
IMPROVING THE PERFORMANCE OF A LONG-RUN
VARIANCE RATIO TEST FOR A UNIT ROOT

By HUGO FERRER-P�EREZ†, MAR�IA-ISABEL AYUDA‡ and
ANTONIO AZNAR‡

†Center for Agro-Food Economy and Development
‡University of Zaragoza

Cai and Shintani (2006, Econometric Theory, 22, 347–372) considered the impact of
introducing an inconsistent long-run variance estimator when constructing a class of ker-
nel-based ratio tests for testing non-stationarity in the series. They found that the quo-
tient of two estimators with different rates of convergence under the null and the
alternative hypotheses may lead to a test having an interesting size and power trade-off.
This paper develops modified versions of this test, presents new asymptotic results and
tabulates critical values. The finite sample performance is explored through Monte Carlo
simulations. The results show that the modifications proposed lead to more powerful
unit root tests.
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1. Introduction

Over the past four decades, the literature on the importance of testing for unit roots in a
given economic time series has greatly increased and, in particular, research dedicated
to alleviating the frequent concern that many unit root tests exhibit low power and size
properties. See the surveys of Haldrup and Jansson (2006) and Patterson (2011), among
others.
Cai and Shintani (2006) propose an alternative approach, based on the generalisation

of the von Neumann ratio, that consists of constructing a long-run variance ratio test
statistic that exploits different rates of convergence of kernel-based estimators under
both the null and alternative hypotheses. They constructed four ratio tests that differ in
the pair consistency–inconsistency of their components and derive their respective
asymptotic behaviour. Through a Monte Carlo simulation study, they assessed the finite
sample properties of the tests and concluded that the ratio test that combines a consis-
tent estimator of the long-run variance in the numerator and an inconsistent estimator
under the stationary alternative hypothesis in the denominator exhibits (in their words) a
good size and reasonable power. This test is the CI test.
Despite this, the CI test has received less attention than it probably deserves. To

resolve this, we propose modified CI tests that are more powerful in the presence of
autocorrelated errors while achieving size even closer to the nominal level.
To this end, we adopt a twofold strategy. First, we apply two detrending procedures

to remove the deterministic component of the series: ordinary least squares (OLS)1 and
local generalised least squares (GLS) by Elliott et al. (1996). Second, we replace, in the

1 As pointed out by Cai and Shintani, the results obtained with their particular demeaning method coin-
cide with those that would have been obtained with OLS-demeaned data. However, this equivalence
does not hold in the model with a constant and a linear time trend. In this case, OLS-detrended data
produces novel results that have not been derived previously.
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numerator, the kernel-based estimator with the autoregressive spectral density estimator
for the long-run variance, while maintaining the inconsistency of the kernel estimator in
the denominator of the quotient.2

The rest of the article is organised as follows. In Section 2 we describe the model
used and introduce the original CI test. In Section 3 we propose our modified tests,
derive their asymptotic behaviour and tabulate new critical values of the tests. We con-
duct a comparison simulation study to analyse the finite sample properties in Section 4;
Section 5 concludes.

2. Model and long-run variance ratio test statistics

We assume that the data are generated according to the following process (for t = 1,. . .,
T):

yt ¼ dt þ vt; vt ¼ qvt�1 þ ut; (1)

where the deterministic component is represented by dt ¼ d0zt and zt is the unknown
deterministic vector. As usual, we focus on the two leading cases: the case in which the
model includes an intercept term, zt ¼ 1, denoted with the superscript l and the case in
which the model includes a linear time trend as well, zt ¼ ð1; tÞ0, represented by the
superscript s. The initial value3 is v1 ¼ 0 and ut is the error term defined as a zero-
mean sequence satisfying T�1=2

PbTsc
t¼1 ut !d xW ðsÞ. The long-run variance of ut is repre-

sented by x2 and the long-run variance of yt under the alternative hypothesis is
x2

y ¼ x2ð1� qÞ�2.
In this paper, we focus on discriminating between the null of a unit root in the series

(q = 1) and the stationary alternative (q < 1).
Cai and Shintani (2006) considered the following non-parametric kernel estimator

(Newey and West, 1987) for the long-run variance of any process xt:

x̂2ðxt;KÞ ¼
XK�1

j¼�ðK�1Þ
ð1� jj=KjÞT�1

XT
t¼jjjþ1

xtxt�j; (2)

where K is the bandwidth parameter and the Bartlett kernel is used to ensure non-
negative estimates,4 and construct the CI test as follows:

2 In this paper we do not pursue the variant of replacing the denominator with an inconsistent autore-
gressive spectral density estimator because the null limiting distribution for the resulting test depends
on nuisance parameters, and, hence, its analytical treatment is not as direct as in a non-parametric
framework. We will leave this interesting question for future research.

3 The initial condition assumption has no effects under the null of a unit root but we are well aware of
the consequences of assuming a different initial condition under the alternative hypothesis as discussed
in Elliott (1999), Elliott and M€uller (2006), Harvey and Leybourne (2006) and Harvey et al. (2009),
among others. This topic has received much attention lately, especially in the design of unit root tests
that are robust to the initial condition, but further insights are needed to assess the effect of introducing
an inconsistent long-run variance estimator into the behaviour of the long-run variance ratio test. This
is beyond the scope of the present paper but it is under current investigation by the authors.

4 In addition, the Bartlett kernel will ensure the highest power function when the bandwidth parameter is
set to the sample size, as demonstrated in Kiefer and Vogelsang (2002).
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CIi ¼ T2 x̂
2ðDyit;KÞ
x̂2ðyit; TÞ

(3)

for i = l,s, where Dylt ¼ Dyt is the series in first differences, Dyst ¼ Dyt � Dy; ylt ¼
yt � �y;�y ¼ T�1

PT
t¼1 yt; y

s
t ¼ �yt � ��y;�yt ¼

Pt
j¼1ðDyj � DyÞ and ��y ¼ T�1

PT
t¼1 �yt.

3. Improving the performance of the CI test

As demonstrated by Cai and Shintani, the CI test offers a good size and power trade-off
but it is oversized when a negative moving-average root, and undersized when a posi-
tive autoregressive root, underlies the error term in (1) and hence, properties could be
improved. Following their suggestions, we attempt to enhance the properties of the test
in two directions. One direction is to apply alternative detrending procedures and the
second direction is to replace, in the numerator of the ratio test, the kernel-based estima-
tor with the autoregressive spectral density estimator for the long-run variance originally
proposed in Berk (1974), while maintaining the inconsistency of the kernel estimator in
the denominator of the test. To the best of our knowledge, there is no previous work
covering this, so our paper is an attempt to fill this gap in the literature as well as to
provide more powerful tests while exploiting the fact that different rates of convergence
of different classes of estimators for the long-run variance may lead to tests that can be
reliable for testing for unit roots.

3.1 Ordinary least squares and generalised least squares detrending

An appropriate treatment of the deterministic part of the series is crucial to improve the
behaviour of unit root tests. Contrary to what is considered in the seminal work, here
we apply OLS and local GLS detrending procedures. We define the OLS-filtered series
as v̂t ¼ yt � d̂0zt, where d̂ is the OLS estimator of d. We also consider the local GLS
procedure that consists of transforming the variables of the model as
y�c ¼ ðy1; ð1 � q�cLÞytÞ0 and z�c ¼ ðz1; ð1 � q�cLÞztÞ0 for t = 2,. . .,T and
q�c ¼ 1 þ �c=T ;�c\ 0.5 Then, ~d is obtained from regressing y�c on z�c by OLS. We define
the GLS-filtered series as ~vt ¼ yt � ~d0zt. According to this, we can write

CIim ¼ T2 x̂
2ðDx̂it;KÞ
x̂2ðx̂it; TÞ

(4)

for m = OLS, GLS and i = l,s. In addition, x̂t defines a generic filtered series where
x̂t � v̂t for the OLS case and x̂t � ~vt for the GLS case. We derive the theorem (proved
in the appendix) on the null limiting distribution of both modified tests.6

5 As suggested by Elliott et al. (1996), the parameter �c is chosen so that the asymptotic local power
function of the test is tangent to the power envelope at 50% power, selecting �c ¼ �7:0 for the mean
case and �c ¼ �13:5 for the trend case.

6 Under the near-integrated alternative hypothesis, normally represented as Hc : qc ¼ 1 þ cT�1 where
c < 0 denotes the deviation from the null hypothesis (c = 0), the asymptotic distributions are similar to
those of Theorem 1 but replacing the Wiener process W(r) with the Ornstein–Uhlenbeck process, JcðrÞ.
The proof is based on standard results given by Phillips (1987) and, therefore, is omitted.
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Theorem 1: Let yt be generated by Equation (1) with q = 1. Let x̂2ðDx̂t;KÞ be a con-
sistent estimator of the long-run variance for x̂t ¼ fv̂t;~vtg. Then, asymptotically,

CIiOLS !
d

2

Z 1

0
½�ViðrÞ�2dr

� ��1

(5)

CIiGLS !
d
V�1
i (6)

for i = l,s; where �VlðsÞ ¼
R s
0 WlðuÞdu;WlðuÞ ¼ W ðuÞ � R

W ðuÞdu; �VsðsÞ ¼
R s
0 WsðuÞ

du;WsðuÞ ¼ WlðuÞ � 12ðu� 0:5Þ R ðr � 0:5ÞW ðrÞdr. Also, Vl¼2
R
�W ðsÞ2dsþðRW ðrÞ

drÞ2�2ðRW ðrÞdrÞðR �W ðsÞdsÞ with �W ðsÞ¼R s
0W ðuÞdu; Vs¼2

R ½ �WsðsÞds�2þðRW ðrÞ
dr�W �

1 =2aÞ2�2ðRW ðrÞdr�W �
1 =2aÞð

R
�WsðsÞdsÞ with �WsðsÞ¼ �W ðsÞ�s2W �

1 =2a;W
�
1 ¼

ð1��cÞW ð1Þþ�c2
R
rW ðrÞdr and a¼1��cþ�c2=3.

3.2 Autoregressive spectral density estimator

Now, we replace the kernel estimator in the numerator with the autoregressive spectral
density estimate of x2 for a consistent estimator of the long-run variance that no longer
depends on q̂:

x̂2
AR ¼ r̂2k=ð1� b̂ð1ÞÞ2; (7)

where b̂ð1Þ ¼ Pk
j¼1 b̂j; r̂

2
k ¼ T�1

PT
t¼kþ1 ê

2
tk , with b̂j and êtk estimated using OLS from

the kth order augmented Dickey and Fuller (1979) autoregression:

Dx̂it ¼ b0x̂
i
t�1 þ

Xk
j¼1

bjDx̂
i
t�j þ etk ; (8)

where k denotes the number of lags to be selected. The consistency of this estimator
with OLS-detrended data is demonstrated in Stock (1999), whereas the consistency
based on local GLS-detrended data is formalised in Ferrer-P�erez (2016). As we keep the
inconsistency under the alternative of the estimator in the denominator, the combination
of consistent–inconsistent quotient holds.
Then, combining the use of OLS/GLS detrending procedures with the autoregressive

long-run variance estimator in the numerator and the kernel-based estimator in the
denominator results in the following statistics:

CIiAR;OLS ¼ T2
x̂2

AR;OLS

x̂2ðv̂it; TÞ
(9)

CIiAR;GLS ¼ T2
x̂2

AR;GLS

x̂2ð~vit; TÞ
(10)

for i = l,s. The subscript AR indicates that the test uses the autoregressive spectral den-
sity estimator in the numerator. In addition, the subscript OLS reflects that both the
numerator and the denominator are based on OLS-detrended data, and the subscript
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GLS indicates that both the numerator and the denominator are based on GLS-detrended
data. Given the arguments above, it can be easily deduced that Theorem 1 also holds
for these two modified test statistics.
Critical values are calculated by approximating the Wiener process by partial sums of

standard normal random variables with zero-mean and variance equal to unity with
10,000 steps and 100,000 replications. Table 1 summarises these values.
To investigate the asymptotic behaviour we have simulated the local asymptotic dis-

tributions of the tests. Figure 1 illustrates the asymptotic power functions for the mean
case in Figure 1a and for the trend case in Figure 1b. We have computed Monte Carlo
simulations with 50,000 replications.
From Figure 1, we can see that the asymptotic size seems to attain nominal levels for

all of the tests and that the GLS-based (and also OLS-based in the trend case) test pro-
duces substantial power gains compared to the original test as c tends to �∞; that is,
the non-centrality parameter deviates from the unit root null. In the trend case, the
power advantage obtained with the CIsGLS with respect to the CIsOLS tends to reduce as
we move away from the null hypothesis.

4. Finite sample results

In this section, we only discuss the results for the small-sample size and size-adjusted
power delivered by the statistics analysed in the previous section. For comparison pur-
poses, we show the results for the original CI test as well.
The data generating process in our simulations is given in Equation (1), with the ini-

tial value v1 ¼ 0 for T = (100,500) using 20,000 replications. The error term ut follows
either an AR(1) of the form ut ¼ /ut�1 þ et or an MA(1) of the form ut ¼ et þ het�1,
where et � iidNð0;r2eÞ and r2e ¼ 1. We consider / = (0,�0.8,�0.5,0.5,0.8) and
h = (�0.8,�0.5,0.5,0.8). Size results are computed with q = 1 and size-adjusted power
with q = (0.99,0.95,0.9,0.8,0.5). We set kmin ¼ 0 and kmax ¼ b12ðT=100Þ0:25c. We
report the results for a 5% nominal significance level.
Because the definition of the proposed CI tests require either the selection of the

bandwidth parameter or the truncation lag parameter or both, we have considered differ-
ent selection methods depending on the class of the long-run variance estimator used in
the test. Thus, for kernel-based estimators, we have applied the automatic bandwidth
selection method suggested by Andrews and Monahan (1992) with AR(1) pre-whitened
errors. For autoregressive-based estimators, we have selected the truncation lag parame-
ter k using the the modified Akaike information criterion (MAIC) criterion with GLS

TABLE 1
Asymptotic critical values†

99% 97.5% 95% 90% 50% 10% 5% 2.5% 1%

CIlOLS 7.2 9.5 12.4 17.4 88.9 638.9 1,086.4 1,683.8 2746.5
CIlGLS 0.6 0.8 1.1 1.5 8.4 88.1 172.9 307.0 584.9
CIsOLS 110.5 143.7 183.0 249.3 893.0 3,626.7 5,351.0 7,439.2 10742.8
CIsGLS 8.9 11.6 15.2 21.3 105.0 664.4 1,080.8 1,630.4 2601.8

Notes: †In Cai and Shintani (2006, table 2, pp. 354), the asymptotic critical values for the 10, 5 and 1% for
the demeaned CI test are 643, 1100 and 2790, respectively. Differences are trivial.
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detrended (demeaned) data and have used that optimal lag parameter for the GLS-based
test as in Ng and Perron (2001). The reason why we consider this information criterion
instead of the standard criteria such as the Akaike information criterion or the the Baye-
sian information criterion is because Ng and Perron showed that the use of the MAIC
leads to gains in the size-power trade-off of the tests over standard information criteria.
However, Perron and Qu (2007) showed that using MAIC with GLS data may lead to
power reversal problems of the tests against non-local alternatives. To deal with this
issue, they propose a simple solution that consists of using the MAIC criterion with
OLS detrended (demeaned) data to select the truncation lag parameter and then using
this optimal lag parameter for the GLS-based test. This method is indicated throughout
this paper with the subscript PQ.
We can construct six modified test statistics by combining the aforementioned

detrending (demeaning) procedures with the two classes of long-run variance estimators.
A brief description of these modified CI tests is detailed next (for i = l,s).

CIi: the original CI test proposed by Cai and Shintani (2006).
CIiOLS: CI that uses the kernel-based estimator based on OLS-detrended (demeaned)

data in both the numerator and the denominator.7

CIiGLS: CI that uses the kernel-based estimator based on GLS-detrended (demeaned)
data in both the numerator and the denominator.

CIiAR;OLS: CI that uses the autoregressive spectral density estimator x̂2
AR given in Equa-

tion (7) in the numerator with OLS-detrended (demeaned) data and the ker-
nel-based estimator in the denominator with OLS detrended (demeaned) data.

CIiAR;GLS: CI that uses the autoregressive spectral density estimator x̂2
AR as in Ng and

Perron (2001) in the numerator and the kernel-based estimator in the denomi-
nator with GLS-detrended (demeaned) data.

CIiPQ;OLS: CI that uses the x̂2
AR in the numerator constructed as in Perron and Qu

(2007) and the kernel-based estimator in the denominator with OLS-detrended
(demeaned) data.

FIGURE 1. Asymptotic size and local power: (a) Mean case and (b) trend case. ( ) CI; ( ) CIOLS;
( ) CIGLS

7 Recall that, in the mean case, this version of the test is equivalent to the original CI.
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CIiPQ;GLS: CI that uses the x̂2
AR in the numerator constructed as in Perron and Qu

(2007) and the kernel-based estimator in the denominator with GLS-detrended
(demeaned) data.

4.1 Empirical size

Tables 2 and 3 show the empirical size. In general, when the errors are iid (/ = 0) the
size values are reasonably close to the nominal size, except for those tests that use the
GLS procedure, which tends to produce a slightly superior size. In the mean case, for
small samples (T = 100) the size of the CIl test is close to the 5%, level, as are those
of the CIlAR;OLS and CIlPQ;OLS. In contrast, those based on the GLS procedure are slightly
oversized. As the sample size increases (T = 500), the tests achieve the 5% nominal
size. In the trend case, the picture is quite similar.
Next, we explore the size value of the tests in the presence of serial correlation.

When a first-order autoregressive process underlies the errors, Table 2 presents the
results for the mean and trend cases. In the mean case, we can see that the original CIl

test is clearly undersized for / > 0. By applying the local GLS demeaning procedure

TABLE 2
Empirical size, AR(1) errors

Mean case
T / CIl CIlGLS CIlAR;OLS CIlAR;GLS CIlPQ;OLS CIlPQ;GLS

100 0 0.044 0.072 0.038 0.067 0.038 0.067
0.8 0.010 0.035 0.037 0.070 0.038 0.069
0.5 0.023 0.051 0.040 0.070 0.039 0.070

�0.5 0.051 0.080 0.043 0.068 0.041 0.069
�0.8 0.050 0.081 0.042 0.066 0.039 0.066

500 0 0.052 0.055 0.049 0.055 0.050 0.055
0.8 0.031 0.041 0.047 0.055 0.047 0.055
0.5 0.040 0.048 0.048 0.056 0.048 0.056

�0.5 0.056 0.060 0.050 0.055 0.049 0.055
�0.8 0.057 0.062 0.051 0.055 0.050 0.055

Trend case
T / CIs CIsOLS CIsGLS CIsAR;OLS CIsAR;GLS CIsPQ;OLS CIsPQ;GLS

100 0 0.047 0.040 0.073 0.032 0.063 0.033 0.063
0.8 0.005 0.002 0.011 0.030 0.060 0.028 0.061
0.5 0.020 0.013 0.034 0.034 0.064 0.033 0.065

�0.5 0.044 0.039 0.073 0.045 0.069 0.041 0.070
�0.8 0.035 0.029 0.058 0.045 0.066 0.041 0.067

500 0 0.052 0.051 0.056 0.046 0.053 0.046 0.053
0.8 0.025 0.019 0.029 0.042 0.050 0.041 0.050
0.5 0.037 0.034 0.039 0.048 0.052 0.047 0.052

�0.5 0.055 0.055 0.060 0.049 0.053 0.048 0.053
�0.8 0.052 0.052 0.057 0.049 0.053 0.048 0.053

Notes: Results of empirical size at the 5% level are based on asymptotic critical values with data generated
under the null hypothesis (c = 0). When the autoregressive long-run variance estimator was used in the tests,
we followed Ng and Perron (2001) and chose the modified Akaike information criterion to select the trunca-
tion lag parameter k. To do this, we set kmin ¼ 0 and kmax ¼ intð12ðT=100Þ0:25Þ. When the kernel-based
long-run variance estimator was used in the tests, we considered the Bartlett kernel function and selected the
bandwidth parameter using the automatic selection procedure of Andrews and Monahan (1992) with AR(1)
pre-whitened errors. Results are based on 10,000 replications.
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and replacing the kernel-based estimator with the autoregressive estimator, the tests offer
improved accuracy and stability, especially for T = 500. In the trend case, we can see
that x̂2

AR-based tests produce improved size compared to the original CIs test, which
suffers from some size distortions for T = 100 and / = (0.8,0.5) as in the case of the
kernel-based tests CIsOLS and CIsGLS.
In the case of MA(1) errors (Table 3) all of the tests exhibit some over-rejection in

the mean case when the parameter h is negative and close to �1. That is, applying alter-
native demeaning procedures or replacing the kernel-based estimator in the numerator
with the autoregressive estimator does not eliminate the problem completely. However,
when h = �0.8, size distortions are less severe for x̂2

AR-based ratio tests as they show
rejection frequencies that tend to be lower in comparison with those of the CIl (almost
one-third smaller), CIlGLS. In this case, the CIlAR;GLS shows the closest empirical size to
the nominal size. The picture is quite similar in the trend case.

4.2 Size-adjusted power

Tables 4–8 report the size-adjusted power. The generating process is as in Equation (1)
with T = (100,500) and q = (0.99,0.95,0.9,0.8,0.5), which are typical values in the finite
sample experiments within the unit root literature.

TABLE 3
Empirical size, MA(1) errors

Mean case
T h CIl CIlGLS CIlAR;OLS CIlAR;GLS CIlPQ;OLS CIlPQ;GLS

100 0.8 0.030 0.060 0.047 0.071 0.037 0.069
0.5 0.032 0.062 0.042 0.071 0.038 0.071

�0.5 0.088 0.118 0.070 0.087 0.060 0.088
�0.8 0.334 0.304 0.175 0.114 0.129 0.131

500 0.8 0.045 0.053 0.055 0.058 0.050 0.058
0.5 0.046 0.052 0.050 0.057 0.048 0.057

�0.5 0.077 0.080 0.059 0.061 0.055 0.061
�0.8 0.254 0.208 0.086 0.071 0.071 0.070

Trend case
T h CIs CIsOLS CIsGLS CIsAR;OLS CIsAR;GLS CIsPQ;OLS CIsPQ;GLS

100 0.8 0.027 0.020 0.046 0.041 0.072 0.031 0.070
0.5 0.030 0.023 0.051 0.038 0.068 0.033 0.068

�0.5 0.083 0.090 0.125 0.094 0.103 0.082 0.108
�0.8 0.272 0.478 0.341 0.323 0.175 0.263 0.217

500 0.8 0.043 0.040 0.045 0.060 0.059 0.052 0.058
0.5 0.044 0.041 0.046 0.050 0.053 0.047 0.053

�0.5 0.083 0.091 0.085 0.066 0.064 0.061 0.065
�0.8 0.281 0.397 0.268 0.121 0.078 0.096 0.078

Notes: Results of empirical size at the 5% level are based on asymptotic critical values with data generated
under the null hypothesis (c = 0). When the autoregressive long-run variance estimator was used in the tests,
we followed Ng and Perron (2001) and chose the modified Akaike information criterion to select the trunca-
tion lag parameter k. To do this, we set kmin ¼ 0 and kmax ¼ intð12ðT=100Þ0:25Þ. When the kernel-based
long-run variance estimator was used in the tests, we considered the Bartlett kernel function and selected the
bandwidth parameter using the automatic selection procedure of Andrews and Monahan (1992) with AR(1)
pre-whitened errors. Results are based on 10,000 replications.
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Table 4 reports the size-adjusted power for the case of iid errors. As expected, the
reported size-adjusted power of all of the tests increases as q decreases. In addition, we
can see in the mean case that the CIlGLS test produces, in general, the highest size-
adjusted power, even for local-to-unity alternatives, followed by the CIlAR;GLS and
CIlPQ;GLS tests. The size-adjusted power of the CIl test is slightly lower, followed by the
CIlAR;OLS and CIlPQ;OLS. For the trend case and for local alternatives (q = 0.99,0.95), all
the tests produce a size-adjusted power that seems quite similar in both small and large
samples. However, for q = 0.90,0.8,0.5, the size-adjusted power reported by the modi-
fied tests is usually higher than that obtained with the original test. For example, when
q = 0.8 and T = 100, the power of the CIs test is 47.7% and those of the CIsGLS and
CIsOLS are 67.2 and 62.9%, respectively.
Tables 5 and 6 show, respectively, the size-adjusted power of the tests for

T = 100,500 when the errors follow an AR(1) process. Focusing on the case that
attracts most interest from researchers, namely, when / > 0, in small samples, minimal
differences can be observed between the local size-adjusted power of the tests in both
the mean and trend cases. Modified tests that consider GLS-demeaned data, x̂2

AR;GLS,
and the solution of PQ exhibit slightly superior values even for large positive / values.

TABLE 4
Size-adjusted power, iid errors

Mean case
T q CIl CIlGLS CIlAR;OLS CIlAR;GLS CIlPQ;OLS CIlPQ;GLS

100 0.99 0.074 0.077 0.073 0.075 0.073 0.075
0.95 0.197 0.261 0.195 0.249 0.194 0.250
0.9 0.418 0.605 0.398 0.554 0.397 0.561
0.8 0.808 0.959 0.725 0.854 0.721 0.873
0.5 0.999 1.000 0.889 0.933 0.882 0.949

500 0.99 0.188 0.259 0.185 0.251 0.185 0.252
0.95 0.890 0.982 0.860 0.962 0.859 0.965
0.9 0.999 1.000 0.986 0.998 0.985 0.998
0.8 1.000 1.000 0.999 1.000 0.999 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000

Trend case
T q CIs CIsOLS CIsGLS CIsAR;OLS CIsAR;GLS CIsPQ;OLS CIsPQ;GLS

100 0.99 0.053 0.056 0.053 0.055 0.053 0.055 0.054
0.95 0.095 0.105 0.111 0.106 0.109 0.104 0.110
0.9 0.205 0.237 0.267 0.231 0.256 0.226 0.258
0.8 0.477 0.629 0.672 0.582 0.601 0.571 0.613
0.5 0.813 0.996 0.991 0.877 0.832 0.866 0.884

500 0.99 0.092 0.100 0.107 0.099 0.107 0.100 0.108
0.95 0.572 0.753 0.740 0.717 0.708 0.716 0.713
0.9 0.829 0.995 0.980 0.967 0.944 0.966 0.952
0.8 0.962 1.000 1.000 0.998 0.987 0.997 0.991
0.5 0.998 1.000 1.000 1.000 0.984 1.000 0.991

Notes:Results represent empirical rejection frequencies of 5% level tests based on size-adjusted critical values
with data generated under the alternative hypothesis for q = (0.99,0.9,0.8,0.5). When the autoregressive
long-run variance estimator was used in the tests, we followed Ng and Perron (2001) and chose the modified
Akaike information criterion to select the truncation lag parameter k. We set kmin ¼ 0 and
kmax ¼ intð12ðT=100Þ0:25Þ. When the kernel-based long-run variance estimator was used in the tests, we con-
sidered the Bartlett kernel function and selected the bandwidth parameter using the automatic selection pro-
cedure of Andrews and Monahan (1992) with AR(1) pre-whitened errors. Results are based on 10,000
replications.
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For example, in the mean case of Table 5, for q = 0.95 and / = 0.5, while CIl gives
0.178, the CIlGLS and CIlAR;GLS deliver 0.234 and 0.226, respectively. Moreover, as we
can see in the trend case, our modified tests based on OLS and x̂2

AR;OLS usually attain

TABLE 5
Size-adjusted power, T = 100, AR(1) errors

Mean case
q / CIl CIlGLS CIlAR;OLS CIlAR;GLS CIlPQ;OLS CIlPQ;GLS

0.99 0.8 0.069 0.072 0.067 0.071 0.067 0.072
0.5 0.073 0.074 0.072 0.073 0.071 0.074

�0.5 0.073 0.076 0.074 0.077 0.074 0.076
�0.8 0.070 0.076 0.073 0.077 0.074 0.078

0.95 0.8 0.151 0.199 0.152 0.185 0.144 0.187
0.5 0.178 0.234 0.178 0.226 0.178 0.230

�0.5 0.183 0.252 0.194 0.255 0.196 0.255
�0.8 0.169 0.243 0.194 0.260 0.198 0.263

0.9 0.8 0.266 0.386 0.258 0.345 0.248 0.351
0.5 0.347 0.506 0.337 0.474 0.336 0.480

�0.5 0.363 0.551 0.391 0.560 0.395 0.566
�0.8 0.325 0.518 0.388 0.561 0.397 0.571

0.8 0.8 0.468 0.660 0.421 0.560 0.407 0.572
0.5 0.658 0.860 0.573 0.753 0.574 0.757

�0.5 0.689 0.897 0.708 0.840 0.711 0.859
�0.8 0.649 0.877 0.698 0.826 0.703 0.850

0.5 0.8 0.771 0.928 0.593 0.750 0.579 0.754
0.5 0.974 1.000 0.858 0.925 0.858 0.943

�0.5 0.976 0.999 0.883 0.935 0.879 0.949
�0.8 0.985 1.000 0.889 0.924 0.881 0.944

Trend case
q / CIs CIsOLS CIsGLS CIsAR;OLS CIsAR;GLS CIsPQ;OLS CIsPQ;GLS

0.99 0.8 0.052 0.049 0.052 0.051 0.052 0.052 0.052
0.5 0.053 0.054 0.055 0.053 0.055 0.054 0.054

�0.5 0.053 0.054 0.054 0.055 0.054 0.055 0.054
�0.8 0.054 0.053 0.053 0.055 0.053 0.055 0.053

0.95 0.8 0.085 0.082 0.095 0.075 0.089 0.076 0.090
0.5 0.090 0.096 0.110 0.094 0.106 0.095 0.105

�0.5 0.091 0.096 0.109 0.103 0.107 0.104 0.106
�0.8 0.089 0.093 0.105 0.102 0.107 0.104 0.106

0.9 0.8 0.142 0.153 0.186 0.127 0.160 0.128 0.162
0.5 0.173 0.195 0.232 0.182 0.215 0.183 0.213

�0.5 0.177 0.198 0.237 0.224 0.246 0.229 0.248
�0.8 0.158 0.185 0.220 0.222 0.245 0.226 0.247

0.8 0.8 0.272 0.324 0.372 0.246 0.295 0.246 0.298
0.5 0.371 0.468 0.530 0.346 0.428 0.352 0.422

�0.5 0.354 0.488 0.538 0.559 0.572 0.561 0.586
�0.8 0.302 0.477 0.489 0.555 0.537 0.557 0.558

0.5 0.8 0.522 0.682 0.707 0.366 0.454 0.372 0.446
0.5 0.722 0.941 0.944 0.765 0.769 0.772 0.779

�0.5 0.521 0.945 0.862 0.859 0.764 0.846 0.838
�0.8 0.429 0.974 0.800 0.857 0.658 0.832 0.773

Notes: Results represent empirical rejection frequencies of 5% level tests based on size-adjusted critical values
with data generated under the alternative hypothesis for q = (0.99,0.9,0.8,0.5). When the autoregressive long-
run variance estimator was used in the tests, we followed Ng and Perron (2001) and chose the modified Akaike
information criterion to select the truncation lag parameter k. We set kmin ¼ 0 and kmax ¼ intð12ðT=100Þ0:25Þ.
When the kernel-based long-run variance estimator was used in the tests, we considered the Bartlett kernel func-
tion and selected the bandwidth parameter using the automatic selection procedure of Andrews and Monahan
(1992) with AR(1) pre-whitened errors. Results are based on 10,000 replications.
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larger power values compared to the original CIs as q decreases. In large samples, the
size-adjusted power attained by each modified test is greater than that produced by the
original test.

TABLE 6
Size-adjusted power, T = 500, AR(1) errors

Mean case
q / CIl CIlGLS CIlAR;OLS CIlAR;GLS CIlPQ;OLS CIlPQ;GLS

0.99 0.8 0.175 0.229 0.180 0.234 0.181 0.234
0.5 0.183 0.242 0.186 0.244 0.186 0.244

�0.5 0.185 0.248 0.187 0.250 0.187 0.250
�0.8 0.179 0.242 0.186 0.249 0.185 0.250

0.95 0.8 0.750 0.897 0.778 0.908 0.777 0.910
0.5 0.832 0.954 0.839 0.948 0.838 0.950

�0.5 0.843 0.963 0.860 0.963 0.862 0.965
�0.8 0.799 0.938 0.857 0.960 0.857 0.963

0.9 0.8 0.947 0.993 0.952 0.991 0.951 0.993
0.5 0.989 1.000 0.979 0.997 0.978 0.997

�0.5 0.991 1.000 0.986 0.998 0.986 0.998
�0.8 0.978 0.999 0.985 0.998 0.984 0.998

0.8 0.8 0.996 1.000 0.990 0.999 0.990 0.999
0.5 1.000 1.000 0.998 1.000 0.998 1.000

�0.5 1.000 1.000 0.999 1.000 0.999 1.000
�0.8 1.000 1.000 1.000 1.000 0.999 1.000

0.5 0.8 1.000 1.000 0.998 1.000 0.998 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000

�0.5 1.000 1.000 1.000 1.000 1.000 1.000
�0.8 1.000 1.000 1.000 1.000 1.000 1.000

Trend case
q / CIs CIsOLS CIsGLS CIsAR;OLS CIsAR;GLS CIsPQ;OLS CIsPQ;GLS

0.99 0.8 0.084 0.092 0.101 0.095 0.105 0.094 0.104
0.5 0.089 0.097 0.110 0.097 0.107 0.098 0.107

�0.5 0.090 0.097 0.108 0.099 0.108 0.099 0.108
�0.8 0.087 0.094 0.104 0.099 0.109 0.099 0.109

0.95 0.8 0.428 0.548 0.568 0.588 0.608 0.583 0.609
0.5 0.505 0.661 0.674 0.672 0.678 0.673 0.680

�0.5 0.504 0.679 0.681 0.714 0.706 0.715 0.709
�0.8 0.434 0.615 0.608 0.711 0.696 0.712 0.700

0.9 0.8 0.644 0.883 0.839 0.897 0.865 0.893 0.871
0.5 0.744 0.971 0.937 0.951 0.925 0.949 0.933

�0.5 0.710 0.976 0.936 0.967 0.940 0.965 0.949
�0.8 0.593 0.948 0.868 0.966 0.925 0.963 0.936

0.8 0.8 0.784 0.989 0.964 0.978 0.959 0.975 0.966
0.5 0.878 1.000 0.997 0.994 0.983 0.993 0.987

�0.5 0.801 1.000 0.992 0.998 0.983 0.997 0.988
�0.8 0.653 1.000 0.957 0.998 0.962 0.997 0.976

0.5 0.8 0.912 1.000 0.999 0.995 0.985 0.995 0.989
0.5 0.983 1.000 1.000 1.000 0.992 1.000 0.997

�0.5 0.800 1.000 0.997 1.000 0.950 1.000 0.977
�0.8 0.652 1.000 0.969 1.000 0.839 1.000 0.929

Notes: Results represent empirical rejection frequencies of 5% level tests based on size-adjusted critical values
with data generated under the alternative hypothesis for q = (0.99,0.9,0.8,0.5). When the autoregressive long-
run variance estimator was used in the tests, we followed Ng and Perron (2001) and chose the modified Akaike
information criterion to select the truncation lag parameter k. We set kmin ¼ 0 and kmax ¼ intð12ðT=100Þ0:25Þ.
When the kernel-based long-run variance estimator was used in the tests, we considered the Bartlett kernel func-
tion and selected the bandwidth parameter using the automatic selection procedure of Andrews and Monahan
(1992) with AR(1) pre-whitened errors. Results are based on 10,000 replications.
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Tables 7 and 8 report the results when the errors follow an MA(1) process for
T = 100 and T = 500, respectively. We will focus on the case that usually attracts
most interest, when h < 0. In general, we can see that as q decreases, the

TABLE 7
Size-adjusted power, T = 100, MA(1) errors

Mean case
q h CIl CIlGLS CIlAR;OLS CIlAR;GLS CIlPQ;OLS CIlPQ;GLS

0.99 0.8 0.072 0.073 0.070 0.073 0.071 0.073
0.5 0.072 0.074 0.072 0.074 0.073 0.075

�0.5 0.073 0.076 0.072 0.075 0.074 0.076
�0.8 0.068 0.079 0.069 0.078 0.072 0.077

0.95 0.8 0.179 0.239 0.164 0.216 0.176 0.216
0.5 0.184 0.246 0.182 0.232 0.188 0.234

�0.5 0.186 0.260 0.181 0.250 0.190 0.253
�0.8 0.145 0.287 0.148 0.277 0.173 0.277

0.9 0.8 0.359 0.525 0.299 0.434 0.329 0.438
0.5 0.371 0.545 0.343 0.487 0.356 0.492

�0.5 0.377 0.586 0.355 0.530 0.375 0.542
�0.8 0.308 0.651 0.324 0.591 0.375 0.593

0.8 0.8 0.685 0.884 0.548 0.721 0.587 0.738
0.5 0.714 0.908 0.621 0.789 0.639 0.802

�0.5 0.739 0.935 0.657 0.803 0.674 0.824
�0.8 0.701 0.966 0.718 0.886 0.762 0.897

0.5 0.8 0.983 1.000 0.828 0.902 0.843 0.924
0.5 0.994 1.000 0.879 0.928 0.883 0.946

�0.5 0.993 1.000 0.889 0.935 0.890 0.952
�0.8 0.995 1.000 0.993 0.982 0.994 0.997

Trend case
q h CIs CIsOLS CIsGLS CIsAR;OLS CIsAR;GLS CIsPQ;OLS CIsPQ;GLS

0.99 0.8 0.053 0.053 0.055 0.050 0.053 0.052 0.053
0.5 0.053 0.053 0.055 0.052 0.054 0.053 0.054

�0.5 0.054 0.053 0.052 0.054 0.053 0.054 0.053
�0.8 0.052 0.053 0.053 0.053 0.052 0.053 0.051

0.95 0.8 0.090 0.097 0.111 0.085 0.099 0.091 0.099
0.5 0.091 0.097 0.109 0.091 0.105 0.093 0.105

�0.5 0.095 0.097 0.107 0.097 0.108 0.097 0.108
�0.8 0.086 0.086 0.113 0.090 0.115 0.092 0.114

0.9 0.8 0.177 0.201 0.237 0.165 0.198 0.181 0.201
0.5 0.182 0.204 0.244 0.182 0.225 0.188 0.225

�0.5 0.186 0.204 0.245 0.205 0.239 0.212 0.242
�0.8 0.153 0.178 0.256 0.187 0.271 0.198 0.281

0.8 0.8 0.383 0.494 0.557 0.379 0.429 0.413 0.439
0.5 0.406 0.520 0.583 0.417 0.481 0.431 0.479

�0.5 0.373 0.536 0.578 0.506 0.531 0.517 0.558
�0.8 0.261 0.501 0.538 0.544 0.599 0.567 0.651

0.5 0.8 0.714 0.962 0.953 0.774 0.751 0.791 0.788
0.5 0.769 0.982 0.976 0.852 0.828 0.856 0.861

�0.5 0.516 0.976 0.872 0.859 0.733 0.850 0.848
�0.8 0.320 0.985 0.696 0.992 0.794 0.992 0.944

Notes: Results represent empirical rejection frequencies of 5% level tests based on size-adjusted critical val-
ues with data generated under the alternative hypothesis for q = (0.99,0.9,0.8,0.5). When the autoregressive
long-run variance estimator was used in the tests, we followed Ng and Perron (2001) and chose the modified
Akaike information criterion to select the truncation lag parameter k. We set kmin ¼ 0 and
kmax ¼ intð12ðT=100Þ0:25Þ. When the kernel-based long-run variance estimator was used in the tests, we con-
sidered the Bartlett kernel function and selected the bandwidth parameter using the automatic selection pro-
cedure of Andrews and Monahan (1992) with AR(1) pre-whitened errors. Results are based on 10,000
replications.

– 269 –
© 2018 Japanese Economic Association

H. Ferrer-P�erez, M. I. Ayuda, A. Aznar: Improving a Variance Ratio Test for a Unit Root



TABLE 8
Size-adjusted power, T = 500, MA(1) errors

Mean case
q h CIl CIlGLS CIlAR;OLS CIlAR;GLS CIlPQ;OLS CIlPQ;GLS

0.99 0.8 0.184 0.244 0.175 0.233 0.182 0.234
0.5 0.185 0.247 0.185 0.240 0.188 0.240

�0.5 0.185 0.255 0.183 0.252 0.185 0.253
�0.8 0.171 0.275 0.170 0.270 0.183 0.269

0.95 0.8 0.839 0.958 0.795 0.927 0.815 0.927
0.5 0.850 0.964 0.834 0.945 0.840 0.946

�0.5 0.863 0.973 0.843 0.953 0.849 0.955
�0.8 0.865 0.987 0.840 0.966 0.865 0.968

0.9 0.8 0.991 1.000 0.970 0.996 0.975 0.997
0.5 0.994 1.000 0.982 0.998 0.982 0.998

�0.5 0.996 1.000 0.983 0.998 0.984 0.998
�0.8 0.998 1.000 0.992 1.000 0.995 1.000

0.8 0.8 1.000 1.000 0.998 1.000 0.998 1.000
0.5 1.000 1.000 0.999 1.000 0.999 1.000

�0.5 1.000 1.000 1.000 1.000 1.000 1.000
�0.8 1.000 1.000 1.000 1.000 1.000 1.000

0.5 0.8 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000

�0.5 1.000 1.000 1.000 1.000 1.000 1.000
�0.8 1.000 1.000 1.000 1.000 1.000 1.000

Trend case
q h CIs CIsOLS CIsGLS CIsAR;OLS CIsAR;GLS CIsPQ;OLS CIsPQ;GLS

0.99 0.8 0.089 0.097 0.109 0.091 0.104 0.095 0.104
0.5 0.091 0.097 0.108 0.097 0.108 0.098 0.108

�0.5 0.089 0.097 0.109 0.096 0.107 0.098 0.107
�0.8 0.090 0.091 0.104 0.092 0.104 0.095 0.104

0.95 0.8 0.510 0.672 0.679 0.601 0.631 0.629 0.631
0.5 0.522 0.686 0.692 0.665 0.672 0.673 0.673

�0.5 0.509 0.706 0.699 0.678 0.675 0.689 0.679
�0.8 0.412 0.715 0.656 0.658 0.645 0.696 0.654

0.9 0.8 0.744 0.975 0.942 0.927 0.902 0.935 0.906
0.5 0.762 0.981 0.952 0.956 0.930 0.956 0.937

�0.5 0.715 0.987 0.949 0.959 0.920 0.958 0.928
�0.8 0.519 0.992 0.864 0.972 0.870 0.976 0.886

0.8 0.8 0.870 1.000 0.997 0.994 0.980 0.994 0.983
0.5 0.894 1.000 0.999 0.996 0.986 0.996 0.990

�0.5 0.803 1.000 0.993 0.998 0.970 0.997 0.978
�0.8 0.551 1.000 0.910 1.000 0.885 1.000 0.954

0.5 0.8 0.963 1.000 1.000 1.000 0.988 1.000 0.992
0.5 0.985 1.000 1.000 1.000 0.989 1.000 0.994

�0.5 0.805 1.000 0.997 1.000 0.901 1.000 0.961
�0.8 0.538 1.000 0.908 1.000 0.702 1.000 1.000

Notes: Results represent empirical rejection frequencies of 5% level tests based on size-adjusted critical val-
ues with data generated under the alternative hypothesis for q = (0.99,0.9,0.8,0.5). When the autoregressive
long-run variance estimator was used in the tests, we followed Ng and Perron (2001) and chose the modified
Akaike information criterion to select the truncation lag parameter k. We set kmin ¼ 0 and
kmax ¼ intð12ðT=100Þ0:25Þ. When the kernel-based long-run variance estimator was used in the tests, we
considered the Bartlett kernel function and selected the bandwidth parameter using the automatic selection
procedure of Andrews and Monahan (1992) with AR(1) pre-whitened errors. Results are based on 10,000
replications.
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size-adjusted power of the tests increases more significantly for most modified tests.
Moreover, the picture is quite similar to that described in the AR(1) case. When
T = 100, for local values of q, say q = 0.99, the results of our modified tests are
quite similar to those of the original CI test but we start to see improvements in
those tests based on GLS-demeaned (detrended) data and also in those that use
x̂2

AR;GLS and the solution of PQ. For non-local alternatives, our modified tests tend
to exhibit large size-adjusted power values for h < 0 and most cases of h > 0, that
even double those obtained by the original CI test. For example, in the mean case
of Table 7 for q = 0.99, when h = �0.5, CIl produces 0.068, the tests
CIlGLS;CI

l
AR;OLS;CI

l
PQ;OLS and CIlPQ;GLS give 0.076, 0.072, 0.072 and 0.077, respec-

tively. For non-local alternatives, say q = 0.9, when h = �0.8, the test CIlð0:308Þ is
slightly surpassed by the CIlAR;OLSð0:324Þ and CIlPQ;OLSð0:375Þ but doubled by the
tests CIlGLSð0:651Þ;CIlAR;GLSð0:591Þ and CIlPQ;GLSð0:593Þ.
In large samples (T = 500), the discussion of the results is quite similar but former dif-

ferences among tests have increased in favour of our modified tests, especially for those
that use OLS, x̂2

AR;OLS and the solution of PQ in the trend case, for which their size-
adjusted power even doubles that achieved with the original CIs test. For example, in
the trend case of Table 8 when q = 0.9 and h = �0.8, the tests CIsOLSð0:992Þ;
CIsGLSð0:864Þ;CIsAR;OLSð0:972Þ;CIsAR;GLSð0:870Þ;CIsPQ;OLSð0:976Þ and CIsPQ;GLSð0:886Þ
exhibit an improved performance compared to the original test CIsð0:519Þ.

5. Conclusions

Cai and Shintani (2006) proposed four unit root tests as a quotient of two long-run vari-
ance kernel-based estimators whose rates of convergence under the null and the alterna-
tive hypotheses differ. In particular, the combination of a consistent estimator under the
null and an inconsistent estimator under the alternative produced the best properties.
This test is the CI test.
In this paper, we have modified the CI test with the objective of improving the prop-

erties of this test. To do this, we have considered a twofold strategy. First, we have
applied the OLS and the GLS of Elliott et al. (1996) procedures to remove the deter-
ministic component of the series instead of the particular method considered in the sem-
inal paper. Second, we have replaced the kernel-based estimator in the numerator of the
ratio test with the spectral density estimator of the long-run variance, x̂2

AR, based on
OLS and GLS-detrended (demeaned) data, while keeping the inconsistent kernel-based
estimator in the denominator of the ratio test.
We have derived their respective asymptotic behaviour, tabulated new critical values

and showed that these new tests clearly produce power gains. Through Monte Carlo
simulations, we have examined the finite sample performance of these tests in terms of
size and size-adjusted power. To do so, we have constructed a battery of modified test
statistics whose results have been compared to those of the original CI test so as to
assess the quality of our proposals.
From our results, we can conclude that our proposals mostly lead to tests with an

improved size-power trade-off compared to the original CI test in the presence of auto-
correlated errors, especially those based on GLS-detrended (demeaned) data followed by
those that use the autoregressive spectral density estimator in the numerator.

– 271 –
© 2018 Japanese Economic Association

H. Ferrer-P�erez, M. I. Ayuda, A. Aznar: Improving a Variance Ratio Test for a Unit Root



Acknowledgements

We thank the editor and two anonymous referees for helpful comments. We also wish
to thank participants of the IVt Time Series Econometrics Workshop (U. Zaragoza) for
useful comments on an earlier draft. Financial support is acknowledged from the MEC-
MICINN under grants ECO2015-65582-DT and ECO2016-74940-P, and from the con-
solidated research group of “Selecci�on y simulaci�on de modelos econom�etricos”
financed by the Department of Science, Technology and Universities of the Aragonesse
Government.

Appendix I

Proofs

We will use the following general notation. Convergence in probability is denoted by
!p whereas weak convergence in distribution is represented by !d as the sample size
grows to ∞. W(r) is the standard Wiener process defined on C½0; 1�. The integration sign
∫ denotes integration between 0 and 1. Differencing and lag operators are denoted by D
and L, respectively; that is, for a stochastic process xt, we define Dxt ¼ xt � xt�1 and
Lxt ¼ xt�1.

Proof. We have that the series yt is generated by (1) with dt ¼ d0zt; zt ¼ ð1; tÞ0 and q = 1.
Then, consider the OLS estimates d̂ obtained from regressing yt on zt. We then define the
OLS residual as v̂t ¼ yt � d̂0zt and its limiting distribution is given by T�1=2v̂t !d xWsðuÞ,
where WsðuÞ ¼ WlðuÞ � 12ðu� 1=2Þ R ðr � 1=2ÞW ðrÞdr. Taking St ¼

Pt
j¼1 v̂j and

ST ¼ 0, then applying Lemma 1 in Cai and Shintani (2006), we have that

T�3=2
Pt

i¼1 v̂i !
d
x
R s
0 WsðuÞdu � x�VsðsÞ;T�3S2t !

d
x2 �VsðsÞ2; T�4

PT S2t !
d
x2

R
�VsðsÞ2ds,

and, hence,

T�2x̂2ðv̂t;TÞ ¼ 2T�4
XT

S2t !
d
2x2

Z
�VsðsÞ2ds:

The proof for the demeaned model is straightforward.
Consider the local-GLS procedure of Elliott et al. (1996). Define the GLS residuals as
~vt ¼ yt � ~d0zt. Apply the aforementioned Lemma 1 to xt ¼ ~vt. In this case, ST ¼ 0 no
longer holds. Thus, in the mean case, the long-run variance estimator is

T�2 ~x2ð~vt; TÞ ¼ 2T�4
XT

S2t þ T�3S2T � 2T�4ST
XT

St

!d 2x2
Z

�W ðsÞ2dsþ x
Z

W ðrÞdr
� �2

� 2x2

Z
W ðrÞdr

� � Z
�W ðsÞds

� �
:

The null limiting distribution of CIlGLS follows straightforwardly.
The detrended case follows similar derivations. Following Elliott et al. (1996), we
obtain that ð~d0 � d0Þ is O(1) and ð~d1 � d1Þ is OðT�1=2Þ and, hence, the null asymptotic
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distribution is given by T�1=2~vt !d xðW ðsÞ � a�1W �
1 Þ, where a ¼ 1� �cþ �c2=3 and

W �
1 ¼ ð1� �cÞW ð1Þ þ �c2

R
rW ðrÞdr. So, applying the aforementioned Lemma 1 yields

T�3=2St !d x
Z s

0
W ðuÞdu� xðs2=2aÞW �

1 ¼ x ~W ðsÞ � xðs2=2aÞW �
1 � x �WsðsÞ:

The asymptotic behaviour of the long-run variance estimator is

T�2 ~x2ð~vt; TÞ ¼ T�2 2T�2
XT

S2t þ T�1S2T � 2T�2ST
XT

St

" #

!d x2 2

Z
�WsðsÞ2dsþ

Z
W ðrÞdr �W �

1 =ð2aÞ
� �2(

�2

Z
W ðrÞdr �W �

1 =ð2aÞ
� � Z

�WsðsÞds
� ��

� x2Vs:

Then, the null asymptotic distribution of CIsGLS follows directly. &
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