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This paper considers a pure exchange stochastic overlapping generations model in which,
on each date, an economy faces an aggregate endowment shock. On each date, a young
agent and an old agent simultaneously decide how much of their respective endowments to
transfer to the other agent; however, a young agent cannot make promises about how much
he or she will give when old. In this sense, an economy faces a limited commitment
constraint. This paper characterizes an efficient intergenerational risk sharing allocation
that satisfies a limited commitment constraint, and also studies the role of money and
history in a stochastic overlapping generations economy.
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1. Introduction

The overlapping generations model, which was formulated by Samuelson (1958) and
Diamond (1965), is one of the basic models in macroeconomics and public finance. Some
more recent literature concerned with insurance is based on models of contemporaneous,
infinitely-lived agents, constrained by the inability to make contractual commitments (see
e.g. Thomas and Worrall, 1988; Kocherlakota, 1996). The present paper considers insur-
ance under a limited commitment constraint in a stochastic overlapping generations
economy. The situation in this environment is substantially different from that in contem-
poraneous, infinitely-lived agent economies. One of the present paper’s goals is to char-
acterize efficient allocations under a limited commitment constraint in the overlapping
generations model.

The model in this paper considers a pure exchange overlapping generations economy
that faces an endowment shock on every date. Each generation consists of one single agent.
After the shock is realized, a new young agent is born. Both a young agent and an old agent
decide how much of their respective endowments to transfer to the other agent, doing so
both simultaneously and independently. After the transfer is made, each agent consumes
and derives utility, and an old agent dies.
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comments and suggestions. I am also grateful to the National Taiwan University and National Science
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Among several welfare concepts, this paper uses “interim” Pareto efficiency as a welfare
concept.1 Interim Pareto efficiency considers an agent’s expected lifetime utility calculated
on each agent’s birthdate given the histories at that moment. Because a young agent is born
after a current shock is realized, it is natural for the agent to be distinguished after different
histories, even though he or she has the same name. Because of the limited commitment
constraint, an equilibrium concept requires subgame perfection.2 Hence, an equilibrium
concept examined in this paper is a subgame perfect equilibrium.

In the analysis, to make the comparison of a contemporaneous, infinitely-lived agent
model and an overlapping generations model clear, the paper imposes one assumption and
focuses on some featured allocations. One important result of the contemporaneous,
infinitely-lived agent model is that history-dependent behavior improves agents’ welfare.
That is, the autarkic allocation is not efficient. Thus, the paper imposes the assumption that
the autarkic allocation is not interim Pareto efficient. Another important result of the
contemporaneous, infinitely-lived agent model is that the first-best allocation is subgame
perfect when the discount factor is large enough. In an overlapping generations environ-
ment, the corresponding first-best allocation is not well-defined. Hence, among all interim
Pareto efficient allocations, this paper focuses on golden-rule type allocations. An alloca-
tion is a golden-rule type allocation if the allocation maximizes the weighted sum of the
young agent’s conditional expected lifetime utility. Notice that a young agent who has
different histories is distinguished. Although this golden-rule type allocation does not
exactly correspond to the first-best allocation in the contemporaneous, infinitely-lived
agent model, the study of a golden-rule type allocation can provide some insight into the
comparison of the two models. Because the golden-rule allocation is defined by a station-
ary allocation, the present paper also focuses on a stationary allocation.3

One of the contributions of this paper is to characterize the golden-rule type subgame
perfect equilibrium allocations. The first result is that all subgame perfect equilibrium
allocations are supported by an autarky-reversion trigger strategy profile. Notice that the
autarkic allocation is always supported by a subgame perfect equilibrium, and gives the
worst expected utility to a young agent among all subgame perfect equilibrium allocations.
In a subgame perfect equilibrium, an old agent never transfers something to a young agent,
because an old agent will depart from the economy after the current period. Thanks to this
result, instead of considering the strategy profile, the present paper just focuses on the
allocation that satisfies the limited commitment constraint. The second result is to provide
an almost necessary and sufficient condition for the existence of a non-autarkic, subgame
perfect equilibrium allocation. The condition is that the autarkic allocation is not interim
Pareto efficient. This is intuitive if we consider a deterministic, simple overlapping gen-
erations model. In a deterministic environment where a young agent is endowed with a

1 For instance, another possible welfare concept is “ex-ante” Pareto efficiency. Ex-ante Pareto efficiency
considers an agent’s expected lifetime utility calculated on the initial date of the economy, that is, before a
shock is realized. Under ex-ante Pareto efficiency, “the” agent who lives on a particular date is regarded as
one individual.

2 There are several papers that investigate subgame perfect efficient allocations in a deterministic, two-period-
lived-agents overlapping generations model. See, for example, Hammond (1975) and Bhaskar (1998). In a
stochastic environment, although the setting is different from that in this paper, Messner and Polborn (2003)
extend Cremer (1986) by adding a stochastic cooperation cost.

3 One difficulty in an overlapping generations model is that it is not easy to study non-stationary allocations.
Because of this difficulty, quite a few papers focus on a stationary allocation. For instance, see Demange and
Laroque (1999) and Gottardi and Kubler (2011).
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larger endowment than an old agent, a transfer from a young agent to an old agent is
supported by a subgame perfect equilibrium, because the consumption is smoothed after
the transfer. The third result is that when the autarkic allocation is not interim Pareto
efficient, there always exist golden-rule type allocations that satisfy the limited commit-
ment constraint if agents condition their behavior on past history. Notice that if agents
cannot condition their behavior on past history, only an autarkic allocation is a subgame
perfect equilibrium allocation, because there is no punishment/reward for a young agent to
make the transfer to an old agent. The implication of this result is that history-dependent
behavior improves welfare.4 The fourth result is that if an allocation satisfies the limited
commitment constraint, then there should be a transfer from a young agent to an old agent
in the shock where a young agent is relatively rich compared to an old agent.5 This implies
that the transfer that makes the consumption smoothed over time is necessary to satisfy the
limited commitment constraint.

In addition to the characterization of the golden-rule type, subgame perfect equilibrium
allocations, the present paper compares the role of money and history in this economic
environment. The overlapping generations model was used to rationalize the existence of
money (a durable and intrinsically useless good) in the economy. Wallace (1980) is the first
paper to investigate this problem, and considers, for example, when money has a value in
the economy and how it helps two different generations trade in a pure-exchange deter-
ministic overlapping generations model. The second goal of this paper is to reconsider this
role of money and compare it with the role of history in a pure-exchange stochastic
overlapping generations model. As a benchmark, first, I consider a deterministic environ-
ment. Notice that in both deterministic and stochastic environments, if there is no money,
the autarkic allocation is the only equilibrium. When the autarkic allocation is not Pareto
efficient, Wallace (1980) shows the existence of a unique monetary equilibrium and the
allocation is the golden-rule allocation. If the agent can exploit the history, then there are
infinitely many subgame perfect equilibrium allocations, some of which are Pareto efficient
allocations and one of which is the golden-rule allocation. Thus, it can be said that money
and history are similar in terms of the implementation of the golden-rule allocation, while
history implements more Pareto efficient allocations than money. In a stochastic environ-
ment, as Magill and Quinzii (2003) show, under the assumption that the autarkic allocation
is not interim Pareto efficient, there is a unique monetary equilibrium, and the present paper
shows that its allocation is the golden-rule type allocation. The history also implements this
unique monetary equilibrium, but as we saw above, the history implements more golden-
rule type allocations than the money, although one might think that this difference is not as
crucial as in a deterministic environment. Hence, this paper considers a two-shock example
economy in which there is a critical difference between history and money. The example
shows that a stationary allocation that maximizes a young agent’s ex-ante expected utility
is a subgame perfect equilibrium allocation, but not a monetary equilibrium allocation.6

This is a crucial difference, because in terms of ex-ante welfare, history dominates money.
In a deterministic environment, the condition for a stationary allocation to be a monetary
equilibrium allocation and the condition for a stationary allocation to be a golden-rule

4 This implication is also derived in the contemporaneous, infinitely-lived agent model.

5 The assumption that the autarkic allocation is not interim Pareto efficient implies that there is at least one
shock in which a young agent’s endowment is larger than an old agent’s endowment.

6 In this allocation, an agent consumes the same amount of consumption at any age in any state.
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allocation are equivalent, while in a stochastic environment they are not equivalent. This
implies the possibility that even if a stationary allocation is not a monetary equilibrium
allocation, it is a golden-rule type allocation that is a subgame perfect equilibrium alloca-
tion. The paper shows one example in which this possibility creates a critical difference
between history and money.

The remainder of this paper is organized as follows. Section 2 sets up the model and
provides several definitions. Section 3 characterizes the golden-rule type allocation that
satisfies the limited commitment constraint. Section 4 discusses the role of money and
history in a stochastic pure-exchange overlapping generations model, and also presents a
numerical example. Section 5 concludes.

2. The model

In this section, I set up the model and provide definitions of efficiency and the equilibrium.

2.1 Environment

Time is discrete and infinite, t = 1, 2, . . . . On each date t, a single agent is born. An agent
born on date t is called a generation-t agent. An agent born on date t = 0 is referred to as
initial old. Agents live for two periods, young and old.

On each date t, the economy faces an endowment shock. Let S := {1, 2, . . . , S} denote
a set of shocks with generic element s, where S ≥ 2 is finite. The probability that a shock
is s ∈ S is denoted by π(s), where π : S → [0, 1] is a probability function. Endowments for
a young agent and an old agent are determined by a shock. ey(s) denotes a young agent’s
endowment when a shock is s ∈ S and eo(s) is an old agent’s endowment given the current
shock s ∈ S. Let e(s) := ey(s) + eo(s) be the total endowment for shock s ∈ S. Let st := (s1,
s2, . . . , st) ∈ St be a history of shocks up to date t. I assume that the stochastic process, {st},
is i.i.d. The endowment is perishable and there is no storage technology.

An allocation for generation-t(≥1) is denoted by a pair of mappings, c c ct t
y

t
o: ( , )= +1 ,

where c St
y t: → +R and c St

o t
+

+
+→1

1: R . An allocation for the initial old is denoted by a
mapping, c So

1 : → +R . Let c c co
t t: ( , ( ) )= =

∞
1 1 be an allocation. An allocation, c, is feasible if

for all t ≥ 1,

c s c s e st
y t

t
o t

t( ) ( ) ( )+ =

for all st ∈ St.
Agents derive utility from consuming in each period of life. Let u: R+ → R be an agent’s

periodic utility function, which is strictly concave, strictly increasing and twice-
continuously differentiable. I assume that the agent’s lifetime utility is additively separable
with no discounting the future.7 For later convenience, I define the agent’s expected
lifetime utility as being conditional on a history of shocks, st ∈ St. For any date t ≥ 1, if the
generation-t agent’s allocation is ct, his or her expected lifetime utility conditional on
st ∈ St is denoted by

7 This assumption is harmless for all of the following results.
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U c s u c s s u c s st
t

t
y t

t
o t

s S
( , ) : ( ( )) ( ) ( ( , )).1= + +∈∑ π ˆ ˆ

ˆ
(1)

2.2 Welfare concept

In this paper, because a current shock is realized before a young agent is born, it is natural
to use interim Pareto efficiency as a social welfare concept. To put it differently, the agent
is regarded as a different individual if the histories before she is born are different under
interim Pareto efficiency. The formal definition is as follows:

Definition 1: An allocation, c, is interim Pareto efficient if c is feasible and there does not
exist another feasible allocation, �c , such that

U c s U c st
t

t
t( , ) ( , )� ≥ (2)

for all t ≥ 1 and all st ∈ St, and

u c s u c so o( ( )) ( ( ))�1 1
1

1≥ (3)

for all s1 ∈ S, and either Equation (2) holds with strict inequality for some t ≥ 1 and some
st ∈ St or Equation (3) holds with strict inequality for some s1 ∈ S.

2.3 Specification of transfer game without commitment

In this economy, both a young agent and an old agent can voluntarily transfer part of their
own endowments to the other agent who is currently alive. I assume that no young agent
can commit his or her amount of transfer in old age and, hence, each agent decides how
much he or she will transfer at each age. Moreover, there is no externally enforced
commitment device. An agent’s strategy determines how much of his or her endowment to
transfer to the other agent conditional on the histories of transfers and shocks up to this
time. Let Ht := ([0, ē]2)t, where ē := maxs∈Se(s), H 0 0= / and S0 0:= / . Let

σ t
y t tH S e: [ , ]− × →1 0

be a mapping from a history of transfers before date t, ht−1 ∈ Ht−1, and a history of shocks
up to and including date t’s shock, st ∈ St, to a real number that satisfies
σ t

y t t y
th s e s( , ) [ , ( )]− ∈1 0 . Let

σ t
o t tH S e+

+× →1
1 0: [ , ]

be a mapping from a history of transfers before date t + 1, ht ∈ Ht, and a history of shocks
up to and including date t + 1’s shock, st+1 ∈ St+1, to a real number that satisfies
σ t

o t t o
th s e s+

+
+∈1

1
10( , ) [ , ( )] . Then, a strategy of the generation-t (≥1) agent is defined by

σ σ σt t
y

t
o: ( , ).= +1

A strategy of the initial old agent is
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σ σ0 1 0: : [ , ],= →o S e

which satisfies σ1 0o os e s( ) [ , ( )]∈ for all s ∈ S. Let Σ t
y and Σ t

o be a set of all mappings, σ t
y

and σ t
o, respectively, as defined above. Let Σ Σ Σt t

y
t
o:= × +1 be a set of all strategies of

generation-t (t ≥ 0). When a strategy profile is σ, the after-transfer allocations for the young
and the old agents at date t, given st ∈ St and ht−1 ∈ Ht−1, are

c s e s h s h st
y t y

t t
y t t

t
o t t( ) ( ) ( , ) ( , )= − +− −σ σ1 1

c s e s h s h st
o t o

t t
o t t

t
y t t( ) ( ) ( , ) ( , ).= − +− −σ σ1 1

2.4 Equilibrum concept in a transfer game

I use a subgame perfect equilibrium of this commitment structure as an equilibrium
concept. In a subgame perfect equilibrium, at any point in time and history, each agent
optimally chooses the amount of transfers at that time.

Definition 2: A strategy profile σ* is a subgame perfect equilibrium (SPE) if for all
t ≥ 1, all st ∈ St, and all ht−1 ∈ Ht−1,

σ
σ

σ
π

σ
t

y
t t

y t t

t
o t tt t

u
e s h s

h s
* arg max

*
∈

−

+

⎛
⎝⎜

⎞
⎠⎟
+

∈

−

−Σ

( ) ( , )

( , )
(

1

1
ˆ̂)

( ˆ) ( , , ˆ)

( , , ˆ)ˆ

s u
e s h s s

h s s

o
t
o t t

t
y t t

s S

−

+

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪ +

+∈
∑

σ

σ

1

1*⎩⎩⎪

⎫
⎬
⎪

⎭⎪
, (4)

where h h h s h st t
t
y t t

t
o t t= − − −( , ( ( , ), ( , )))1 1 1σ σ , and for all t ≥ 1, all st ∈ St, and all ht−1 ∈ Ht−1,

u e s h s h s

u e s h s

o
t t

o t t
t
y t t

o
t t

o t t

( ( ) *( , ) *( , ))

( ( ) ( ,

− +

≥ −

− −

−

σ σ

σ

1 1

1 )) *( , )),+ −σ t
y t th s1

(5)

for all σ t
o

t
o∈Σ . An allocation, c, is subgame perfect or an SPE allocation if c is feasible

and is induced by some SPE σ.

In the definition, Equation (4) is the incentive condition for the young agent, and
Equation (5) is the incentive condition for the old agent.

Now, I show that the autarky allocation is always supported by an SPE and it gives the
lowest utility to the agents. This property is important and is used in later sections.

Lemma 1: The autarky allocation is always an SPE allocation and provides lower con-
sumption to every old agent and lower conditional expected lifetime utility (according to
Equation (1)) to every young agent in every history than any other SPE allocation provides.

Proof: See the Appendix.

Lemma 1 guarantees that the autarky-reversion trigger strategy is the best strategy when
we consider an SPE, which concurs with the findings of Abreu (1988), Kocherlakota
(1996) and Thomas and Worrall (1988).

By using Lemma 1, the following result regarding the SPE allocation holds:

The Japanese Economic Review

504
© 2014 Japanese Economic Association



Proposition 1: An allocation c is an SPE allocation if and only if c is feasible and for all
t and all st ∈ St,

c s e st
o t o

t( ) ( )≥ (6)

and

U c s u e s s u e st
t y

t
o

s S
( , ) ( ( )) ( ) ( ( )).≥ +

∈∑ π ˆ ˆ
ˆ

(7)

Proof: See the Appendix.

Equation (6) implies that the old agent prefers an allocation c st
o t( ) to their own endow-

ment. This implies that any old agent transfers nothing to a young agent. This is because an
old agent will exit the game right after the current period, and, hence, an old agent will not
be punished even if he or she transfers nothing to a young agent. Thus, an old agent does
not have an incentive to transfer something to a young agent. Equation (7) implies that a
young agent at date t prefers consuming his or her allocation ct to consuming his or her
endowment. If one of Equations (6) and (7) is violated, an allocation c cannot be an SPE
allocation. Hence, two equations are a necessary condition for c to bve an SPE allocation.
For sufficiency, if both Equations (6) and (7) hold, we can construct the autarky-reversion
trigger strategy whose outcome is c. By Lemma 1, the autarky allocation itself is an SPE
allocation; hence, the autarky-reversion trigger strategy is an SPE.

3. Golden-rule type, subgame perfect equilibrium allocations

First, to make the analysis interesting, I impose one assumption on the model hereafter.

Assumption 1: The autarkic allocation is not interim Pareto efficient.

If the autarkic allocation is interim Pareto efficient, a transfer between generations is
meaningless. Based on Aiyagari and Peled (1991) and Chattopadhyay and Gottardi (1999),
this assumption is translated into the following equation:

π( ) ( ( ))

( ( ))
.

s u e s

u e s

o

ys S

′
′

>
∈∑ 1 (8)

One interest in a two-sided limited commitment model such as Thomas and Worrall
(1988) and Kocherlakota (1996) concerns how to solve the conflict between risk sharing
and incentives. To achieve efficient risk sharing, the long-run relationship is useful, while
in each period each agent has an incentive to break the relationship. As shown in Thomas
and Worrall (1988) and Kocherlakota (1996), when the discount factor is high enough,
depending on the initial shock and the division of the surplus, an efficient risk-sharing
allocation, or first-best risk-sharing allocation, is subgame perfect.

In an overlapping generations model, one difficulty with the analysis is that it is not easy
to judge whether an allocation is interim Pareto efficient or not. Chattopadhyay and
Gottardi (1999) provide a complete characterization of interim Pareto efficient allocations,
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although it is not convenient to use their condition in practice. Following studies such as
Gottardi and Kubler (2011), I focus on a stationary allocation hereafter.

Definition 3: An allocation c is stationary if c is feasible and there is a mapping
� � �c c cy o: ( , )= , where �c s e sy ( ) [ , ( )]∈ 0 and �c s s e so( , ) [ , ( )]′ ∈ ′0 , such that for all t and all

st ∈ St, c s c st
y t y

t( ) ( )= � and c s c s st
o t

t
o

t t( ) ( , )= −� 1 .

In words, if an allocation is stationary, the young agent’s allocation just depends on the
current shock and the old agent’s allocation depends on shocks while he or she is alive.
Specifically, in this model, c s c st

y t y
t( ) ( )= � implies that a stationary allocation for an old

agent also depends only on today’s shock because c s e s c s e s c st
o t

t t
y t

t
y

t( ) ( ) ( ) ( ) ( )= − = − .
Hence, hereafter, a stationary allocation c is written as c = (cy, co), where cy: S → R+ and
co: S → R+, with cy(s) + co(s) = e(s). An (almost) necessary and sufficient condition for the
existence of a stationary, non-autarkic SPE allocation is presented as follows:

Proposition 2: There exists a stationary, non-autarkic SPE allocation c if Equation (8)
holds. A stationary, non-autarkic SPE allocation exists only if

π( ) ( ( ))

( ( ))
.

s u e s

u e s

o

ys S

′
′

≥
∈∑ 1 (9)

Proof: See the Appendix.

Assumption 1 is (almost) a necessary and sufficient condition for the existence of a
stationary, non-autarkic SPE allocation. For sufficiency, the proof in the Appendix uses the
result derived by Magill and Quinzii (2003). Here, I simply provide an intuition for the
result. If Equation (8) holds, the autarkic allocation is not interim Pareto efficient, which
implies that there is another feasible allocation that makes some agent strictly better off
without hurting any other agents. Equation (8) guarantees that there is at least one s ∈ S
such that ey(s) > eo(s).8 Then, consider a positive transfer from a young agent whose
endowment is larger than an old agent’s endowment. It is clear that such a transfer makes
an old agent strictly better off in terms of welfare as well as making a young agent better
off because the consumption becomes smoothed in the current state if the future shock is
the same as the current shock and the consumption when old in other states does not
decrease.9 This implies that the allocation after the transfer satisfies incentive conditions for
both the young agent and the old agent, and the resulting allocation is an SPE allocation.
For necessity, if Equation (9) does not hold, then the autarkic allocation is interim Pareto
efficient. For some non-autarkic allocation to be an SPE allocation, a positive transfer from
a young agent to an old agent should be made. Because, however, the autarkic allocation is
now interim Pareto efficient, such a transfer makes at least one agent worse off. Because an
old agent’s welfare is improved, a young agent’s welfare should decline. This implies that

8 If there is no s ∈ S such that ey(s) > eo(s), then for all s ∈ S, u′(ey(s)) > u′(eo(s)). This implies that
u′(eo(s))/u′(ey(s)) < 1 for all s. Then, Σs∈Sπ(s)u′(eo(s))/u′(ey(s)) < Σs∈Sπ(s) = 1.

9 An allocation after this transfer is not always an SPE. In such a case, a transfer from a young agent whose
endowment is smaller than an old agent’s endowment also has to involve a transfer of something to an old
agent. Then, an allocation after the transfer is an SPE allocation. For more details, see the Appendix.
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the young agent’s expected lifetime utility conditional on some s ∈ S is lower than the
expected lifetime utility from the autarkic allocation. This means that such an allocation is
not subgame perfect.

By Chattopadhyay and Gottardi (1999), a stationary allocation c is interim Pareto
efficient if and only if

π( ) ( ( ))

( ( ))
.

s u c s

u c s

o

ys S

′
′

≤
∈∑ 1 (10)

Because our focus is on a feasible allocation, cy(s) + co(s) = e(s) for all s ∈ S, once we
know either a young agent’s consumption, cy(s), or an old agent’s consumption, co(s), we
also know another agent’s consumption. Therefore, hereafter, I focus on an old agent’s
state-contingent consumption, (co(s))s∈S. Let

SPE c s c so
s S

o
s S: {( ( )) |( ( )) }= ∈ ∈ is a stationary SPE allocation

be a set of all stationary SPE allocations.
Also worth mentioning is that the set up in this paper does not have a notion corre-

sponding to the first-best risk sharing commonly used in an infinitely-lived agent model
(see e.g. Kocherlakota, 1996).10 However, this paper considers the following golden-rule
type allocation:

Definition 4: A stationary allocation c is a golden-rule type allocation if c is feasible; i.e.
cy(s) + co(s) = e(s) for all s ∈ S, and a stationary allocation c maximizes

λ π( ) ( ( )) ( ) ( ( ))s u c s s u c s
s S

y o

s S∈ ′∈∑ ∑+ ′ ′{ } (11)

for some λ(s) ∈ (0, 1) and ∑s∈Sλ(s) = 1.

In words, if a stationary allocation is a golden-rule type allocation, no young agents are
made better off by some stationary allocation. Notice that “young agents” here means
young agents who have a different history of shocks. Because u is strictly concave and the
feasibility constraint is linear, the necessary and sufficient conditions for c being a solution
to Equation (11) are

π λ( ) ( ( ))

( ( ))
( )

s u c s

u c s
s

o

y

′
′

= (12)

for all s ∈ S. This condition is equivalent to

π( ) ( ( ))

( ( ) ( ))
.

s u c s

u e s c s

o

os S

′
′ −

=
∈∑ 1 (13)

Clearly, a golden-rule type allocation is interim Pareto efficient. Let

10 Because a young agent is born after the shock is realized, the first-best risk-sharing allocation where
consumption is stabilized at e(s)/2 for every s ∈ S is not possible.
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GR c s c so
s S

o: {( ( )) |( ( )) ( )}= ∈ satisfies Equation 13

be a set of all golden-rule type allocations. In the following, the set, GR ∩ SPE, is
characterized.

Proposition 3: Under Assumption 1,

(i) GR ∩ SPE is non-empty and compact in R+
S.

(ii) GR ∩ SPE is connected in R+
S.

Proof: See the Appendix.

Under Assumption 1, Proposition 2 shows the existence of a stationary, non-autarkic
SPE allocation. Thus, if this allocation is a golden-rule type allocation, then the first part
is shown. As Magill and Quinzii (2003) show, under Assumption 1, there is a mapping
γ : S → (0, ey(s)) such that

′ − = ′ ′ ′ + ′ ′
′∈∑u e s s s s u e s s sy o

s S
( ( ) ( )) ( ) ( ) ( ( ) ( )) ( )γ γ π γ γ (14)

for all s ∈ S. Proposition 2 in this paper shows that this allocation is an SPE allocation.
This implies that the expected lifetime utility for a young agent for shock s ∈ S,
u e s s s u e s sy

s S
o( ( ) ( )) ( ) ( ( ) ( ))− + ∑ ′ ′ + ′′∈γ π γ , is maximized. Therefore, an allocation satis-

fying Equation (14) must be a golden-rule type allocation. Because both GR and SPE are
closed and bounded in R+

S, GR ∩ SPE is compact. For connectedness, it is not difficult to
show that SPE and GR are connected in R+

S. Because SPE GR∩ ≠ /0, SPE ∩ GR is also
connected.11 The numerical example in the following section will be useful.

From Proposition 3, when the autarkic allocation is not interim Pareto efficient, there
always exists a stationary, golden-rule type allocation that is supported by SPE. Further-
more, a stationary, golden-rule type SPE allocation is not unique, and there are infinitely
many stationary, golden-rule type SPE allocations.

Let

C : {( ( )) | ( ) ( ), }= ≥ ∀ ∈∈c s c s e s s So
s S

o o

be a set of all feasible allocations where the consumption for an old agent is not less than
his/her endowment for any s ∈ S. Because of Equation (6), if a feasible stationary
allocation (co(s))s∈S is an SPE allocation, (co(s))s∈S should be in C. Let

S s S e s e sy y o: { | ( ) ( )}= ∈ >

and

S s S e s e so y o: { | ( ) ( )}.= ∈ <

11 As for the connectedness, see, for instance, Munkres (2000).
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The set Sy is a set of all shocks in which a young agent’s endowment is larger than an old
agent’s endowment, and So is its complement. Assume that S = Sy ∪ So.12 Let

ˆ : {( ( )) | ( ) ( ) }C C= ∈ > ∈∈c s c s e s s So
s S

o o oonly if

be a set of all allocations in C in which a positive transfer is made from a young agent to
an old agent only if an old agent’s endowment is larger than a young agent’s endowment.

Proposition 4: SPE e so
s S∩ ˆ {( ( )) }C = ∈ .

Proof: See the Appendix.

This proposition states that if a non-autarkic stationary allocation is an SPE allocation,
then a young agent whose endowment is larger than an old agent’s endowment has to
transfer something to the old agent. If a young agent transfers something to an old agent
when the young agent’s endowment is smaller than the old agent’s endowment, the young
agent’s welfare will be lowered. Note that, in a stationary allocation, the marginal disutility
from a transfer when the agent is young, u′(ey(s)), is greater than the marginal benefit from
receiving the same amount when he or she is old, u′(eo(s)), because ey(s) < eo(s) and u is
strictly concave. Hence, such a transfer lowers the young agent’s welfare, and the young
agent prefers an autarkic allocation and deviates from the transfer scheme. This proposition
leads to the following result:

Corollary 1: Under Assumption 1, [ ]SPE GR∩ ∩ Ĉ = ∅.

The next section focuses on a specific situation and further characterizes the set
SPE ∩ GR. In addition, the section investigates the relationship between the role of money
and the role of history in this environment.

4. Money and history

The necessity for money in the economy was first studied in an overlapping generations
model (see e.g. Wallace, 1980). In a typical pure-exchange overlapping generations model,
the autarkic allocation is a unique competitive equilibrium allocation and it is not efficient.
In such an environment, however, if money is introduced, then the efficient allocation is
supported in a decentralized economy.13 In this sense, money implements the efficient
allocation. In contrast, as we have seen so far, if an agent can observe previous histories
(under a certain belief), the golden-rule type allocation is supported as an SPE allocation.
In this section, I compare the role of money and the role of history in this paper’s setting.

4.1 Definition of a monetary equilibrium

In this section, I describe the model with money. The model is the same as in Magill and
Quinzii (2003). There is an infinitely-lived asset, called money, available in positive supply,

12 This assumption excludes the state in which ey(s) = eo(s). Even if such a state exists, the implications of the
following results will not change.

13 For more detail, see, for example, Wallace (1980).
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normalized to 1. The money is originally given to the initial old agent, and is then
exchanged in each period between a young agent and an old agent. Let q(s) denote the price
of the money when the shock is s.14 After the trade is made, a young agent’s consumption
is

c s e s q s m sy y( ) ( ) ( ) ( )= −

and an old agent’s consumption is

c s e s q s m so o( ) ( ) ( ) ( ),= +

where m(s) is the amount of money traded between a young agent and an old agent. A
(stationary) monetary equilibrium is defined in a standard way.15 In monetary equilibrium,
m(s) = 1 for all s ∈ S and q(s) > 0 for all s.

4.2 Benchmark: Deterministic environment

As for the benchmark, let us consider a deterministic environment. Suppose S = {1} and
ey(1) > eo(1) > 0.16 Because there is only one shock, I do not express the shock as “1”
hereafter. Notice that the autarkic allocation is not Pareto efficient.

Lemma 2: There exists a unique (stationary) monetary equilibrium, in which

′
′

= = +u c

u c
and q

e eo

y

y o( )

( )
.1

2

Moreover, this equilibrium allocation is a golden-rule allocation.

Proof: See, for example, Wallace (1980).

If the economy possesses money, a golden-rule allocation is supported by a unique
monetary equilibrium. The next lemma shows that history can also implement the golden-
rule type allocation.

Lemma 3: There is a continuum of SPE allocations, and an SPE allocation co satisfies

c e eo o y∈[ , ].

Moreover, among these SPE allocations, the allocation satisfying co ≥ (ey + eo)/2 is
Pareto efficient.

14 Rigorously speaking, the price should depend on the history of shocks. However, because the focus is on
a stationary allocation, the price only depends on the shock in the current period.

15 For the precise definition, see, for example, Magill and Quinzii (2003).

16 Note that when eo > ey > 0, the autarkic allocation is Pareto efficient.
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Proof: See the Appendix.

These two lemmas imply that: (i) a monetary equilibrium allocation is also an SPE
allocation; (ii) some SPE allocations are not monetary equilibrium allocations; and (iii) in
terms of the implementation of the golden-rule type allocation, money and history are
equivalent.

4.3 Stochastic environment

Let us now consider a stochastic environment. As shown in Magill and Quinzii (2003),
under Assumption 1, if limc→0u′(c) = +∞ and −cu″(c)/u′(c) ≤ 1 for all c > 0, there exists a
unique monetary equilibrium, and this monetary equilibrium allocation is a golden-rule
type allocation. Therefore, one more assumption on u is imposed throughout this section.

Assumption 2: The periodic utility function, u, satisfies limc→0u′(c) = +∞ and

− ′′
′

≤c
u c

u c

( )

( )
1

for all c > 0.

Proposition 5: Under Assumptions 1 and 2, there exists a unique monetary equilibrium,
and its allocation is in SPE ∩ GR.

Proof: By proposition 1 in Magill and Quinzii (2003) and the proof of Proposition 3 in this
paper.

As in the deterministic case, a monetary equilibrium allocation is an SPE allocation in
the stochastic case, and, because GR ∩ SPE is not a singleton, some SPE allocations are
not monetary equilibrium allocations in the stochastic case. The third observation in the
deterministic case is not true in the stochastic case. More precisely, history can implement
more golden-rule type allocations than money. This difference comes from Equations (13)
and (14). In a deterministic case, i.e. |S| = 1, Equations (13) and Equation (14) are
equivalent. This implies that the monetary equilibrium allocation and the golden-rule type
allocation are the same in a deterministic case. However, in a stochastic case, this is not
true. Even if Equation (14) does not hold, Equation (13) can hold. This suggests that there
are some golden-rule type allocations that are not supported by monetary equilibrium.
Because history can implement more allocations than money, it is possible that history can
support more golden-rule type allocations than money. This difference between history and
money is critical under some situations.

Let us consider a two-shock example, i.e. S = {1, 2}.17 Suppose that two shocks are
equally likely to occur. The endowments are assumed to satisfy

e x e xy o( ) , ( )1 2 11 1= − =

and

17 This example is suggested by one referee. The author would like to thank the referee for suggesting this
example.
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e x e xy o( ) , ( ) ,2 2 22 2= − =

where xs ∈ (0,1) for all s ∈ S. Notice that the total endowments are the same for two shocks.
Consider a stationary allocation c such that co(s) = 1 for all s ∈ S. That is, an agent
consumes 1 unit of consumption goods in any state at any age. This allocation is a
golden-rule type allocation, and it maximizes an agent’s ex-ante expected utility; that is,

1

2

1

2
u c s u c s sy o

s Ss S
( ( )) ( ( , ))+ ′⎡

⎣⎢
⎤
⎦⎥′∈∈ ∑∑

subject to co(s, s′) = 2 − cy(s′) for all s ∈ S and all s′ ∈ S.

Proposition 6: For sufficiently small x1 > 0 and x2 > 0 with x1 ≠ x2, a stationary allocation
c such that co(s) = 1 for all s ∈ S is an SPE allocation, but not a monetary equilibrium
allocation.

Proof: See the Appendix.

For the stationary allocation in Proposition 6 to be a monetary equilibrium,
Equation (14) must hold; that is, for s = 1,

′ ⋅ − = ′ ⋅ − + ′ ⋅ −u x u x u x( ) ( ) ( ) ( ) ( ) ( )1 1
1

2
1 1

1

2
1 11 1 2

and for s = 2,

′ ⋅ − = ′ ⋅ − + ′ ⋅ −u x u x u x( ) ( ) ( ) ( ) ( ) ( ).1 1
1

2
1 1

1

2
1 12 1 2

However, these equations are satisfied only when x1 = x2. This case is equivalent to the
deterministic case, and in the deterministic case Equations (13) and (14) are equivalent.
Once x1 and x2 are not the same, Equations (13) and (14) are no longer equivalent.

4.4 Numerical example

In this section, I illustrate by means of a numerical example. Let the periodic utility
function be

u c
c

( ) ,=
−

−1

1

σ

σ

where σ = 0.8. Assume that S = {1, 2} and π(1) = π(2) = 0.5. Set ey(1) = 1.6, ey(2) = 1.8 and
eo(1) = 0.4 and eo(2) = 0.2.

In Figure 1, the horizontal axis depicts an old agent’s consumption when the shock is 1,
and the vertical axis represents the old agent’s consumption when the shock is 2. Notice
that because in the SPE an old agent’s consumption is not less than his/her endowment,
both axes start eo(1) and eo(2). In the figure, a solid line expresses the binding incentive
constraint when the current shock is 1, denoted by (IC1),
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u e c s u c s u e s u e so o

s S

y o

s S
( ( ) ( )) ( ) ( ( )) ( ) ( ) ( ( )),1 1− + = +

∈ ∈∑ ∑π π (IC1)

and a dotted line expresses the binding incentive constraint when the current shock is 2,
denoted by (IC2),

u e c s u c s u e s u e so o

s S

y o

s S
( ( ) ( )) ( ) ( ( )) ( ) ( ) ( ( )).2 2− + = +

∈ ∈∑ ∑π π (IC2)

Because given co(1), a higher co(2) relaxes the incentive constraint when the current
shock is 1, all points above (IC1) satisfy the incentive constraint when the current shock is
1. Similarly, because given co(2), a higher co(1) relaxes the incentive constraint when the
current shock is 2, all points right of (IC2) satisfy the incentive constraint when the current
shock is 2. A dashed line expresses the golden-rule type allocation; that is,

π( ) ( ( ))

( ( ) ( ))
.

s u c s

u e s c s

o

os S

′
′ −

=
∈∑ 1

Given co(2), an increase in co(1) lowers the value of Σs∈S(π(s)u′(co(s))/u′(e(s) − co(s))).
Hence, all points right of the dashed line satisfy π(1)u′(co(1))/u′(cy(1)) + π(2)u′(co(2))/
u′(co(2)) ≤ 1, which implies that an allocation is interim Pareto efficient. The star on the

FIGURE 1. Numerical example
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dashed line is co(1) = co(2) = 1, which is a stationary allocation that maximizes an agent’s
ex-ante expected utility. The square on the dashed line depicts a unique monetary equilib-
rium allocation (“ME” in the figure).

Figure 1 explains which allocations are interim Pareto efficient (“IPE” in the figure) or
not and which allocations are SPE allocations or not. The shaded area expresses an interim
Pareto efficient, subgame perfect equilibrium allocation. As the results in this paper show,
when the autarkic allocation is not interim Pareto efficient, GR ∩ SPE, which is the dashed
line between the solid line and dotted line, is not empty. Moreover, it is compact and
connected. A unique monetary equilibrium in this example is co(1) = 1.0672 and
co(2) = 0.9393, which is different from co(s) = 1 for all s ∈ S.

5. Conclusion

This paper considers an overlapping generations model with aggregate endowment shocks
and a limited commitment constraint. I characterize a stationary golden-rule type alloca-
tion that satisfies a limited commitment constraint. One implication is that history-
dependent behavior improves welfare. The paper also considers the role of money and
history in this environment. As for the implementation of the golden-rule type allocations,
the history considered here implements more allocations than money in a stochastic
environment, while they are the same in a deterministic environment. The interesting
finding is that history can ex-ante welfare-dominate the money. This is because the
condition for a stationary allocation to be a monetary equilibrium allocation and the
condition for a stationary allocation to be a golden-rule type allocation are not the same in
a stochastic environment, whereas they are the same in a deterministic environment.

An interesting area for further research would be to characterize efficient, self-enforcing
allocations completely. This paper characterizes them partially in the sense that the paper
focuses on stationary allocations. The beauty of contemporaneous, infinitely-lived agent
models such as Thomas and Worrall (1988) and Kocherlakota (1996) is that they can
characterize efficient, self-enforcing allocations fully. One advantage of the infinitely-lived
agent model is the ease in formulating the problem for the optimality. Because of this, they
use dynamic programming to characterize the constrained efficient allocations. However, a
similar approach cannot be used with the overlapping generations model, and, hence, the
characterization is more difficult. It would be an interesting future research agenda to
characterize constrained efficient allocations completely in an overlapping generations
model.

Appendix

A.1 Proof of Lemma 1

Proof: Consider a strategy profile, σ, in which no agent transfers anything to the other
agent regardless of what has happened in the past. Then, σ is an SPE, because the only
deviation for any agent is to transfer a positive amount to the other agent and it decreases
the agent’s utility.

Suppose there exists another SPE, σ′, that gives lower expected lifetime utility to some
agent at some date t ≥ 1, some history of transfers, ht−1, and some history of shocks, st, than
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σ. In any SPE, no old agent transfers anything to the young agent after each history. Hence,
the old agent’s consumption is his or her own endowment and the transfer from the young
agent. Because, in autarky, no young agent transfers anything to the old agent, the autarkic
allocation provides the lowest consumption among the SPE. That is why I can focus on the
conditional expected lifetime utility of the young agent. By the supposition above,

u e s s u e s U c s hy
t

o

s S t
t t( ( )) ( ) ( ( )) ( | , , ),+ > ′

∈
−∑ π σ1 (15)

where U(ct|st, ht−1, σ′) is the expected lifetime utility under a strategy profile σ′ and a history
of transfers ht−1. Suppose that the generation-t agent deviates from ′σ t by not transferring
anything to the old agent when he or she is young and by not transferring anything to the
young agent when he or she is old. Then, the conditional expected lifetime utility of that
young agent from this deviation is

u e s E u cy
t t

o
t( ( )) [ ( )| ].+ ′+ −1 σ

Because this agent does not transfer anything to the young agent when he or she is old,

u e s E u c u e s s u e sy
t t

o
t

y
t

o

s S

( ( )) [ ( )| ] ( ( )) ( ) ( ( ))+ ′ ≥ ++ −
∈
∑1 σ π

holds. By combining this equation with Equation (15),

u e s E u c U c s hy
t t

o
t t

t t( ( )) [ ( )| ] ( | , , )+ ′ > ′+ −
−

1
1σ σ

holds. This contradicts the fact that σ′ is an SPE, because the generation-t agent has an
incentive to deviate from ′σ t when young.

A.2 Proof of Proposition 1

Proof: For necessity, suppose that for some t and some st ∈ St, either Equation (6) or (7)
is violated. When Equation (6) does not hold, an old agent strictly prefers doing nothing.
Then, c is not subgame perfect. When Equation (7) does not hold, a young agent prefers the
autarkic allocation to ct. Hence, c cannot be an SPE allocation.

For sufficiency, suppose that for all t and st ∈ St, both Equations (6) and (7) hold. Let
γ t

t
t
y t y

ts c s e s( ) : ( ) ( )= − for all st ∈ St. Notice that c s e s st
o t o

t t
t( ) ( ) ( )= + γ . Consider the

following strategy, σ̂ t :for all t ≥ 1, all st ∈ St and all ht−1 ∈ Ht−1,

ˆ ( , )
( ) ˆ

σ
γ

t
y t t t

t

h s
s t− =1 if no agents before date deviate from σσ ττ for

otherwise

<⎧
⎨
⎩

t

0 ,

and

ˆ ( , , )σ t
o t t

th s s+ + =1 1 0

for all ht ∈ Ht and all st+1 ∈ S. For the initial old agent,
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ˆ ( )σ1 1 0o s =

for all s1 ∈ S. This strategy profile, σ̂ , is an SPE when Equations (6) and (7) hold. The
outcome of σ̂ is c. Therefore, Equations (6) and (7) are sufficient conditions for c being
subgame perfect.

A.3 Proof of Proposition 2

Proof: Sufficiency: Proposition 1 in Magill and Quinzii (2003) implies that, under
Assumption 1, there is a mapping γ : S → (0, ey(s)) such that

′ − = ′ ′ ′ + ′ ′
′∈∑u e s s s s u e s s sy o

s S
( ( ) ( )) ( ) ( ) ( ( ) ( )) ( )γ γ π γ γ (16)

for all s ∈ S. What I am going to show is that the allocation (ey(s) − γ(s), eo(s) + γ(s))s∈S is
an SPE allocation. Let cy(s) = ey(s) − γ(s) and co(s) = eo(s) + γ(s). Because u is strictly
concave and γ(s) > 0 for all s ∈ S,

u c s u e s u c s so o o( ( )) ( ( )) ( ( )) ( )− > ′ γ

and

u e s u c s u c s sy y y( ( )) ( ( )) ( ( )) ( ).− < ′ γ

Equation (16) implies that for all s ∈ S,

π( )[ ( ( )) ( ( ))] ( ( )) ( ( )),′ ′ − ′ > −
′∈∑ s u c s u e s u e s u c so o

s S

y y

which is equivalent to Equation (7).
Necessity: Suppose by way of the contradiction that Equation (8) does not hold with

weak inequality; that is,

π( ) ( ( ))

( ( ))
.

s u e s

u e s

o

ys S

′
′

<
∈∑ 1

Let

Π :
( ) ( ( ))

( ( )) ,

= ′
′ ′

⎡
⎣⎢

⎤
⎦⎥ ′∈

π s u e s

u e s

o

y
s s S

be an S × S matrix. Because u′ > 0, Π is a strictly positive matrix. Thus, by the Perron–
Frobenius theorem, there exists a unique eigenvalue, λ > 0, such that Πx = λx and x is a
strictly positive eigenvector. Note that λ < 1. Therefore, Πx < x holds. Moreover, for any
integer n, (Πx)/n < x/n. This inequality implies

π( ) ( ( ))
( )

( ( ))
( )

′ ′ ′ ′ < ′
′∈∑ s u e s

x s

n
u e s

x s

n
o

s S

y
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for all s ∈ S. This inequality implies that for a sufficiently large n,

π( ) ( )
( )

( ( )) ( ( )) (′ ′ + ′⎛
⎝

⎞
⎠ − ′⎡

⎣⎢
⎤
⎦⎥
< −

′∈∑ s u e s
x s

n
u e s u e s u eo o

s S

y y ss
x s

n
)

( )−⎛
⎝

⎞
⎠

for all s ∈ S. This inequality implies that a young agent does not have an incentive to
transfer a positive amount of endowment to an old agent. Because incentive conditions are
satisfied most easily at the autarkic allocation, this leads to the conclusion that there does
not exist a stationary SPE allocation except for the autarkic allocation.

A.4 Proof of Proposition 3

Proof: (i): Proposition 1 in Magill and Quinzii (2003) implies that under Assumption 1,
there is a mapping γ : S → (0, ey(s)) such that

′ − = ′ ′ ′ + ′ ′
′∈∑u e s s s s u e s s sy o

s S
( ( ) ( )) ( ) ( ) ( ( ) ( )) ( )γ γ π γ γ

for all s ∈ S, and the resulting allocation (ey(s) − γ(s), eo(s) + γ(s))s∈S satisfies Σs∈Sπ(s)u′(eo(s)
+ γ(s))/u′(ey(s) − γ(s)) = 1; that is, the allocation is a golden-rule type allocation. In
Proposition 2, I showed that this allocation is an SPE allocation. Therefore, GR SPE∩ ≠ /0.
As for compactness, consider a sequence ( )cn

o
n=
∞

1, where c c sn
o

n
o

s S: ( ( ))= ∈ and c GRn
o ∈ for all

n. Let co be a limit of cn
o. For all n,

π( ) ( ( ))

( ( ) ( ))

s u c s

u e s c s
n
o

n
os S

′
′ −

=
∈∑ 1

is satisfied. Because u′ is continuous,

1= ′
′ −

⎛
⎝⎜

⎞
⎠⎟ = ′

→∞ ∈∑lim
( ) ( ( ))

( ( ) ( ))

( ) ( (
n

n
o

n
os S

os u c s

u e s c s

s u cπ π ss

u e s c sos S

))

( ( ) ( ))
.

′ −∈∑

Therefore, co ∈ GR. This confirms that GR is closed. By analogy, consider a sequence
( )cn

o
n=
∞

1 , where c c sn
o

n
o

s S: ( ( ))= ∈ and c SPEn
o ∈ for all n. Let co be a limit of cn

o. Because u is
continuous,

u e s u c s u c so
n n

o o( ( )) lim ( ( )) ( ( ))≤ =→∞

for all s ∈ S and

u e s s u e s u e s c s s u cy o

s S n n
o( ( )) ( ) ( ( )) lim ( ( ) ( )) ( ) (+ ′ ′ ≤ − + ′

′∈ →∞∑ π π nn
o

s S

o o

s S

s

u e s c s s u c s

( ))

( ( ) ( )) ( ) ( ( )).

′⎡⎣ ⎤⎦
= − + ′ ′

′∈

′∈

∑
∑ π

This implies that co ∈ SPE, and hence, SPE is closed. Therefore, GR ∩ SPE is also
closed. Because the endowment in any state is finite, GR ∩ SPE is bounded in R+

S.
Therefore, GR ∩ SPE is compact in R+

S.
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(ii): First, show that SPE is connected in R+
S. To show this, I show that SPE is convex in

R+
S . Pick two allocations, c and c′ from SPE. Fix any μ ∈ [0,1]. Let cμ := μc + (1 − μ)c′.

Because u is strictly concave,

u c s u c s u c s u e s u e so o o o o( ( )) ( ( )) ( ) ( ( )) ( ( )) ( ) ( ( ),μ μ μ μ μ≥ + − ≥ + −′1 1 )) ( ( ))= u e So

holds for all s ∈ S. Furthermore,

u e s c s u e s c s e s c s

u e s

o o o( ( ) ( )) ( ( ( ) ( )) ( )( ( ) ( )))

( (

,− = − + − −
≥

′μ μ μ
μ

1

)) ( )) ( ) ( ( ) ( ))− + − − ′c s u e s c so o1 μ

holds. This implies that for all s ∈ S,

u e s c s s u c s u e s c s so o

s S

o( ( ) ( )) ( ) ( ( )) ( ( ) ( )) ( ), ,− + ′ ′ ≥ − + ′
′∈∑μ μπ μ π uu c s

u e s c s s u c s

o

s S

o o

s

( ( ))

( ) ( ( ) ( )) ( ) ( ( ))

′⎡⎣ ⎤⎦
+ − − + ′ ′

′∈

′ ′
′∈

∑
1 μ π

SS

o o

s S
u e s e s s u e s

∑
∑

⎡⎣ ⎤⎦
≥ − + ′ ′

′∈
( ( ) ( )) ( ) ( ( )).π

Therefore, cμ ∈ SPE. Because SPE is a convex set, it is connected in R+
S.

Second, prove that GR is connected. Because u is twice-continuously differentiable,
u′ > 0 and u″ < 0, from

π( ) ( ( ))

( ( ) ( ))
,

s u c s

u e s c s

o

os S

′
′ −

=
∈∑ 1

there exists a continuous mapping fi: ×s∈S\{i}[eo(s), e(s)] → [eo(i), e(i)]
such that given c c s e s e si

o o
s S i s S i

o
− ∈ ∈= ∈×: ( ( )) [ ( ), ( ))\{ } \{ } , ( ( ), )f c ci

o
i

o
− − satisfies

∑ ′ ′ − =∈s S
o os u c s u e s c sπ( ) ( ( )) ( ( ) ( )) 1 for all i ∈ S.18 Letting

F c i e i e i c i f c c e si
o o o

i i
o

i
o

s S i
o: { ( ) [ ( ), ( )] ( ) ( ) [ (\{ }= ∈ = ∈×− − ∈for )), ( )]},e s

GR Fi S i= ∈∪ .

Because fi is continuous, Fi is connected in R+. The allocation that is used in the proof
of (i) is included in all Fi. Thus, for any i, j, i ≠ j, F Fi j∩ ≠ /0. This implies that GR = ∪i∈SFi

is also connected (see e.g. Munkres, (2000)).
Because SPE and GR are connected and SPE GR∩ ≠ /0, SPE ∩ GR is connected.

A.5 Proof of Proposition 4

Proof: Because the autarkic allocation is an SPE allocation and (eo(s))s∈S ∈ Ĉ, (eo(s))s∈S ∈
SPE ∩ Ĉ. Consider an allocation (co(s))s∈S ∈ Ĉ such that co(s) > eo(s) for some s ∈ So.
Notice that if co(s) > eo(s) for s ∈ So, then

18 If limc→0u′(c) = +∞, then instead of [eo(s), e(s)], consider an interval, [eo(s), e(s)). Because in such a case
any SPE allocation satisfies cy(s) = e(s) − co(s) > 0, we can only focus on the above interval.
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u e s u c s u c s u e sy y o o( ( )) ( ( )) ( ( )) ( ( )),− > −

because u is strictly concave and ey(s) − cy(s) = co(s) − eo(s). From this, for the above
allocation (co(s))s∈S,

π π( )[ ( ( )) ( ( ))] ( )[ ( ( )) ( ( ))]

ma

s u c s u e s s u e s u c so o

s S

y y

s S
− < −

≤
∈ ∈∑ ∑

xx { ( ( )) ( ( ))},s S
y yu e s u c s∈ −

which contradicts Equation (7). Thus, the above allocation (co(s))s∈S is not in SPE.

A.6 Proof of Lemma 3

Proof: A necessary and sufficient condition for a stationary allocation c to be an SPE
allocation is that co ≥ eo and

u e c u c u e e u eo o o o( ) ( ) ( ) ( ),− + ≥ − +

where e : = ey + eo. Because u(e − co) + u(co) is an inverse U-shaped concave function in co

and the maximum is achieved at co = e/2, the right-hand side and the left-hand side of the
equation again hold at co = ey. Therefore, any stationary allocation, co ∈ [eo, ey], is an SPE
allocation. If a stationary allocation is Pareto efficient,

′
′

≤u c

u c

o

y

( )

( )
.1

Hence, a stationary SPE allocation, c, satisfying co ∈ [eo, (ey + eo)/2), is not Pareto
efficient.

A.7 Proof of Proposition 6

Proof: First, show that the stationary allocation is an SPE allocation for x sufficiently close
to 0. Because 1 > xs for all s ∈ S, Equation (6) is satisfied. For Equation (7), for s = 1,

u u u x u x u x( ) ( ) ( ) ( ) ( ),1 1 2
1

2

1

2
1 1 2+ ≥ − + +

and for s = 2,

u u u x u x u x( ) ( ) ( ) ( ) ( ).1 1 2
1

2

1

2
2 1 2+ ≥ − + +

When xs = 0 for all s ∈ S, the right-hand sides of the above equations are u(2) + u(0).
Because u is strictly concave, 2u(1) > u(2) + u(0). Because u is continuous, for x1 and x2

sufficiently close to 0, Equation (7) holds. Therefore, the stationary allocation c is an SPE
allocation.
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Next, show that this stationary allocation is not a monetary equilibrium allocation.
Under Assumptions 1 and 2, Magill and Quinzii (2003) show that there is a unique
monetary equilibrium and it satisfies Equation (14). For the stationary allocation c to be a
monetary equilibrium allocation, for s = 1,

′ ⋅ − = ′ ⋅ − + ′ ⋅ −u x u x u x( ) ( ) ( ) ( ) ( ) ( )1 1
1

2
1 1

1

2
1 11 1 2

and for s = 2,

′ ⋅ − = ′ ⋅ − + ′ ⋅ −u x u x u x( ) ( ) ( ) ( ) ( ) ( )1 1
1

2
1 1

1

2
1 12 1 2

must hold. These are satisfied only when x1 = x2. This implies that when x1 ≠ x2, the
stationary allocation c is not a monetary equilibrium allocation.

Final version accepted 14 February 2014.
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