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ABSTRACT
This article introduces a new flexible family of distributions, defined
by means of a quantile function. The quantile function proposed is
the sum of quantile functions of the half logistic and exponential
geometric distributions. Various distributional properties and reliabil-
ity characteristics are discussed. The estimation of the parameters of
the model using L-moments is studied. The model is applied to a
real-life data set.
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1. Introduction

A probability distribution can be specified either in terms of its distribution function or by
the quantile function. Although both convey the same information about the distribution
with different interpretations, the concepts and methodologies based on distribution
functions are more popular in most forms of theory and practice. For a nonnegative
random variable X with distribution function FðxÞ, the quantile function QðuÞ is
defined by

Q uð Þ ¼ F�1 xð Þ ¼ inffx : F xð Þ � ug; 0 � u � 1: (1)

The derivative of QðuÞ is the quantile density function denoted by qðuÞ. If FðxÞ is right
continuous and strictly increasing, we have

FðQðuÞÞ ¼ u; (2)

so that FðxÞ ¼ u implies x ¼ QðuÞ. When f ðx) is the probability density function (pdf) of
X; we have from Eq. (2)

qðuÞf ðQðuÞÞ ¼ 1: (3)

Quantile functions have several properties that are not shared by distribution functions.
For example, the sum of two quantile functions is again a quantile function. Further, the
product of two positive quantile functions is again a quantile function in the nonnegative
setup. There are explicit general distribution forms for the quantile function of order
statistics. It is easier to generate random numbers from the quantile function. A major
development in portraying quantile functions to model statistical data is given by Hastings
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et al. (1947), who introduced a family of distributions by a quantile function. This was
refined later by Tukey (1962) to form a symmetric distribution, called the Tukey lambda
distribution.

This model was generalized in different ways, referred as lambda distributions.
These include various forms of quantile functions discussed in Ramberg and
Schmeiser (1972), Ramberg (1975), Ramberg et al. (1979), and Freimer et al. (1988).
Govindarajulu (1977) introduced a new quantile function by taking the weighted sum
of quantile functions of two power distributions. Hankin and Lee (2006) presented a
new power-Pareto distribution by taking the product of power and Pareto quantile
functions. Van Staden and Loots (2009) developed a four-parameter distribution, using
a weighted sum of the generalized Pareto and its reflection quantile functions.
Sankaran et al. (2016) developed a new quantile function based on the sum of quantile
functions of generalized Pareto and Weibull quantile functions. The density and
distribution functions for these models are not available in closed forms except for
certain special cases. The great advantage of these models is that the simple forms of
the quantile functions make it extremely straightforward to simulate random values,
which is useful in inference problems.

The aim of the present work is to introduce a new quantile function that is useful in
reliability analysis. The proposed quantile function is derived by taking the sum of
quantile functions of half logistic and exponential geometric distributions. Balakrishnan
(1985) considered the folded form of the standard logistic distribution and termed it the
half logistic distribution. The survival function and quantile function of this distribution
are respectively given by

�GðxÞ ¼ 2 1þ e
x
β

� ��1
; β> 0: (4)

and

Q1ðuÞ ¼ β log
1þ u
1� u

� �
; β> 0: (5)

Model (4) is a possible lifetime model, which has several recurrence relations for the single
and the product moments of order statistics. Adamidis and Loukas (1998) introduced the
exponential geometric (EG) distribution with applications to reliability modeling in the
context of decreasing failure rate data. The survival function and quantile function of the
EG distribution are given by

�FðxÞ ¼ 1� FðxÞ ¼ ð1� pÞe�1
αxð1� pe�

1
αxÞ�1; α> 0 and 0< p< 1: (6)

and

Q2ðuÞ ¼ α log
1� pu
1� u

� �
; α> 0 and 0< p< 1: (7)

We now propose a new class of distributions defined by a quantile function, which is the
sum of quantile functions of half logistic and exponential geometric distributions. The
proposed class gives a wide variety of distributional shapes for various choices of the
parameters.
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The rest of the article is organized as follows. In section 2 we present a family of
distributions and study its basic properties. section 3 presents some well-known distribu-
tions that are either a member of the proposed class of distributions or obtained by
applying some suitable transformations on the proposed quantile function. The distribu-
tional properties such as measures of location and scale, L moments, and so on are given
in section 4. In section 5, we present various reliability characteristics of the class. section 6
focuses on the inference procedures. We then provide application of this class of distribu-
tions in a real life situation. Finally, section 7 provides major conclusions of the study.

2. Half logistic–exponential geometric (HLEG) quantile function

Let X and Y be two nonnegative random variables with distribution functions FðxÞ and
GðxÞ with quantile functions Q1ðuÞ and Q2ðuÞ, respectively. Then

QðuÞ ¼ Q1ðuÞ þ Q2ðuÞ; (8)

is also a quantile function with quantile density function satisfying

ð1� uÞqðuÞ ¼ ð1� uÞq1ðuÞ þ ð1� uÞq2ðuÞ: (9)

We now introduce a class of distributions given by the quantile function

QðuÞ ¼ α log
1� pu
1� u

� �
þ β log

uþ 1
1� u

� �
; 0 � p � 1; α � 0; β � 0: (10)

Thus QðuÞ is the sum of Eqs. (5) and (7). The support of the proposed class of distribu-
tions (10) is ð0;1Þ. The quantile density function is obtained as

qðuÞ ¼ 2βþ αðð1� pÞÞðuþ 1Þ � 2βpu
u2 � 1ð Þðpu� 1Þ : (11)

The quantile function (10) represents a family of distributions with neither the density nor
the distribution function is available in closed form. However, these can be calculated by
numerical inversion of the quantile function. For the proposed class of distributions, the
density function f ðxÞ can be written in terms of the distribution function as

f ðxÞ ¼ ð1� pFðxÞÞð1� ðFðxÞ2Þ
αð1� pÞð1þ FðxÞÞ þ 2ð1� pFðxÞÞβ : (12)

For all values of the parameters, the density is strictly decreasing in x and it tends to zero
as x ! 1. Plots of the density function for different combinations of parameters are
shown in Figure 1.

The mode of the distribution is at zero and the modal value is 1
2βþαð1�pÞ .

3. Members of the family

The proposed family of distributions (10) includes several well-known distributions for
various values of the parameters. We can derive some well-known distributions from the
proposed model by making use of various transformations described in Gilchrist (2000).

Case 1. β ¼ 0, p ¼ 0 and α> 0.
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The quantile function of the proposed class of distributions reduces to the quantile
function

QðuÞ ¼ αð� logð1� uÞÞ; (13)

which is the exponential distribution with mean α. We can apply the power transforma-
tion of the form TðxÞ ¼ xK on Eq. (13) to form the Weibull distribution with parameters α
and K.

Case 2. α ¼ β and p ¼ 1.
The quantile function of the proposed class of distributions becomes

QðuÞ ¼ α log
1þ u
1� u

� �
; (14)

which belongs to the class of distributions with linear hazard quantile functions defined by
Midhu et al. (2014), with quantile function

QðuÞ ¼ 1
að1þ θÞ log

1þ θu
1� u

� �
; (15)

with θ ¼ 1 and a ¼ 1
2α .

Case 3. β ¼ 0; α> 0and 0< p< 1.
The quantile function of the proposed class of distributions reduces to the quantile

function

QðuÞ ¼ α log
1� pu
1� u

� �
; (16)

and this also belongs to the class of distributions (15), with parameters θ ¼
�p; ð�1< θ< 0Þ and a ¼ 1

αð1�pÞ .
Case 4. p ¼ 0; α> 0and β> 0.

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Figure 1. Plots of density function for different values of parameters.
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The quantile function of the proposed class of distributions is obtained as

QðuÞ ¼ ðA� BÞ logð1þ AuÞ � AðBþ 1Þ logð1� uÞ
AðAþ 1ÞK ; (17)

where K ¼ 1
αþ2β ,A ¼ 1 and B ¼ α

αþ2β . The quantile function (17) corresponds to the family
of distributions with bilinear hazard quantile function, given in Sankaran et al. (2015).

In the construction of our family, the sum of two quantile functions are involved. In the
following theorems, we derive the random variable associated with the proposed quantile
function (10).

Theorem 3.1. If Z,HLðβÞ, then the random variable X ¼ Z þ α log
ð1þpÞþð1�pÞexp Z

β

� �
2

� �
has HLEGðα; β; pÞ distribution.

Proof. Consider two random variables S and T with quantile functions QSðuÞ and QTðuÞ
and distribution functions FSðxÞ and FTðxÞ, respectively.

Now suppose Q�ðuÞ is defined by

Q�ðuÞ ¼ QSðuÞ þ QTðuÞ:

Then the random variable that corresponds to the quantile function Q�ðuÞ is Sþ
QTðFSðSÞÞ or T þ QSðFTðTÞÞ(Sankaran et al. 2016).

Now take Y,EGðα; pÞ and Z,HLðβÞ; then we Z þ QYðFZðZÞÞ has HLEGðα; β; pÞ
distribution.

Since QYðuÞ ¼ α log 1�pu
1�u

� �
and FZðZÞ ¼ 1� 2 1þ exp Z

β

� �� ��1
, we get

Z þ QYðFZðZÞÞ ¼ Z þ α log
ð1þ pÞ þ ð1� pÞexp Z

β

� �
2

0@ 1A; (18)

which completes the proof.
□

Theorem 3.2. If Y,EGðα; pÞ, then the random variable X ¼ Y þ β log p�2exp x=αð Þþ1
p�1

� �
has HLEGðα; β; pÞ distribution.

Proof. The proof is similar to that of Theorem 3.1, and therefore the details are omitted.
□

4. Distributional characteristics

The quantile based measures of the distributional characteristics of location, dispersion,
skewness, and kurtosis are popular in statistical analysis. These measures are also useful
for estimating parameters of the model by matching population characteristics with
corresponding sample characteristics. For model (10), basic descriptive measures such as
median (M), interquartile range (IQR), Galton’s coefficient of skewness (S), and Moor’s
coefficient of kurtosis (T) are obtained as

M ¼ α logð2� pÞ þ β logð3Þ; (19)

IQR ¼ α log
12� 9p
4� p

� �
þ β log

21
5

� �
; (20)
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S ¼ 1:43β� 2ð1:09βþ α logð2:ð1� 0:5pÞÞÞ � α logð1:33ð1� 0:25pÞÞ þ α logð4:ð1� 0:75pÞÞ
1:43β� α logð1:33ð1� 0:25pÞÞ þ α logð4:ð1� 0:75pÞÞ ; (21)

T ¼ αð�0:69 logð1:14� 0:14pÞ þ 0:7 logð1:6 � 0:6pÞ � 0:7 logð2:67 � 1:7pÞ þ 0:7 logð8� 7pÞÞ þ 1:24β
�0:7α logð1:34 � 0:34pÞ þ 0:7α logð4 � 3pÞ þ β

:

(22)

The L-moments are often found to be more desirable than the conventional moments in
describing the characteristics of the distributions as well as for inference. A unified theory
and a systematic study on L-moments have been presented by Hosking (1990). The
L-moments have generally lower sampling variances and are robust against outliers. See
Hosking (1990) and Sankarasubramanian and Srinivasan (1999) for details.

The rth L moment is given by

Lr ¼ �
1

0

Xr�1

k¼0

ð�1Þr�1�k r � 1
k

� �
r � 1þ k

k

� �
ukQðuÞdu: (23)

For the model (2.3), first four L moments are obtained as follows;

L1 ¼ β logð4Þ þ αðp� 1Þ logð1� pÞ
p

: (24)

L2 ¼ αþ 2β� β logð4Þ þ αðp� 1Þ logð1� pÞ
p2

� α

p
: (25)

L3 ¼ �4βþ β logð64Þ � αðp� 2Þðp� 1Þ logð1� pÞ
p3

þ 2αðp� 1Þ
p2

: (26)

L4 ¼ p 4βp3ð23� 33 logð2ÞÞ þ αðp� 1Þððp� 15Þpþ 30Þð Þ þ 6αðp� 1Þððp� 5Þpþ 5Þ logð1� pÞ
6p4

:

(27)

For model (10), the L-coefficient of variation (τ2), L-coefficient of skewness (τ3), and
L-coefficient of kurtosis (τ4) have the following expressions;

τ2 ¼ L2
L1

¼
αþ 2β� β logð4Þ þ αðp�1Þ logð1�pÞ

p2 � α
p

β logð4Þ þ αðp�1Þ logð1�pÞ
p

; (28)

τ3 ¼ L3
L2

¼
�4βþ β logð64Þ � αðp�2Þðp�1Þ logð1�pÞ

p3 þ 2αðp�1Þ
p2

αþ 2β� β logð4Þ þ αðp�1Þ logð1�pÞ
p2 � α

p

; (29)

τ4 ¼ L4
L2

¼ p 4βp3ð23� 33 logð2ÞÞ þ αðp� 1Þððp� 15Þpþ 30Þð Þ þ 6αðp� 1Þððp� 5Þpþ 5Þ logð1� pÞ
6p2ðpðαðp� 1Þ � βpðlogð4Þ � 2ÞÞ þ αðp� 1Þ logð1� pÞÞ :

(30)

Figures 2, 3 and 4 present skewness (τ3) and kurtosis (τ4) measures for various parameter
values. We can show that τ3 lies in (0.25,1) and τ4 lies in (0.12,0.67) using numerical
optimization techniques. Thus, the proposed class of distributions (10) consists of only
positively skewed distributions. The curves of τ3 and τ4 increase with α for fixed β and p,
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decrease with β for fixed α and p, and first increase and then decrease with p for fixed α
and β.

4.1. Order statistics

If Xr:n is the rth order statistic in a random sample of size n, then the density function of
Xr:n can be written as

frðxÞ ¼ 1
Bðr; n� r þ 1Þ f ðxÞF

r�1ðxÞð1� FðxÞÞn�r:

From Eq. (12), we have

frðxÞ ¼ 1
Bðr; n� r þ 1Þ

ð1� FðxÞÞn�rð1� pFðxÞÞð1� ðFðxÞ2ÞðFðxÞÞr�1

αð1� pÞð1þ FðxÞÞ þ 2ð1� pFðxÞÞβ :

Hence,

EðXr:nÞ ¼ 1
Bðr; n� r þ 1Þ �

1

0
x
ð1� FðxÞÞn�rð1� pFðxÞÞð1� ðFðxÞ2ÞðFðxÞÞr�1

αð1� pÞð1þ FðxÞÞ þ 2ð1� pFðxÞÞβ dx:

In quantile terms, we have

EðXr:nÞ ¼ 1
Bðr; n� r þ 1Þ

ð1
0
QðuÞ ð1� uÞn�rð1� puÞð1� u2Þur�1

αð1� pÞð1þ uÞ þ 2ð1� p þ uÞβ dx:

For the class of distributions (10), the first-order statistic X1:n has the quantile function

Qð1ÞðuÞ ¼ Qð1� ð1� uÞ1nÞ
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Figure 2. Skewness and kurtosis of the HLEGðα; β; pÞ distribution for selected values of β and p as a
function of the parameter α.
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¼ α log p� ðp� 1Þð1� uÞ�1=n
� �

þ β log 2ð1� uÞ�1=n � 1
� �

;

and the nth order statistic Xn:n has the quantile function

QðnÞðuÞ ¼ Qðu1
nÞ

¼ α log
1� pu1=n

1� u1=n

� �
þ β log

u1=n þ 1
1� u1=n

� �
:

5. Reliability properties

One of the basic concepts employed for modeling and analysis of lifetime data is the
hazard rate. In a quantile setup, Nair and Sankaran (2009) defined the hazard quantile
function, which is equivalent to the hazard rate. The hazard quantile function HðuÞ is
defined as

HðuÞ ¼ hðQðuÞÞ ¼ ½ð1� uÞqðuÞ��1: (31)

Thus, HðuÞ can be interpreted as the conditional probability of failure of a unit in the next
small interval of time given the survival of the unit until 100ð1� uÞ% point of the
distribution. Note that HðuÞ uniquely determines the distribution using the identity

QðuÞ ¼ �
u

0

dp
ð1� pÞHðpÞ : (32)

Since the proposed class of distributions is the sum of quantile functions of exponential
geometric and half logistic quantile functions, Eqs. (31) and (32) give

1
HðuÞ ¼

1
H1ðuÞ þ

1
H2ðuÞ ; (33)

where HðuÞ;H1ðuÞ, and H2ðuÞ are the hazard quantile functions of the proposed class of
distributions, exponential geometric, and half logistic quantile functions, respectively.
From Eq. (33), the proposed class of distributions (10) has hazard quantile function
proportional to the harmonic average of the hazard quantile functions of exponential
geometric and half logistic quantile functions. For the class of distributions (10), we have

HðuÞ ¼ ðuþ 1Þðpu� 1Þ
αðp� 1Þðuþ 1Þ þ 2βðpu� 1Þ : (34)

The shape of the hazard function is determined by the derivative of HðuÞ, which is
obtained as

H0ðuÞ ¼ αpðp� 1Þðuþ 1Þ2 þ 2βðpu� 1Þ2
ðαðp� 1Þðuþ 1Þ þ 2βðpu� 1ÞÞ2 : (35)

Since ðαðp� 1Þðuþ 1Þ þ 2βðpu� 1ÞÞ2 > 0 for all values of the parameters, the sign of
H0ðuÞ depends only on

KðuÞ ¼ αpðp� 1Þðuþ 1Þ2 þ 2βðpu� 1Þ2: (36)
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The hazard quantile function accommodates increasing, decreasing, linear, and upside-
down bathtub shapes for different choices of parameters. Plots of hazard quantile function
for different values of parameters are given in Figure 5. Now we consider the following
cases.

Case 1. p ¼ 0; α> 0 and β > 0.

KðuÞ ¼ 2β:

The first term in KðuÞ is zero and the second term is positive, so that KðuÞ > 0 for all
0< u< 1 and the distribution has an increasing hazard rate (IHR).

Case 2. p ¼ 1; α> 0 and β > 0.

KðuÞ ¼ 2βðu� 1Þ2:
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Figure 5. Plots of hazard quantile function for different values of parameters.
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The first term in KðuÞ is zero and the second term is positive, so that KðuÞ > 0 for all
0< u< 1 and the distribution has an increasing hazard rate (IHR).

Case 3. p ¼ 0, β ¼ 0 and α> 0 .

HðuÞ ¼ 1
α
; aconstant:

Thus, the distribution is exponential.
Case 4. 0< p 1; αh i0 and β > 2αp

ð1�pÞ .
Now X is IHR if and only if KðuÞ> 0 for all u 2 ð0; 1Þ. This holds if and only if

pðp� 1Þαð1þ uÞ2 > � 2βðpu� 1Þ2; (37)

which gives

2β
αpð1� pÞ >

ð1þ uÞ2
ðpu� 1Þ2 : (38)

Since ð1þ uÞ2 > ðpu� 1Þ2; forall 0< u< 1 and 0< p< 1, we have that the right side of Eq.
(38) is increasing in u and attains its maximum when u ¼ 1. Now for u ¼ 1, the inequality

(38) reduces to β> 2αp
ð1�pÞ , and thus it is clear that HðuÞ is increasing in this case.

Case 5. 0< p 1; αh i0 and 0< β< αpð1�pÞ
2 .

Similar to Case 4, we can show that HðuÞ has a decreasing hazard rate (DHR) if and
only if

pðp� 1Þαð1þ uÞ2 < � 2βðpu� 1Þ2 (39)

or

2β
αpð1� pÞ <

ð1þ uÞ2
ðpu� 1Þ2 : (40)

Since right side of Eq. (40) is increasing in u and attains its minimum when u ¼ 0, the

inequality (38) reduces to β< αpð1�p
2 . Thus, the distribution is DHR.

Case 6. 0< p 1; αh i0 and αpð1�p
2 < β< 2αp

1�p .
The first term of KðuÞ is negative and the second term is positive, so that KðuÞ attains

zero in this case. This, in turn, gives H0ðuÞ ¼ 0, suggesting the possibility for HðuÞ to be
nonmonotone. Let u0 be the solution of the equation KðuÞ ¼ 0. From Eq. (36), we have
that u0 is the solution corresponding to the quadratic equation

u2ðαpðp� 1Þ þ 2βp2Þ þ uð2αpðp� 1Þ � 4pβÞ þ ðαpðp� 1Þ þ 2βÞ ¼ 0; (41)

which provides

u0 ¼ �αp2 � ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�αβp4 � αβp3 þ αβp2 þ αβp
p þ αpþ 2βp

αp2 þ 2βp2 � αp
: (42)

For further analysis, we note that the second derivative of HðuÞ is

H00ðuÞ ¼ 4αβð1� pÞðpþ 1Þ2
ðαðp� 1Þðuþ 1Þ þ 2βðpu� 1ÞÞ3 : (43)
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For the change point u0 obtained in Eq. (42), we get

H00ðu0Þ ¼ �
ffiffiffi
2

p
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αβð1� pÞpðpþ 1Þ2
q : (44)

Since H00ðu0Þ< 0, we have that HðuÞ attains a maximum at u0: Hence X has an upside-
down bathtub-shaped hazard quantile function (see Nair et al. 2013).

The aging patterns of HðuÞ for various parameter values are summarized in Table 1.
We can easily show the following lemma, which is useful for finding bounds of HðuÞ.
Lemma 5.1. The limits of HLEGðα; β; pÞ hazard quantile function is given by

lim
u!0

HðuÞ ¼ 1
αð1� pÞ þ 2β

and lim
u!1

HðuÞ ¼ 1
αþ β

; (45)

where α> 0; β > 0, and 0< p< 1.
Proof. It is straightforward to show the results of Eq. (45) by taking the limit of

HLEGðα; β; pÞ hazard quantile function, Eq. (44).
□

Theorem 5.1. If X,HLEGðα; β; 1Þ, then the two limits of hazard quantile function are
independent of the parameter α as given here:

ðiÞ limu!1 HðuÞ ¼ 2 limu!0 HðuÞ

and
ðiiÞ 1

2β < HðuÞ < 1
β , for all 0< u< 1 and β > 0.

Proof.
(i) The proof is direct once we note that

lim
u!0

HðuÞ ¼ 1
2β

and lim
u!1

HðuÞ ¼ 1
β
: (46)

(ii) From Table 1, HðuÞ is IHR for p ¼ 1; α> 0, and β> 0. Thus, lower and upper bounds
for HðuÞ exist when u approaches 0 and 1, respectively.

Now from Eq. (46), we get

1
2β

< HðuÞ < 1
β

for all 0< u< 1 and β > 0:

This completes the proof.
□

Theorem 5.2. If X,HLEGðα; β; 0Þ, then the bounds of HðuÞ are given by

Table 1. Aging behavior of the hazard quantile function for different regions of parameter space.
Serial number Parameter region Shape of hazard quantile function

1 p ¼ 0; α> 0 and β> 0 IHR
2 p ¼ 1; α> 0 and β> 0 IHR
3 p ¼ 0, β ¼ 0 and α> 0 Constant
4 0< p 1; αh i0 and β> 2αp

ð1�pÞ IHR

5 0< p 1; αh i0 and 0< β< αpð1�pÞ
2

DHR

6 0< p 1; αh i0 and αpð1�pÞ
2 < β< 2αp

1�p
Upside-down bathtub
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1
αþ 2β

< HðuÞ < 1
αþ β

; for all 0< u< 1 and β> 0:

Proof.
The proof is similar to that of Theorem 5.1 once we note that

lim
u!0

HðuÞ ¼ 1
αþ 2β

and lim
u!1

HðuÞ ¼ 1
αþ β

; (47)

and HðuÞ is increasing for p ¼ 0; α> 0 and β > 0.
□

Theorem 5.3. Let X,HLEGðα; β; pÞ. Then the hazard quantile function satisfies the
following;

ðiÞ If β>
2αp

ð1� pÞ then
1

αð1� pÞ þ 2β
< HðuÞ < 1

αþ β

;

ðiiÞ If 0< β<
αpð1� pÞ

2
then

1
αþ β

< HðuÞ < 1
αð1� pÞ þ 2β

.
Proof.

From Table 1, note that X is IHR when β> 2αp
ð1�pÞ . Now from Lemma 5.1, we get

1
αð1� pÞ þ 2β

< HðuÞ < 1
αþ β

: (48)

To prove (ii), note that X is DHR for 0< β< αpð1�pÞ
2 . Since HðuÞ is decreasing over u,

boundary values are reversed. This completes the proof.
□

Mean residual function is a well-known measure that has been widely used for model-
ing lifetime data in reliability and survival analysis. For a nonnegative random variable X,
the mean residual life function is defined as

mðxÞ ¼ EðX � x Xj ixÞ ¼ 1
1� FðxÞ �

1

x
ð1� FðtÞÞdt: (49)

The mean residual quantile function, which is the quantile version of the mean residual
function (49), defined by Nair and Sankaran (2009), has the expression

MðuÞ ¼ 1
1� u

�
1

u
ðQðpÞ � QðuÞÞdp: (50)

For the class of distributions (10), MðuÞ has the form

MðuÞ ¼
β logð4Þ þ αðp�1Þ log p�1

pu�1

� �
p � 2β logðuþ 1Þ
1� u

: (51)
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It is well known that increasing (decreasing) failure rate implies decreasing (increasing)
mean residual life (see Lai and Xie 2006). The aging behavior of the class of distributions
(10) based on mean residual quantile function can be defined from Table 1. There exist
closed-form expressions of the hazard quantile function and mean residual quantile
function defined in reverse time (see Nair and Sankaran 2009) for the proposed class of
distributions (10).

The total time on test transform (TTT) is a widely accepted statistical tool that has
many applications in reliability analysis (see Lai and Xie 2006). The quantile-based TTT
introduced in Nair et al. (2008) has the form

TðuÞ ¼
ðu
0
ð1� pÞqðpÞdp: (52)

For the class of distributions (10), we obtain TðuÞ as

TðuÞ ¼ αðp� 1Þ logð1� puÞ
p

þ 2β logðuþ 1Þ: (53)

In a fundamental paper on exploratory data analysis using quantile functions, Parzen (1979)
introduced the score function, defined as

JðuÞ ¼ q0ðuÞ
q2ðuÞ ; (54)

where q0ðuÞ is the derivative of qðuÞ. Nair et al. (2012) studied properties of JðuÞ in the
context of lifetime data analysis. For the class of distributions (10), JðuÞ is obtained as

JðuÞ ¼ q0ðuÞ
q2ðuÞ ¼

αðp� 1Þðuþ 1Þ2ðpð2u� 1Þ � 1Þ þ 4βuðpu� 1Þ2
ðαðp� 1Þðuþ 1Þ þ 2βðpu� 1ÞÞ2 : (55)

It is customary to characterize life distributions by the relationships among reliability con-
cepts. In the same spirit, we prove the following characterization theorem.

Theorem 5.4. A nonnegative continuous random variable X follows:
(a) HLEGðu; α; 0; pÞ if and only if any one of the following properties hold.

(i) HðuÞ ¼ A1 � A2u, 0<A2 <A1

(ii) JðuÞ ¼ HðuÞ þ C ð1� uÞ; C > 0
(iii) TðuÞ ¼ �1

A2
log HðuÞ

A1

� �
and
(b) HLEGðu; 0; β; pÞ if and only if any one of the following properties hold.

(i) HðuÞ ¼ Kð1þ uÞ, K > 0
(ii) JðuÞ ¼ 2Ku
(iii) TðuÞ ¼ 1

K logðKKHðuÞÞ
Proof. We prove the result for (a). The proof for (b) is similar.
(a) Suppose the identity (i) is true.
Then HðuÞ ¼ A1 � A2u, so that the corresponding quantile function is obtained as
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QðuÞ ¼
log A1�A2 u

A1ð1�uÞ
� �
A1 � A2

; (56)

which is equivalent to HLEGðu; α; 0; pÞ, with α ¼ 1
A1�A2

> 0 and 0< p ¼ A2
A1

< 1. The con-
verse part is direct from the definition of HðuÞ given in section 6.

When (ii) is true, we have from Nair and Sankaran (2009)

ð1� uÞH0ðuÞ ¼ HðuÞ � JðuÞ: (57)

Thus, we obtain

ð1� uÞH0ðuÞ ¼ Cðu� 1Þ: (58)

The solution of the ordinary differential equation (58) is,

HðuÞ ¼ D� Cu; C > 0;D� C > 0; (59)

which satisfies (i), so that proof is completed.
Suppose (iii) is true. Differentiating (iii) with respect to u we get,

T0ðuÞ ¼ �H0ðuÞ
A2HðuÞ : (60)

Differentiating Eq. (52) with respect to u we get

T0ðuÞ ¼ ð1� uÞqðuÞ ¼ 1
HðuÞ : (61)

From Eqs. (60) and (61), we get

H0ðuÞ ¼ �A2; (62)

which leads to (i). Conversely, for the class of distributions HLEGðu; α; 0; pÞ we obtain

TðuÞ ¼ αðp� 1Þ logð1� puÞ
p

; (63)

or

TðuÞ ¼ �1
A2

log
HðuÞ
A1

� �
; (64)

where A1 ¼ 1
αð1�pÞ and A2 ¼ p

αð1�pÞ .
This completes the proof.
□

6. Inference and applications

There are different methods for the estimation of parameters of the quantile function. The
method of percentiles, method of L-moments, method of minimum absolute deviation,
method of least squares, and method of maximum likelihood are commonly used techni-
ques. To estimate the parameters of Eq. (10), we use the method of L-moments. We equate
sample L-moments to corresponding population L-moments. Let X1;X2; :::;Xn be a
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random sample of size n from the population with quantile function (10); then the sample
L-moments are given by

l1 ¼ 1
n

� �Pn
i¼1

xðiÞ

l2 ¼ 1
2

� � n
2

� ��1 Pn
i¼1

i� 1
1

� �
� n� i

1

� �� �
xðiÞ

l3 ¼ 1
3

� � n
3

� ��1 Pn
i¼1

i� 1
2

� �
� 2

i� 1
1

� �
n� i
1

� �
þ n� i

2

� �� �
xðiÞ

where xðiÞ is the ith order statistic.
For estimating the parameters α; β; and σ, we equate first three sample L-moments to

population L-moments given in section 4. The parameters are obtained by solving the
equations

lr ¼ Lr; r ¼ 1; 2; 3: (65)

Since L1 is the mean of the distribution, mean survival time is estimated as l1: Similarly,

the estimate of variance is obtained as V̂ðxÞ ¼ �
1

0
ðQ̂ðuÞÞ2du� l21; which can be evaluated

with the help of numerical integration techniques.
Hosking (1990) has shown that the L-moment estimates are asymptotically normal and

consistent. Specifically, Hosking (1990) has shown that
ffiffiffi
n

p ðlr � LrÞ, r ¼ 1; 2; ::::;m, con-
verges to the multivariate normal distribution Nð0;ΔÞ, where the elements Δr;s of Δ are
given by,

Λr;s ¼
ðð
0< u< v< 1

fP�
r�1ðuÞP�

s�1ðvÞ þ P�
s�1ðuÞP�

r�1ðvÞguð1� vÞqðuÞqðvÞdudv; (66)

where P�
r ðxÞ ¼

Pr
k¼0

ð�1Þr�k r
k

� �
r þ k
k

� �
xk: Since the set of equations (65) are nonlinear

in α, β, and p; asymptotic variances of the L-moment estimates are difficult to compute.
One can use the bootstrap method to obtain the asymptotic variance of the estimates.

To illustrate the application of the proposed class of distributions we consider a real
data set reported in Zimmer et al. (1998). The data consist of times to first failure of 20
electric carts. We estimate the parameters using the method of L-moments. The sample
L-moments are obtained as

l1 ¼ 12:66 l2 ¼ 5:91 and l3 ¼ 1:57: (67)

We then equate these values to the corresponding population L-moments given in Eqs.
(24), (25), and (26), so that we have three nonlinear equations. The Newton–Raphson
method is used to find the solutions of these equations. A least-square method of
estimation for quantile functions given in O¨ztu¨rk and Dale (1985) was employed for
fixing the initial estimates for the Newton–Raphson iterative procedure. The estimates of
the parameters are obtained as

α̂ ¼ 8:518 β̂ ¼ 1:209 and p̂ ¼ 0:329: (68)
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To examine the adequacy of the model, two goodness-of-fit techniques are employed. The
first one is the Q–Q plot, which is given in Figure 6.

The Q–Q plot shows that the proposed model is appropriate for the given data set. We
also carry out the chi-squared goodness-of-fit test. The chi-squared test statistic value is
0.210, giving a p value 0.647 with one degree of freedom. This also indicates the adequacy
of proposed model for the given data set. We compute the estimate of HðuÞ by substitut-
ing the parameter values of Eq. (68) in Eq. (34), which is given in Figure 7. Note that the

estimate ĤðuÞ is decreasing in u, which is consistent with our claim in Table 1.

7. Conclusion

In this article, we have introduced a class of distributions (10) that are the sum of
quantile functions of the half logistic and exponential geometric quantile functions.
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Figure 6. Q–Q plot for the data set.
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Figure 7. H(u) for the data set.
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Various reliability properties are studied. We have identified several well-known dis-
tributions that are members of the proposed class of distributions. The estimation of
the parameters of the model using L-moments was studied, and we discussed the
estimation procedure with the aid of a real data set. The proposed model has several
advantages over the existing quantile function models. The analysis of hazard quantile
function over the whole parameter space can be done without using numerical meth-
ods. The model is useful for fitting different types of lifetime data due to the flexible
behavior of the hazard quantile function. Unlike the generalized lambda distribution
and generalized Tukey lambda distribution, the estimation of parameters does not
involve any computational difficulties.

There are several properties and extensions of the new family of distributions not
considered in this article, such as stochastic orderings and quantile-based cumulative
residual entropy. Estimation using the maximum likelihood method and Bayes technique
need numerical approximations. The study of multivariate generalizations of the HLEG
distribution is interesting, and will be addressed later.
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