to future control moves and
optimizes manipulated variables to minimize the pre-
dicted error subject to operating constraints. The basic
idea, shown in Fig. 5, is to select a sequenc®iduture
control moves to minimize an objective functiémsually

the sum of the square of predicted erjooser a predic-
tion horizon of P sample intervals. Using a model, the
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system response to changes in the manipulated variable

is predicted. Thevl moves of the manipulated variables

are selected such that the predicted response has minima

setpoint tracking error. Since new measurement informa-
tion will be available in the next sampling instance, only
the first computed change in the manipulated variables is
implemented and the optimization is repeated at each
sampling interval based on updated measurements of th
output variables. A review of MPC is provided by Garcia
etal? In drug delivery applications, Gopinatht al®
used a nonlinear prediction model in a MPC framewor
to control a 22 drug infusion system. Yt al?® have
applied a variant of MPC(multiple model adaptive-
predictive contrgl to a 2x<2 drug infusion problem,
where a bank of controllers is used to account for non-
linearities.

The manipulated variable@rug infusion ratesu are
computed to minimize a quadratic objective function

k

k+P k+M-—1
min J= > e/Qe+ > AulRAuy;
i=k+1 i=k

u(k)...u(k+M—1)

9

subject to absolute and rate constraints on the manipu-
lated variables,

umin< ui<umaxr

-— M
Control
Horizon

FIGURE 5. Model predictive control:  (a) At the current sam-
pling instance k, a model is used to predict the output be-
havior of the system P sample intervals into the future based
on the past states and M future control moves. The future

é;ontrol moves are optimally estimated to minimize predicted

error from the setpoint. Feedback is achieved by implement-
ing only the first of the M moves. (b) Based on the actual
measurements of the output at the k+1th instance, the
model predictions are corrected as an additive disturbance

to account for model mismatch and unmeasured distur-
bances. The optimization procedure is repeated in a reced-
ing horizon framework to compute a new set of moves.

uifl_Aumaxg IJi$uifl+AumaXv

where, at each sampling instancee; is a vector of
model predicted errorse(=r;—vy;), y; is a vector of
model predicted outputéMAP, CO, MPAP, and PFLC
over a prediction horizon d?, r; is the desired setpoint,
u; is the vector of manipulated variabléSNP, DPM,
PNP, NTG, and PFLover a control horizorM, and Q
andR are output and input weighting matrices. The pre-
diction horizonP is chosen on the basis of the open-loop
settling time. The control horizoM is used to tighten or
detune the controller. In general, larger valuesvofor

an input will result in more aggressive action. This yields
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faster response, but the closed-loop system is less robussystem settles to the steady state arising from that control
to disturbancesM is chosen on the basis of an allowed move. The predicted output at théh future point is
trade-off between these considerations. The output given by

weighting matrixQ is a diagonal matrix used to assign

weights to the components of the error function, corre- j

sponding to each output in the optimization step. A y(k+j)=2 H;Au(k+j—i)
larger weight for an output will result in tighter control. =1
The input penalty matriR is also a detuning parameter N
and is used to penalize control action in the objective + E HiAu(k+j—i)+d(k).
function. This parameter is especially useful when a I=j+1
large M is used.
The prediction model is given in a generic form as The prediction of output involves three terms on the

right-hand side. The first term includes the present and
all future moves of the manipulated variables which are
to be determined so as to solve Ef). The second term
includes the past values of the manipulated variables and
y=9(x), is completely known at tim&. The third term is the
predicted disturbance which is calculated as the differ-
where the outpuy is a function of the model statesand ence between the current measurements and output of the
the inputsu. The optimization is a quadratic program- predicted model, i.e., d(k) =y(k)—y(k)) at the kth
ming (QP) problem and absolute, and rate constraints on sampling instant. This is the “additive disturbance”
the manipulated variable are included as linear inequali- which accounts for model mismatch and unmodeled dis-
ties. turbances that enter the system and is assumed to be
The MPC strategy, in its most general form, places no constant over the prediction horizon due to lack of an
restriction on the type of prediction models or its struc- explicit means of predicting the mismatch or disturbance.
ture. The model can range from simple linear transfer  In our simulation framework the nonlinear physiologi-
function to complex nonlinear physiological model de- cal model serves as theanine patientand a linear ap-
scribed in the previous section. The complexity of the proximation step response model is used in model pre-
model however increases the computational load and lin- dictions.
ear approximations are hence used for predictions.

x=f(x,u),

Linear Prediction Model RESULTS
In this work we use discrete linear step response mod- N this section, we present the simulations to demon-
els. The advantage is that the model can be obtainedStrate the controller performance in setpoint tracking and
online, without any assumptions about structural or para- disturbance rejection. _ _
metric uncertainties in the model description. The input- ~ Du€ to the limitations of on-line sensors and instru-
output representation of MPC is based on the finite step Mentation, the control of hemodynamic variables is es-
responsdFSR) or the finite impulse respong€IR) con- sentially multirate. Our controller design and simulations
volution model. This is a nonparametric representation of are based on the slow sampled varialil®) with a 0.5
the process and is simply the open-loop response to amin samplmg.m_terval. Normally distributed noise V\jl}h a
unit step or a unit impulse input. The output prediction is Standard deviation of 2 mm Hg and 3 mlkgmin
computed by convolving the model impulse response Units was added to the pressure and cardiac output mea-

with the history of manipulated variableu(k—1),u(k ~ Surements, respectively. _
—2),...,) from the current sampling instande and The prediction horizorP is chosen as 20 sample in-
given by tervals (approximately equal to the settling time of the

slowest response in the systeralong with a control
N horizon M of two time steps. The PFL controller uses a
y(k)=> Hu(k—i), control horizon of one time step. The change in output
i=1 variables is of the same magnitude, but control of MAP
is assigned a higher priority over the other two variables.
whereH; is theith impulse response coefficient matrix. Hence the weight€Q in the objective function are as-
N is the number of terms in the model, and is usually signed in a ratio of 2:1:XMAP:CO:MPAP. The input
chosen to correspond to the settling time of the model. weightsR are set to zero and any large changes in drug
This ensures that we use information about any control infusion rate is constrained by imposing velocity con-
move that might have been made in the past until the straints as follows:
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0<SNP,PNP,NTG<10 wgkg ‘min 1,
4<DPM<7 ungkg min~%,
|ASNPAPNPANTG|<0.2 ugkg *min~?,
|ADPM|<0.5 ugkg ‘min~%.

The drug velocity constraints thus prevent large fluc-
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a result the MAP and CO values are observed to drop.
The controller compensates by increasing dopamine and
lowering nitroglycerin. At around 40 minutes, the PFC is
lowered to 4 ug/ml and the PFL infusion is suitably
altered. It can be noted that dopamine infusion is in the
meanwhile maintained in its inotropic range of 4-7
ugkg *min~! and saturates its upper constraint at
around 40 minutes. The controller maintains the infusion
at this constraint and optimally manipulates the phenyle-
phrine and nitroglycerin infusion. In a clinical environ-

tuations in drug dosage. Note that dopamine is used asment, the resulting offset can trigger an alarm so that the
an inotrope and hence the infusion rates are constrainedanesthesiologist can take alternative action such as in-

to the inotropic range of 4—zgkg *min~ 1. There are
no constraints necessary for propofol delivery. The tran-

sient performance criterion for the closed-loop system is

a maximum allowable settling time of approximately 10
minutes for MAP and MPAP and 15-20 minutes for
Co.

We have specified exact setpoints while the real ob-
jective is to maintain outputs within a range of values.
For example, CO is usually required to be maintained
above 95 mlkg! min~1. This could be accomplished by
using output constraints, but this can easily lead to in-
feasible solutions in the optimization problem or to un-
stable closed-loop behavior. Studies on optimization
methods for such infeasibilities are in progress. We

present results for cases that require anesthetization an

simultaneous control of hemodynamic variables com-
monly encountered in critical care.

In the following sections we present examples of
clinical situations which require simultaneous regulation

of hemodynamic and anesthetic states. The efficacy of

the model predictive controller is demonstrated by simu-
lating a dog in closed loop using the nonlinear canine
circulatory model.

Case 1: Congestive Heart Failure

This case involves maintaining hemodynamic and an-

esthetic states of a simulated canine under congestive

heart failure(Fig. 6). Due to the lowered heart contrac-
tility, the MAP and CO are low and require dopamine
infusion in the inotropic range. The MPAP is high and
nitroglycerin is infused to lower it to normal ranges.
Sleep is induced by PFL infusion and the hemodynamic

jecting a short acting drug or increasing the DPM con-
straint permitting it to act as aa-drug.

Case 2: Post-Coronary Artery Bypass

Patients that have come off bypass are required to be
maintained in their sleep state to allow recovery of the
circulatory system in the cardiac intensive care unit. PFL
is induced to maintain a sleep state and, after several
hours, the patient is slowly awakened by stepping down
the PFL infusion. Inotropic and vasoactive drugs are also
infused to maintain the hemodynamic variables at de-
sired ranges. The post-surgical hypertension is regulated
using sodium nitroprusside, while dopamine enhances
he heart contractility to improve CO. The MPAP is
owered using nitroglycerin. A simulated dog with 50%
baseline contractility, MAP(110 mm Hg, CO (105
mlkg *min~ %) and MPAP(25 mm HgQ requires regu-
lation of its hemodynamic variables at setpoints of 85
mm Hg MAP, 110 mlkgtmin~! CO and 18 mm Hg
MPAP during propofol induction. As in the previous
case, a PFC setpoint of ag/ml is desired to induce
sleep. Although this procedure of PFL induction and
graded reduction lasts several hours, for our simulations

we have chosen a shorter time scale for lowering the

PFC setpoint4 ug/ml at 70 minutes and Zg/ml at 100
minutes. As seen in Fig. 7, we lower the PFC setpoint
after the controller maintains the hemodynamic and an-
esthetic states steady at desired values. The initial hyper-

tension and the changes associated with PFL infusion are

regulated by manipulating the drug infusion.

Case 3: Acute Changes in Hemodynamic Variables

variables are maintained at the desired levels. The canine This case is presented to demonstrate disturbance re-

circulatory model is initialized with values of MAFB8
mm Hg), CO (65 mlkg 1 min~1), MPAP (40 mm Hg,

jection of hemodynamic changes associated with acute

interruption(and restorationof aortic blood flow such as

retaining 24% of normal baseline contractility of the clamping-unclamping in aneurysm repair. Unclamping of
heart. After stabilizing the hemodynamic variables, a an aortic vessel results in hypotension and a drop in CO

propofol concentration setpoint of Gg/ml is sought to

due to lowered systemic vascular resistaf8¥R). We

induce sleep. Figure 6 shows the results of the controller initialize the nonlinear model for a hypertensive dog with

infusing dopamine, phenylephrine, and nitroglycerin to

lower than normal(70%) baseline contractility. To test

raise MAP and CO and lower MPAP to the desired the robustness of the model predictive controller we use
setpoints. Propofol infusion begins at 10 minutes and as a linear model identified on a dog with 50% contractility.
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FIGURE 6. Case 1: Simulated
canine with CHF requiring main-
tenance of hemodynamic vari-
ables during anesthesia.

sumed that the patient's artery is declamped at about
35 minutes. To aid in counteracting the hypotension

Hg. Like above, the dog is put to sleep with a setpoint of due to declamping the anesthesiologist lowers the set-
6 wg/ml. The infusion of sodium nitroprusside controls point of PFC to 4ug/ml, just enough not to awaken

the lowering of MAP. Dopaminéand phenylephrine to a
small extent counteracts the propofol effects. It is as-

the patient. At 40 minutes, the PFC setpoint is raised
back to 6ug/ml to ensure good DOA. We simulate the
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declamping by lowering the baseline SVR by about
40% in the model. The SVR value is then slowly ramped
up to mimic natural recovery and stabilization. Propofol
infusion is initialized at 5 minutes and the PFC set-
point is lowered to 4ug/ml between 30 and 40 minutes.
As shown in Fig. 8, the controller regulates MAP and
CO initially using sodium nitroprusside and phenyleph-

120

rine. The dopamine infusion then assists in regulating
MAP, CO, and MPAP throughout the procedure. The
drug infusion rates are suitably altered to reject the
disturbance associated with a drop in SVR due to de-
clamping.

In all three cases the controller was able to achieve
desired performance criteria.
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DISCUSSION and anesthetic states. The controller is shown to regulate
the hemodynamic variables in the presence of drug dos-
Automation of drug administration can potentially im- age constraints. Performance criteria specified in terms of
prove the quality of care in surgical and intensive care transient settling timg10 minutes for MAP and MPAP
environments. We present simulation studies to demon-and 15-20 minutes for CQOare achieved in all three
strate the applicability of model predictive control to examples.
automate regulation of blood pressure and cardiac output Due to the optimization framework, constraints can be
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explicitly imposed on both the controlled and manipu- extended model provides a framework in which to simu-
lated variables. The simulation results presented have|ate clinical conditions requiring simultaneous control of
absolute and velocity constraints applied on the manipu- hemadynamic and anesthetic states. A linear model was

lated variables(drug infusion. In addition, imposing o )
constraints on the controlled variablésutputs allow used for the model predictions, and closed-loop simula-

specification of operating rangesuch as maintaining tions were performed on the nonlinear model. Since drug
cardiac output above 95 mlkdgmin~1). However, this sensitivity varies from patient to patient, and even within
is likely to make the QP problem too restrictive, that is, the same patient at different times, it is important to
when computing future moves there may exist no value develop strategies that change the patient model on line.
for which the drug infusiorand the predicted responses One possible approach, which we have used on two
are within the permitted range. Such infeasibilities are input-two output systems, is multiple model adaptive
usually handled by1) using a infinite prediction horizon  control (based on using a bank of linear models to cap-
and removing the constraints in the initial portion of the ture the nonlinear and uncertain behayior

prediction horizon or(2) relaxing the constraints and The control strategy presented in this article should be
penalizing the violatior{constraint softening Studies on considered part of a hierarchical control structure which
optimization methods for such infeasibilities are in involves modules to assess the patient’s status and to
progress. evaluate the effectiveness of the current control strategy.

The controller uses a prediction model in an optimi- Clearly it is important to always keep the physician in
zation framework to compute drug infusion rates. MPC the loop through proper monitoring and alarm functions.
performance relies significantly on the accuracy of the A current research effort is to extend multiple model
prediction model. This simulation study uses linear step adaptive control to the problem of simultaneous control
response models and assumes that an accurate linea®f hemodynamic and anesthetic variables. We are also
model is available for each patient condition. In case 3 further developing methods to integrate DOA measure-
we show the controller's ability to handle deviations in ments using MLAEP and a hierarchical supervisory
model accuracy. However, this does not imply that a module to aid in patient diagnostics.
nominal linear model is sufficient to handle different or
all clinical conditions. ACKNOWLEDGMENTS
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