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1. Introduction

Azzalini (1985) introduced the univariate skew normal distribution as an extension of the
normal distribution to accommodate asymmetry. Inspired by Azzalini’s work, numerous work
has been done on the applications of skewed distributions. Among all skewed distributions, the
skew ¢t distribution received special attention after the introduction of the skew multivariate
normal distribution by Azzalini and Dalla Valle (1996). Gupta (2003) defined the skew multi-
variate ¢ distribution using a pair of independent standard skew normal and chi-squared
random variables. Azzalini and Capitanio (2003) defined a skew ¢ variate as a scale mixture of
skew normal and chi-squared variables. Several authors studied possible extensions and general-
izations of the skew ¢ distribution. Arellano-Valle and Genton (2005) discussed generalized skew
distributions in the multivariate setting, including the skew t. Huang and Chen (2006) studied
generalized skew ¢ distributions and used them in data analysis. Hasan (2013) presented a new
approach to define the noncentral skew ¢ distribution. Shafiei and Doostparast (2014) intro-
duced the Balakrishnan skew ¢ distribution and its associated statistical characteristics, to name a
few. To provide a wide and flexible family to model data that accounts for skewness and heavy
tail weight, Jones (2004) introduced the beta-generated distribution as a generalization of the
distribution of order statistics of a random sample from a distribution F or by applying the
inverse probability integral transformation to the beta distribution.

The beta normal distribution was introduced by Eugene, Lee, and Famoye (2002). In
their work they studied the shape properties of the beta normal distribution as well as
estimation of the parameters using the maximum likelihood method. Silva, Ortega, and
Cordeiro (2010) proposed the modified Weibull distribution. Cordeiro and De Castro
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(2011) studied the beta Weibull geometric distribution and its properties. Cordeiro and
Nadarajah et al. (2011) derived a closed form expression for moments of the class beta
generalized distributions. Régo and Nadarajah (2011) provided more detailed properties of
the beta normal distribution. As a generalization of the skew normal, Mameli and Musio
(2013) introduced the beta skew normal distribution, to name a few.

In this article we introduce a new generalization of the skew ¢ distribution based on the
beta generalized distribution. The new class of distribution, which is called the beta skew ¢
(BST), has the ability of fitting skewed and heavy tailed data and is more general than the
skew t distribution, as it contains the skew ¢ distribution as a special case. Related
properties of the new distribution, such as moments and the order statistics, are derived.
The proposed distribution is applied to real data to illustrate the fitting procedure using
the maximum likelihood method and the L-moments method. Further, parameter estima-
tion for simulated and real life data is conducted to illustrate the advantage of L-moments
method over the maximum likelihood estimators (MLEs).

2. Density and distribution functions

For a continuous distribution F with the density function f and parameters a>0 and b>0,
Jones (2004) defined the density of the beta-generated distribution gr by

1

. - - a—=l/qy b—1
glxiab) = g OFC (1= Fx)* 0
where B(a,b) is the complete beta function, defined by
1
B(a, b) :J (@01 — 1) Vg, 2)
0
for a,b € R*. The distribution function Gr is given by
GF(x; a, b) = IF(x) <a7 b)) (3)
where Ip(y)(a,b) is the incomplete beta function ratio, defined by
Br(x(a, b)
Igo(a,b) =————=, 0<F(x) <1, 4
F( )(a ) B(a, b) (X) (4)
and Bp(y)(a, b) is the incomplete beta function, defined by
F(x) -
Bp(y)(a,b) = J 2711 —-2)" dz (5)
0
Thus, the distribution function Gr can be written as
1 F(x) bt
Gr(x;a,b) = mjo 27'1—-2)""dz, 0<F(x)<1. (6)

Throughout this article we denote by ¢, the Student ¢ distribution with cdf T(x;r) and pdf
t(x;r), st,(A) the skew t with cdf F(x;A,r) and pdf f(x;A,r), Kw(a, b) the Kumaraswamy
distribution, and KwST(a,b,A,r) the Kumaraswamy skew ¢ distribution with pdf
g(x;a,b,A,r) and cdf G(x;a,b,A,r).
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Replacing F(x) by F(x;A,r) in Eq. (6), we defined the beta skew ¢ distribution denoted
by BST(a, b, A,r) as follows.

Definition 2.1. A random variable X is said to have the beta skew ¢ distribution if it has
the distribution function given by

F(x;A,r)
. _ - a—1 b1
Gelwsa b ) =g | #0-2 e o)
and probability density function (pdf)
. o 1 . . a—1 - 3 b—1
gr(x;a,b,A,r) = Ba.b) b)f(x,/\, rF(; A, 1) (1 — F(x; A1), (8)

where — co<x<o00, a,b>0, and f(x;A,r) and F(x;A,r) are the pdf and cumulative
density function cdf of the skew-t distribution. The term f(x; A, r) is given by Azzalini and
Capitanio (2014) as follows:

floes A r) = 2t(x; 1) T(Axy /%; r+1), 9)

where T'(x;r) and t(x; ) denote the cdf and pdf of the Student-t distribution with degrees
of freedom r>0 and the shape parameter A € R.

The BST(a,b,A,r) distribution can be extended to include location and scale para-
meters y € R and 0>0. If X~BST(a,b,A,r), then Y = py + 0X leads to a six-parameter
BST distribution with the parameter vector 0= (a,b,u,0,1,r). We denote it
as Y~BST(a,b,u,0,A,1).

2.1. Expansion of the density and distribution function

Using Newton’s binomial expansion for b € ", the pdf of BST(a, b, A, r) in Eq. (8) can be
rewritten as

o0

gr(x;a,b,1,7) = B(al, b > (-1 < ’ P ! >f(x;% r)F(a; A, )" (10)

k=0

If b € Z", then the index k in the sum in Eq. (10) stops at b — 1.
In order statistics literature, Rohatgi and Ehsanes Saleh (1988) generalized Eq. (3) as
follows:

b—1 a+ b_1
Grx) (% 2,0) = Z( K )F(x)”b_k_l(l —F(x)", (11)
k=0
where b € Z' and a € R, and
a—1
b—1 ab—k—
Gy (i) =1 = 3 (07 )R - R 12)
k=0

where a € Z" and b € R*.
According to Gupta and Nadarajah (2004, 12), the integral representation for incom-
plete beta ratio Gg(.,)(a, b) can be written as



840 D. BASALAMAH ET AL.

_ F(x;A,1)" Jl —b a+b—1 . —a
GF(x;AA’r)(a, b) = 2B(a. b B(I—b, a1 b) 0Z (1-2) (1 —zF(x;A, 1)) “dz. (13)

3. Properties and simulations

In this section we study some theoretical properties of the proposed distribution. Then we
provide graphical illustrations of these properties. Finally, we discuss a classical approach
to generate a random sample from BST distribution.

3.1. Properties

Proposition 3.1. Let X~BST(a, b, A, r),then:

(a) If a = b = 1,then X~st,(A).

(b) If A =0 and a = b = 1,then X~t,.

(c)IfA=0and a=b=r = l,then X~Cauchy(0,1).

(d) If A = 0,then X~beta — t,(a,b).

(e) If A = 0 and r = 1,then X~beta — Cauchy(a,b,0,1).

(f) If a = 1,then X~KwST(1,b,A,r).

(¢) If b = 1,then X~KwST(a,1,A,r).

(h) If Y = F(x; A, r),then X~beta(a,b) .

(i) If Y = 1 — F(x; A, r),then X~beta(b,a) .

() Y = (F(X; A, 1) *~Kw(a, b).

)Y = (1 — F(X; A, 1) ~Kw(b, a).

The proof of Proposition 3.1 follows directly from Eq. (8) and elementary properties of
the skew t distribution. Note that in parts (d) and (e), the distribution function of beta —
t,(a,b) and beta — Cauchy(a,b,0,1) are given by substituting the F(x) in Eq. (3) by the
the distribution function of the Student t with degrees of freedom r and the distribution
function of Cauchy(0, 1), respectively. The proofs of the following properties are given in
the appendix.

Proposition 3.2. Let X~BST(a,b,A,r) with pdf gr(x;a,b,A,r) in Eq. (8), then:

(a) As a — oo or b — oo,the probability density function gr(x;a,b,A,r) degenerates to
zero.

(b) As r — 0o, X~beta — SN(a, b, 1).

(c) As A — oo, X~beta — |t,|(a,b,1).

Proposition 3.3. Let Y1,Y,,.....Y, be a random sample of size n from a st,(A) with
probability density function f(x;A,r) defined in (9) and distribution function F(x;A,r). Let
Yin < Yo < ... < Yy be the order statistics of the random sample. Then:

(a) The ith order statistic is Y;.,,~BST(i,n — i+ 1,A,r),where i = 1,2,...,n.

(b) The largest order statistic is Y,.,(y) = max{Yy,...,Y,}~BST(n,1,A,r).

(c) The smallest order statistic is Y1.,(y) = min{Yy,..., Y, }~BST(1,n,A,r).

Proposition 3.4. Let X~BST(a,b,\,r) be independent from (Y1,Y,,.....Y,),which is a
random sample of size n from st,(A) with probability density function f(x;A,r) defined in
Eq. (9) and distribution function F(x;A,r). Let Y., < Y5, < ... < Yy, be the order statis-
tics of the random sample. Then,

(a) W = (X|Y1., > X)~ BST(a,b + n,A,r),
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(b) W* = (X|Yp < X)~ BST(a+n,b,A,r1),

where Y., = min{Y1,Y,,....Y,} and Y,,, = max{Y,,Y,,...Y, }.

Proposition 3.4 can be generalized to any ¢,d € R as follows.

Proposition 3.5. Let X~BST(a,b,A,r) be independent from Y~BST(c,1,A,r) and
Z~BST(1,d,A,r), where c € R" and d € R*. Then:

(a) (X|Y < X)~ BST(a+c¢,b,A,r1).

(b) (X|Z > X)~ BST(a,b+d,A,r).

3.2. Graphical illustration

To understand the effect of the parameters on the overall shape of the beta skew ¢
probability density, we illustrate different shapes of the density curve by fixing five
parameters and varying the sixth one in the following figures. For simplicity, we set up
the location parameter y to be zero and the scale parameter o to be one. In Figure 1, we
study the effect of the parameter a on the density shape by fixing the remaining para-
meters (b = 3,1 =1,r =3) and we graph the density of BST for different values of a.
Figure 1 shows that the left tail of the BST density curve gets lighter, as a increases.

On the other hand, when b varies and all other parameters are fixed
(a=5,A=—1,r = 3), we notice that the parameter b controls the right-tail weight of
the BST density as shown in Figure 2. In addition, Figures 1 and 2 show that the BST
density curve degenerates to zero as a or b approaches infinity.

Figure 3 illustrates the effect of the parameter A on the shape of the BST density curve
by fixing the parameters (a = 5,b = 3,r = 3) and taking the parameter A ranging from
—5 to 100. Then we compare the density curves of BST(5,3,1,3) with the curve of
beta — |t;|(a = 5,b = 3,r = 3). As expected, the graph is skewed to the right for positive
values of A and skewed to the left for negative values of A. Moreover, we observe that as A
increases the BST density curve overlaps the beta — |t,| density curve, which graphically
proves part (c) of proposition 3.2.

In Figure 4, we study the effect of the degrees of freedom r on the shape of the BST
density by fixing the parameters (a =5,b =3,1 = —1) and taking the degrees of
freedom r =1,5,15 and 50. We observe that the shape of the BST(5,3,—1,r) density
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Figure 1. BST(a,b = 5,A = 1,r = 3) density curves as a varies.
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Figure 4. BST(a = 5,b = 3,A = —1,r) density curves as r varies.

gets closer to the one of the BSN(5,3, —1) as the degrees of freedom r increases, which
agrees with part (b) of Proposition 3.2. The tail gets thicker as the degrees of freedom
decrease. These two properties are inherited from the baseline skew ¢ distribution.
Furthermore, Figures 1 to 4 show that the BST inherits the unimodality from the
baseline distribution.

3.3. Simulations

A random sample from BST can be generated using the classical inverse probability
integral transform technique as follows:
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Figure 5. Histogram for random samples of size 1000 of BST distribution.

(1) Generate a random sample Y7, Ys, ..., Y, from beta(a, b) distribution.

(2) Let X; = F'(Y;;A,r), where F!(.,A,r) is the quantile function of the skew t
distribution.

(3) X1,X,,...,X,~BST(a,b,A,r).

Figure 5 shows histograms of three random samples of size 1000 generated from
BST(0), 0 = (a,b,A,r), a distribution using the classical inverse probability integral trans-
form technique with different parameter vectors 6; = (a =2,b =3,1 = —1,r =2) as in
Figure 5, 6, = (a =2,b=2,A=3,r=2) as in Figure 5, and 6 = (a=2,b=2,1 =
0,r = 2) as in Figure 5.

4. Moments

In this section we derive an explicit form of the nth moment as a function of the nth
moment of the baseline distribution, the skew t distribution. The proofs of Theorems 4.1

and 4.2 are given in the appendix.
Theorem 4.1. Let X~BST(a,b,pu,0,A,r). Then the nth moment for integer n > r is

given by

A o e TP Y e A A A PRV R
5 = gy o 2 0 () (7) @ moan s

where Y~st,(A),and u#0. If b € Z* then the index j stops at b — 1.
According to Azzalini and Capitanio (2014), the nth moment of Y~st,(1) is given by

Ey(Y") = EV(‘//"/2)EZ(Z”)
(r/2)"*1(552) n
g E@Y),

where Z~SN(0,1,1).
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Proposition 4.1. Let X~BST(a,b,A,r). Then the nth moment for integer n > r is given
by

1 O (b—1 i
E(X") = —1J< . )E Y [F(y; A, 1) — 1], (15)
) =g CV (B -
where Y~st,(A). If b € Z" ,then the index j stops at b — 1.

Alternatively, the nth moment of X~BST(a,b,A,r) as a random variable with
integers a > 2 and b > 2 can be expressed as a function of the nth moment of the
baseline distribution st,(A) multiplied by a constant as presented in the following

theorem.
Theorem 4.3. Let X~BST(a, b, A, r) with integers a > 2, b > 2, n>0,and r > n:

E(X") = c(a, b)Ex(Y"), (16)
where L e (—1)' ) (a—1) (a—1)
@b = ey | B b= et @i D=1 _(_1)b_la+b—2]7

and Y~st,(A).

5. Order statistics

Order statistics make their appearance in many areas of statistical theory and
practice. In this section we derive an explicit form of the probability density
function of the BST order statistics. The proofs of Theorems 5.1 and 5.2 are given
in the appendix.

Theorem 5.1. Let Xi,...,.X, be a random sample from BST distribution with
distribution function Gg(x;a,b,A,r) in Eq. (7) and probability density function
gr(x;a,b,A,r) in Eq. (8). Let X1, < Xy < ... < X,.n be the order statistics of the
random sample. The density function of the ith order statistic, for i=1,...,n,is
given by

gin(%) = ;; (—1)"1-(’;’) (” L l)gp(x; a*,b, A, r)h* (x)ci(a, b), (17)

where a* = a(k + i),

B(a*, b)
cl(a,b) = =1’
B(a, b)[aB(a,b)B(1 — b,a + b)]
and 1
he(x)=[[z7°(1 — 211 = 2F(x; A, 1)) "“de] "
0
According to Thukral (2014), the beta function B(a, b) = % can be relaxed to include

all real numbers a and b. Therefore, the preceding expression of the density function
gin(x) of the ith order statistic is true for all real a,b € R.
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Using the density of the ith order statistic we derived in Theorem 5.1, we provide the
expression of the largest and the smallest order statistics of a BST(a,b,A,r) random
sample as follows.

Corollary 5.1. Let Xj,...,X, be a random sample from BST(a,b,A,r) distribution.
Then, for b € Z" an integer and a € R*:

(a) The density of the largest order statistic X,,.,(x) = max{xi,...,x,} is given by

B(an,b)

wn (%) = ngp(x;na, b, A, r)h(x)" ! _ 18
G () = nge T Pt e R
(b) The density of the smallest order statistic X;.,(x) = min{xy, ..., x,} is given by
n—1
—1 k B(a*, b)
al(x) = -1 kn(” > x;a*,b,A, r)h(x ,
sual) = > (" PP e
(19)

1
where h(x) = [278(1 — 2)*"" (1 — 2F(x; A, 7)) “dz and a* = a(k + 1).

Using expréssion (13) of the incomplete beta function and for integer b>0, the ith
order statistics of X~BST(a, b, A, r) can be written as follows.

Theorem 5.2. Let X;, ..., X, be random variables from BST distribution with common
distribution function Gg(x;a,b,A,r) in Eq. (7) and probability density function
gr(x;a,b,A,r) in Eq. (8). Let X1.p < Xop < ... < Xy be the order statistics. The density
of the ith order statistic, for i = 1, ..., n,is given by

_ S [ n n—i ) 1— F(x;/\, r) b—1 ’ o k+i—1
Gin(x) = kZ:; (—l)k,( i ) ( k )gp(x, a,b,\, r){W;gp(x, (a+b _])7],,\,r)} ’

(20)
where b e 7" and a € RT.

6. Maximum likelihood estimation

In this section, the maximum likelihood estimators (MLEs) of the BST parameters are
given. Let x1,xy,.....,x, be a random sample of size n from the BST(a,b,u,0,A,r)
distribution. The log-likelihood function [(6) for the parameter vector of 6=
(a,b,u,0,A,r) can be written as

1(6) = nlog(T(a+ b)) — nlog(T(a)) — nlog(T' (b)) — nlog(o) + i logf (zi;u,0,A,7)

+(a—1) Zlog(F(zi;y,a,)L,r)) +(b—1) Zlog(l — Flzi; 4, 0,A,7)),

1 1

(21)

where z; = *—£. The log-likelihood can be maximized either directly by using the optim
function in R or by solving the nonlinear likelihood equations obtained by differentiating
Eq. (20). The components of the score vector U(f) are given by
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Ua(6) = ny(a+b) — ny(a) + ;0 log(F(zi: 4, 0, A, 7)),
UL(6) = ny(a+b) — ny(b) + 3 log(1 — F(zisp,0,4,17)),

n Xj—
_ -1 df (0 .A,7)
Uu(0) =2 of (CEu0.0,r) du

(a—1) zn: 1 dF("tu0.A,r)
3 ) dy

(b—-1) 1 d(1— F(X‘ Euolr))
+ Z(l F(X‘ EuoAr)) du ?

n d) Lo AT
Uolf) = =2+ b S ol

_ (a1 1 dF (o Ar)
> F(Eu,00,r) do

(b-1) v d(1=F(i%p0 A1)
+ ;) - 771 A, dzr ’

n

- df(%;y,a,/\,r)
U)L<9> - ;)f(x, ”MG/\?) a\

n dF (@;y,d,/\,r)
Ha= 1) 3 g T

i=
n

d(1-F(P- 7))
+(b_l);)(l —F(EE 1#0/1,,» d)[ )

n

_ 1 Af (Euohr)
Ur(Q) - g)f(xi;“;y,ﬂ,)t,r) dr

n Xj—U
. 1 dF(’T;y,U,A,r)
+a—1) ;F(gm,o,hr) dr

1 1 d(1-F(u,0.0,7)
+(b - 1)2(1 —FEuo0r)) dr ’

i=0

where y(x) is the digamma function defined by “Llog/(x).

6.1. lllustrative examples

We illustrate the superiority of the BST distributions proposed here by comparing with some
of its submodels such as the beta ¢ distribution Bt, and the ¢ distribution ¢, using the Akaike
information criterion (AIC) and Schwarz information criterion (SIC). We give an application
using well-known data sets to demonstrate the applicability of the proposed model. Tables are
used to display the six parameters 6 = (y, 0,1, r, a, b) estimate for each model with the AIC
and the SIC values.

The data set used here is the U.S. indemnity losses used in Frees and Valdez (1998) and
Eling (2012). This data contains 1500 general liability claims giving for each the indemnity
payment, denoted by “loss.” For the purposes of scaling, we divide the data set by 1000.
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The U.S. indemnity losses data are available in the R packages copula and evd. Descriptive
statistics of the data are given in Table 1.

Figure 6 presents the histogram for the U.S. indemnity losses data set, as well as the
corresponding normal Q-Q plot. The histogram shows that we have a large number of
small losses and a lower number of very large losses, which is a typical feature of insurance
claims data. Descriptive statistics of the U.S. indemnity losses data set are given in Table 1.

From Table 2, we observe that the BST model has the smallest SIC value among all
other models, which indicates that it provides the best fit.

Figure 7 presents a graphical display of the density curves fitted to the histogram of the
U.S. indemnity losses data where the solid line presents the BST density curve, the dashed
line presents the Bt, density curve, and the dotted line presents the ¢, density curve.
Figure 8 presents a closer look at the fitted density curves.

Histogram of US Normal Q-Q Plot
g s
- £ g
o 113
& 84 E

]
|
|
0 500
o
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Figure 6. Histogram and Q-Q plot for U.S. indemnity losses data set.

Table 1. Summary description of the U.S. indemnity losses data set.
Minimum Median Mean SD Maximum Skewness Kurtosis
0.01 12.00 41.21 102.74 2174.00 9.154 141.978

Table 2. Parameter estimations for the U.S. indemnity losses data set.

Distribution u 0 A r a b log(0) AIC SIC
BST 0.532 1.548 0.644 0.383 8.554 2.764 6596.379 13204.76 13236.64
Bt, 1.539 2.533 0.238 7.429 3.363 6722.746 13455.49 13482.06
t 7.383 7.317 0.788 724332 1449264 14508.58
= Distribution
e
S — BST
= BT
: ~ !y | T
(4] (=]
o o

0.00

| | T |
500 1000 1500 2000

us

Figure 7. Histogram and density curves fitted to the U.S. indemnity losses data.
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Figure 8. Closer look at the histogram and density curves fitted to the U.S. indemnity losses data.

Table 3. Parameter estimations for the U.S. indemnity losses data set.

Distribution u o A r a b -log(6) AIC SIC
BST 0.532 1.548 0.644 0.383 8.554 2.764 6596.379 13204.76 13236.64
sty 0.0096 10.687 80448.45 0.859 6594.952 13197.9 13219.16

Finally, in Table 3 we compare the fitting superiority of the BST distribution with the
baseline distribution st,. We observe that the BST distribution is a competitive candidate to
fit the data as its AIC and SIC values are very close to the AIC and SIC of the skew t
distribution. Further, note that for the st, distribution the estimated skewness parameter A is
very large while the BST distribution produced a reasonable estimated value of the para-
meter A. Therefore, we suggest using the BST distribution to fit this data set. Figure 9 shows
the graphical display of the fitted density curves to the histogram of the U.S. indemnity
losses data, while a closer look to demonstrate the tail fitting for both distributions is
presented in Figure 10. From the fitting results we conclude that the BST distribution is
very promising distribution that has the ability to fit very skewed and heavy tailed data.

7. L-moments estimation

The L-moments are defined as linear combinations of expectations of order statistics that
exist for any random variable with a finite mean. L-moments are useful in fitting

b= Distribution

= — BST
> -—- ST
=
w
& o
o 1=

(]

(=]

=} I T T T 1

0 500 1000 1500 2000

us

Figure 9. BST versus st, MLE fitting to the U.S. indemnity losses data set.
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Figure 10. Closer look at BST versus st, MLE fitting to the U.S. indemnity losses data set.

distributions because they specify location, scale, skewness, and kurtosis. There are many
advantage of L-moments over the ordinary moments. Unlike the ordinary moments,
L-moments exist whenever the underlying random variable has a finite mean. In addition,
when dealing with data that has large variation, large skewness, and heavy tails,
L-moments have the advantage of natural unbiasedness, robustness, and often smaller
sampling variances than other estimators.

In this section, following the definition of L-moments by Hosking (1990), we derive the
first seven theoretical L-moments of the proposed BST distribution. Then, we estimate the
first four L-moments and the first two L-moments ratios by varying one parameter while
fixing other parameters. Further, we conduct some parameter estimation for simulated
and real life data using L-moments method. Finally, we illustrate the fitting superiority of
L-moments parameters estimation and compare it with the classical ML estimators by the
AIC and SIC values.

1. Theoretical and sample I-moments

Denote the theoretical L-moments by L;, L, ... throughout this article. From the expecta-
tions of order statistics, Hosking (1990) defined the theoretical L-moments for a real
valued random variable X as follows:

m—1
lz ( >E[Xm_k;m], for m=1,2,.... (22)

mi=

where E[X,,_t.| is the expectation of the m — k order statistic of a sample of size m. The
first four theoretical L-moments are expressed by

Ly = E[X],

L, =1EX;, — X,

L %E[Xss —2Xo53 + X13),

Ly =21E[X44 —3X54 +3Xpu — Xyl

The L-moments ratio are independent of the units of measurement of X and are defined
for higher moments, m > 3, as

Tm =2 m=3,4,.. . (23)
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It is clear that L; is the mean of X and hence is a measure of location, as known as
L-location. L, is known as L-scale, and the L-moments ratios 73 and 74 are the L-skewness
and L-kurtosis, respectively. Based on the definition of the theoretical L-moments Hosking
(1990), we derive the theoretical L-moments for the BST distribution as follows.

Theorem 7.1. The theoretical L-moments for a BST random variable X with distribution
function G(X;a,b,A,r),provided in Eq. (7), are defined as

L :"il k (—pyk(m 1 (K E[XG(X;a,b,A,r)" 1] (24)
m Jzo k ] ) ) b ) N

k=0 j
Corollary 7.1. The first seven BST theoretical L-moments are expressed by

L, =E[XG(X;a,b,A,1)],

L, = —1E[XG(X;a,b,A,1)] +2E[XG(X;a,b,\, 1),
Ly = E[XG(X;a,b,\,r)] — 6E[XG(X;a,b,A,7)*]] + 6E[XG(X;a,b,A,7)°],
Ly = —E[XG(X;a,b,\ )]+ 12E[XG(X;a,b, A, 7)*] — 30E[XG(X;a, b, A, r)’]

+20E[XG(X; a,b, A, )",

Ls = E[XG(X;a,b,\,r)] — 20E[XG(X; a,b,A,r)?] + 90E[XG(X; a,b,A,7)°]
—140E[XG(X; a, b, A, r)*] + 70E[XG(X; a, b, A, 1)’],

Ly = —E[XG(X;a,b,\, r)] + 30E[XG(X;a,b,A,7)*] — 210E[XG(X; a,b,A,7)’]
+560E[XG(X; a, b, A, 7)"] — 630E[XG(X; a,b,\, r)°] + 252E[XG(X; a, b, A, 7)°],

L, = E[XG(X;a,b,\,r)] — 42E[XG(X;a,b,A,r)"] + 420E[XG(X; a,b,A,7)’]
—1680E[XG(X; a, b, A, 7)"] + 3150E[XG(X; a, b, A, r)°] — 2772E[XG(X; a, b, A, 1)°]
+924E[XG(X; a,b, A, 1)’].

The L-location (L;), L-scale (L), L-skewness (73), and L-kurtosis (7,) measures of
X~BST(a,b,u,0,A,r) can be computed numerically using existing software. Table 4
shows numerical estimations of these measures by computing the first four L-moments
for various values of the parameters a,b,A, and r with fixed 4 =0 and o = 1, where
Table 4a presents the numerical estimations of BST(a, b, A, r) random variable for differ-
ent values of a,b, and A and fixed degrees of freedom r =5, while in Table 4b the
parameter A = 2 is fixed and a4, b, and the degrees of freedom r vary.

Since the theoretical L-moments (L,,) are defined as linear functions of the expected
order statistics of a sample of size m. The sample L-moments are computed from the
sample of size n of order statistics x1.,, X2y ..., X s follows:

BB L)

The sample L-moments ratio denoted as T,,, m > 3 are defined as

Ty =-—,m=3,4,.. (26)
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Table 4a. Estimation of the L-location (L;), L-scale (L;), L-skewness (t3), and L-kurtosis (t4) of
BST(a, b, A, r) random variable for different values of a, b, and A.

a b A r L1 L2 T3 T4

BST 1 1 -5 5 —-0.931 0.451 —-0.258 0.182
-1 -0.671 0.585 -0.097 0.194

0 0.000 0.692 0.000 0. 0.194

1 0.671 0.585 0.097 0.194

5 0.931 0.451 0.258 0.182

50 0.949 0.435 0.295 0.169

500 0.949 0.435 0.295 0.169

BHT - 0.949 0.435 0.295 0.169
BST 5 3 -5 5 —-0.535 0.157 -0.120 0.132
-1 -0.277 0.230 —0.006 0.138

0 0.388 0.293 0.039 0.139

1 0.932 0.264 0.080 0.141

5 1.051 0.232 0.130 0.137

50 1.052 0.231 0.132 0.136

500 1.052 0.231 0.132 0.136

BHT - 1.052 0.231 0.132 0.136
BST 2 20 -5 5 -2.307 0.351 —-0.166 0.156
-1 —-2.261 0.357 —-0.160 0.156

0 -1.747 0.341 —-0.142 0.153

1 —-0.691 0.220 -0.114 0.149

5 0.038 0.077 —-0.007 0.145

50 0.120 0.044 0.202 0.134

500 0.121 0.043 0.210 0.130

BHT - 0.121 0.043 0.210 0.130

Table 4b. Estimation of the L-mean (L;), L-variance (L,), L-skewness (t3), and L-kurtosis (t4) of
BST(a, b, A, r) random variable for different values of a, b, and r.

a b A r L1 Lz T3 T4

KwST 1 1 2 1 43.012 47.411 0.876 0.975
5 0.849 0.505 0.174 0.193

50 0.725 0.401 0.086 0.133

300 0.715 0.394 0.079 0.128

500 0.715 0.393 0.078 0.128

BSN - 0.714 0.392 0.078 0.128
BST 5 3 2 1 1.877 0.727 0.382 0.278
5 1.029 0.241 0.109 0.140

50 0.930 0.198 0.058 0.126

300 0.922 0.195 0.053 0.125

500 0.921 0.195 0.053 0.125

BSN - 0.920 0.194 0.052 0.125
BST 2 20 2 1 —-0.565 0.395 —-0.455 0.374
5 —0.245 0.144 —-0.084 0.146

50 -0.217 0.125 -0.034 0.128

300 -0.215 0.124 -0.030 0.127

500 -0.215 0.123 -0.029 0.126

BSN = -0.214 0.123 -0.029 0.127

7.2. L-moments parameter estimation

To obtain L-moments of the parameters, Hosking (1990) suggested equating the first
seven sample L-moments to the corresponding population quantities. Therefore, we
obtain parameter estimation of the proposed distribution BST(a, b, y,0,A,r) using the
L-moments method numerically by minimizing the combined Pythagorean distance
between the combined square errors as given by
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(L — L) 4+ L= L)+ (15— 1) + (ra— 1) + (15 — 75)* + (16 — 76)* + (17 — 17)%,

where L; and 7; are the theoretical L-moment and L-ratio of the BST distribution, /; and 7;
are the sample L-moment and L-ratio, respectively. This technique is implemented using
the optim function in R for minimization.

7.3. lllustrative examples

To demonstrate the performance of the L-moments method compared with the max-
imum likelihood method, we conduct parameters estimation and data fitting using
simulated data from skew ¢ distribution and the Danish fire losses data set. The
Danish fire losses data set consists of 2156 fire losses of more than 1 million Danish
Kroner (DKK) from the year 1980 to 1990. The fire losses reported in the data set
correspond to the damage to buildings, furnishings, and personal property, as well as
loss of profits. This data set has been previously studied in the literature by many
authors, such as McNeil (1997), Resnick (1997), Cooray and Ananda (2005), Ahn,
Kim, and Ramaswami (2012), and Farias, Montoril, and Andrade (2016), to name a
few. We conduct parameter estimate for the BST model. Then we compare the perfor-
mance of the methods using the MLE method and the L-moments method using the
information criteria AIC and SIC.

The following is a BST parameter estimation using L-moments to a random sample of size
100 generated from the skew t distribution with parameter vector (4 = 2,0 = 1,A = 2,r = 3).
Table 5 shows parameter estimate for the BST using L-moments and MLE methods. Based on
the AIC and SIC criteria, the method of L-moments provides a good alternative estimation to the
method of MLE.

Figure 11 shows the fitted density of BST(a,b,u,0,A,r) model using both estimation
procedures, where the solid line presents BST fitted density curve using the L-moments

Table 5. Parameters estimation of BST(a, b, u, 0, A, r) using the method of L-moments and MLE.

a b u o A r AIC SIC
L-moments 1.975 1.270 1.976 0.799 0.525 1.924 276.0901 291.7211
MLE 1.753 1.153 1.570 1.0101 1.986 3.156 273.5269 289.1579
w
< N T Methods
- ; —— L-moments
> o . --= MLE
B
2 =
@
o o~
o
o _| =l ] [
= I T T 1
2 4 6 8
ST.sample

Figure 11. Fitted density of BST(a, b, u,0,A,r).
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Figure 12. Fitted density of BST(a, b,u,0,A,r) to the Danish fire losses data set.

estimated parameters and the dashed line presents the MLE ones. We observe that the
L-moments method captured the density peak better than the ML method.

Table 6 presents the BST parameter estimation using L-moments and the MLE estimation
method for the Danish fire losses data set. Similarly, the L-moments provide a good alternative
estimation method to the MLEs based on the AIC and SIC criteria.

Figure 12 shows the fitted density of BST(a, b, y, 0, A, 1) to the Danish fire losses data.
Solid line presents BST fitted density curve using the L-moments estimated parameters,
and the dashed line presents the MLE ones. Figure 13 presents a closeup look at the fitted
density curves of BST(a,b,u,0,A,r) using both estimation procedures, where the solid
line presents BST fitted density curve using the L-moments estimated parameters and the
dashed line presents the MLEs. In comparison with the MLE method, we note that the
L-moments method provided a very good fit to the data set.

Table 6. BST(a, b, u,0,A, r) parameters estimation of Danish fire losses data.

a b u o A r AlC SIc
L-moments 4.641 7470 0.945 0.908 1.872 0.235 6959.424 6999.192
MLE 2.680 4.343 0.9573 0.5925 4.7408 0.2730 6855.387 6889.473
3
o
—— L-moments
cc\?! MLE
;é" o
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& e
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Figure 13. Closer look at the fitted density of BST(a, b,u, 0,A,r) to the Danish fire losses data set.
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Appendix

Proof of Proposition 3.2

Proof. (a) For fixed x,A,7,b, and as a — o0

lim ge(x;a,b,1,r) = lim Ed Foe )™ (1 = Fe A, )™

= fl: A1) (1 = F(x; A, r)* " lim B (i, r)* =0,

Similarly, For fixed x,A,7,a, and as b — oo

blim gr(x;a,b,A,1) = 0.

This completes the proof of (a).

(b) Recall that the definition of skew t random variable X with pdf f(x;A,r) by Azzalini and
Capitanio (2003) is constructed as a scale mixture of skew normal distribution using the following
transformation:

[IS]

Y
X=_—

’

B

where Y~SN()) and Z~? are independent random variables. By the strong law of large number

(SLLN),
7 7
lim \ﬂ: \ lim 2 =1.
r—00 r r—oo t
Thus,
Y
lim X2 lim —— ~SN()).
r—o00 r—oo |z
7
Also,

lim flx; A7) 2¢(x; A),
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where ¢(.; 1) and @(.; 1) are the pdf and cdf of the skew normal distribution, respectively. Thus, when
X~BST(a,b,A,r) with pdf gr(x;a,b,A,r) defined in Eq. (8), for fixed x,a,b,A and as r — oo,

. . D 1 . qya—1 _ . b—1
rli{(};logF(xv a7b’l’r)_B({l,b) (p(x?/\)q)(x’ /\) (1 (I)(X, A))
That is,
X~BSN(a,b,1).

This completes the proof of (b).
(c) Let X be a skew t distributed random variable. We have

Jim $(y;A) = lim 2¢(y)®(1y)
=24(y) lim ®(Ay)
= 20(»)j0.00) (),

where ¢(.) and ®(.) are the pdf and cdf of the normal distribution, respectively. This indicates
Alim Y 2|W|, where W~N(0,1). Then,

lim X2 lim

RN

Thus, when X~BST(a, b, A, r) with pdf gr(x;a,b,A,r) defined in Eq. (8), for fixed x,a, b, r, and as
A — oo,

Alim gr(x;a,b,A,1) L h(x;r)H(x;r)*(1 — H(x; r))b717

1
B(a,b)

where h(x; r) and H(x; r) are the pdf and cdf of the half ¢ distribution, respectively, with the degrees
of freedom r. This completes the proof of (c). o

Proof of Proposition 3.3

Proof. This follows directly from the definition of the probability density function of order
statistics. o

Proof of Proposition 3.4
Proof. (a)

o0

P(Yl:n > X) = J Jngm (yl:n; a, d7A7 T)gX(XE a, b>Aa r)dylzndx-
%

X
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j v (s sy )y =J 1 Oni s )i 1o 1) (1 = F(yni Ay 1))y
J (1= Fms &y ) 1E s Ay 1) dE (i A, 7)

=n (l—s)"_lds:n(F = (1= F(x;4,7))",

where s = F(y1.4;A, 7). Thus,

P(len 2 X) :J f(xllb) (x A r)a 1(1 — (x;/\7r))"+b—ldx

® B(la )
— b—
:Bd,b){ (x4, 7)1 = E(x; A, )" AR (x; A, 7)
1
_ n+b— n+b
B(;ﬁb)gta H(1—-1) + ldt:Bg(ﬁr)),

where t = F(x; A, 7). Then,

j B(%,h}f(x; /\: T)F(x; A7 r)u71(1 o F(x;/\, r))l’H’b*ldx

P(W < W) = B(a,n+b)
B(a,b)
1 a—1 ntb—1
=———f(w;A, r)F(w; A 1 — F(w;A
S gy Ok DFE 17 (1= B o),
which is the pdf of W~BST(a,n + b,A,r). o

(b) Similar to the proof of (a).

Proof of Theorem 4.1

Proof.
By | m;—;f@;ww;a,r)“u—F(%A,r»“dx
= | a1 = 1S AR ) s
=0

e (16 = J S, P FCSE A, ),
2

Substituting z = *>£ and using the binomial expansion, we obtain
| e npean e < | o2 RN e
= JRZOn (z0)""Wif (z; A, 1)E(z; A, 1) dz
=o" l;) n. (g)’J 2" (z; A, 1)E(z; A, 1)z

R

Applying integration by part for the quantity | z"~/f(z; A, r)F(z; A, 1) " dz, we let
R
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u=F(z;A,r)"77,

and
dv = 2""'f(z; A, r)dz.
Then
du = (a+j— Df(z:4,1)F(z;4,1)"7 7,
and

v= J 27 f(z; A r)dz = E(Y" ™),
R
where Y~st,(A). Thus,

| 7 rin ROy = B () RGsA ) — B () a - )
r

| o e ay
= Ey(Y" ) [F(y;A, 1) 7 —(a+j—1)
J F(y; A, 1) 7 dE(y; A, 7)),
é}e .
= Ey(Y" )[F(; A, 1) — (a+j = 1) i),
= Ey(Y" ) [E(y;A, 1) —1].

Thus,
B0 =g (1) < D)o (1) @B A
j=0 part
= B(ib)g)é (—1)j ( b ; 1> ?)(g)iEy(Y”_i)[F(y;l, r)a+j—1 _.

Proof of Theorem 4.2

Proof. By applying the integration by part, we have

E(X") = - (al, 0 JR e, E(x ) (1= F(x A, 7).

Let
u=Fx; A, ) (1 - F(x;A,r)" ",

and

dv = x"f(x; A, r)dx.
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Then

du=(a—1)f(x;A,7)F(x;1,7)* (1 — F(x; A, ) dx+
(b—1)(1 — F(x; A, 7)) (=f(x; A, 7)) F(x; A, r)*Ldix,

and
v= J xX"f(x; A, 7)dx
R

Note that v is the n moment of a st,(1) random variable. Then,

E(X") =gy WE(XGA, )" (1 - F(X;A, 1)
—| vla—1)f(x; A, 1)E(x; 4, 1)* (1 = F(x; 4,7))" dx
R

+ %v(b — 1)f (x4, 7)E(x; A, 1) (1 = F(x; A, )’ 2 dx]

W{J T (b= DG (1 - FxiA,n)

—00

%o

—| (a=1D)f(x; A, 1)F(x; A, 1) (1 = F(x; A, )P ldx]. (%)
R

Note that
JQAJVWLHHMLWHU*FWLHV4ﬂ
2
b—
= | (b—1)f(x;A,7)F(x; A, r)“ 12( 1)'b—2. P, r) dx
R i=
h—Z -2 0 il
= 1)’( ) (b— 1) f(x;)t,r)F(x;Am)“ ldx
i=0
_ h—Z ( ) F(x;A,n)™" ot |
1:0 a+i -
b2
= 2 (z+1b - 1)(u+z) (%)
Similarly,

(07 )
J%(a— Df (x4, r)F(x; A, 1) 2(1 — F(x; A, r)" ldx = o (kx %)

i=0 ati—2

Substituting Egs. (**) and (***) into Eq. (*), we obtain

(b—1
b—2 1y p1 (L i (a-1)
E(X") = (;b [E Bi+1,b—i—1)(ati) ;} ati—2 ]

-1
[Z B( z+1 b i—1) [a-H B (u+i—(‘;)(b)—i—1)]7

A (a—1)
(—1) a3
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Proof of Theorem 5.1

Proof. We use expression (13) of the incomplete beta function.
Let h(x 7f z7b(1 = 2)*"7N(1 = zF(x; A, 7)) "“dz, so we have

gin(x) = WG e a,b,4,7) 7 (1 = Ge(x;a,b,A, 1)) 'ge(x; a, b, A, )

gr(x;a,b,1,7)Ge(x;a,b,A, )" Z (=1)n — i Gp(x;a,b, M, 1)

W > .
( >gF(X a,b, A r){%}kﬁ—l

)
')f(x;A,r)F(x;A,r) T = Fea b)) i )
)
)

k+i—1

k+i—1

Blalk h
gr(alk +1),b,A,r) <a((:z3 >{uB(a,b)B((iC)fb,u+b)}

(%)
[ n B(a k+i),b) h(x)"
( ')gF( (k+1),b,4,7) B(ab)  [aB(a,b)B(1—b,a+b)[F 1"

where h(x)" = h(x)*"!

Proof of Theorem 5.2

Proof. By the definition of order statistics, we have

Gin(x) :WG (x;a,b,1,7) (1 — Gp(x;a,b,A,7))" 'gp(x;a,b, A, 7)
= R 1),gp(x a,b, A, r)Gr(x;a,b,A,7)"~ IZ( l)k(n;i)GF(x;a,b,A7r)k
k=0

:;(71%(”;’) ( )gp(x a,b,A,7)Gp(x; a,b, A, r) 1,
If b € Z, by Eq. (11) we obtain
gl =5 0" )il(§ )wimanan

; 0(“*? )F(x; A, r) TN = F(xg A, r))f}

(" (et

k+i
1—F(x;A,r) bilf(x:/\,r)F(x;)t,r)"‘h I 1=F(xAr))y !
Tadn) 2 B@T6)

k+i—1

I
3
|

-
I

—ni(—l)ki(r-l)(nl:i)gF(x;a,b,A»r){ XW)Z@( (Hb_j)’j’m}kﬂ 1‘

k=0 !





