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ABSTRACT
A number of allocation designs are developed for continuous and
binary treatment outcomes to assign a higher number of subjects to
the treatment doing better in course of the trial. However, if the
response is circular in nature, the definition of a better treatment
differs from that under the linear response and hence the already
developed designs lack appropriateness. In the current work, redefin-
ing the notions of superiority, we develop an allocation function in
the context of circular treatment outcomes. Using a response-adap-
tive route for practical implementation, we study the resulting design
both theoretically and numerically and finally illustrate the perfor-
mance for a real-life example on cataract surgery.
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1. Introduction

A clinical trial is run to determine the efficacy of the competing treatments based on the
response of the participating patients. However, involvement of human beings in such trials
necessitates keeping certain ethical norms, and hence, providing the best possible care for
individual patients is required. Since the treatments under study vary in effectiveness,
assigning a larger fraction of subjects to the better performing treatment is a suitable option
to keep ethical norms. Thus, a skewed allocation is required instead of the age-old practice
of blindly favoring each treatment. However, the best treatment is not known to the
experimenter in advance and relying on the accrued data to decide further allocations
becomes the only option. Clearly, a response-adaptive procedure with the ability to assign
every subject based on the data available so far is consistent with the requirement.

The key element of a response-adaptive procedure is an allocation function, a function
of the response distribution and the associated parameters. Sequentially updated estimates
of the allocation function are used to assign incoming subjects. The allocation function is
chosen to ensure skewing toward the better performing treatment. A number of such
allocation designs can be found in the literature for both discrete and continuous treat-
ment outcomes. We refer interested readers to the review works of Biswas (2001), Biswas
and Bhattacharya (2016), and Sverdlov (2016) and book-length treatments of Atkinson
and Biswas (2014) and Rosenberger and Lachin (2016) for an exposure to the different
perspectives of allocation designs. Some real-life applications of the response adaptive
randomization are also found in Bartlett et al. (1985), Tamura et al. (1994), and Biswas
and Dewanji (2004).
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A circular response refers to the responses indicated by angles and hence measured in
radians or degrees (Mardia and Jupp 2000). In biomedical studies, circular data often arise
in the context of ophthalmology or orthopaedics. The responses obtained from rotation of
joints (shoulder, waist, or knee) and eyeball movements are standard examples of circular
responses in practice. Formally, a circular random variable, Θ, is a random point on the
circumference of a circle with unit radius. For any realization θ, angles θ and θþ 2pπ
where p ¼ 0;�1;�2; ::; correspond to the same point on the unit circle and hence we get
an observation on the whole real line. Consequently, the distribution function F of a
circular random variable Θ is defined by

FðθÞ ¼ Pð0 < Θ � θÞ; 0 � θ � 2π:

However, due to periodicity of Θ, any arc of length 2π on the unit circle has probability 1
(Mardia and Jupp 2000), and hence we get the additional restriction

Fðθþ 2πÞ � FðθÞ ¼ 1;�1 < θ < 1:

Since the starting point coincides with the end, there is no natural ordering of the
observations. For example, unlike linear responses, an angle of 350 degrees is not too
far from the origin (i.e., 0 degrees or 360 degrees). Consequently, adoption of a usual
convention “higher is favorable” or “lower is favorable” leads to fallacious interpretations
(Mardia and Jupp 2000). To circumvent this problem, the circular responses are compared
with each other with respect to a reference point, called the preferred direction. The choice
of preferred direction can be data driven, or this can be preselected as per the practi-
tioner’s choice. In the field of medical research the preferred direction is usually set
according to the desired medical condition. For example, for studies related to shoulder
movement, it is usually seen that a perfect shoulder allows 90 degrees of internal rotation
(Jain et al. 2013) and hence the preferred direction is set at 90 degrees. For a two-
treatment clinical trial, an allocation design is developed in Biswas et al. (2015) under
circular responses, where the central idea was motivated by a real-life small-incision
cataract surgery (SICS) trial. However, the authors considered the family of von Mises
responses exclusively.

In the current work, we suggest an allocation function for a general class of circular
responses and study the related properties. The allocation function together with relevant
properties is discussed in section 2. In section 3, we provide an assessment of the
performance of the proposed allocation for widely used response distributions. We also
use the proposed allocation to redesign some real clinical trial in section 4 and conclude
with a discussion of related issues in section 5.

2. The allocation design

2.1. Relative effectiveness measure for circular responses

Consider a clinical trial involving two treatments A and B. The potential outcome Yk for a
subject assigned to treatment k is assumed circular in nature (i.e., measured in radians or
degrees). We, therefore, assume that the distribution of Yk belongs to some circular family
of distributions (Mardia and Jupp 2000). For linear responses, if a lower response indicates
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a favorable situation, the treatment producing frequent lower responses over its compe-
titors is considered as most promising. Naturally, one can use the quantity PðYA < YBÞ to
measure the relative effectiveness of treatment A (Bandyopadhyay and Bhattacharya
2016). But circular responses are periodic in nature and hence binary operations for linear
responses are no longer applicable. Therefore, we need to develop analogous definitions of
a promising treatment and a relative effectiveness measure.

Suppose the preferred direction for the trial is known to be μ0; then a response close to μ0 is
considered favorable. However, circular responses are angles and the distance between the
response and the preferreddirection is not just their numerical difference. Therefore,we consider
one of the formulations by Jammalamadaka and SenGupta (2001) and take the smaller arc length
between the points along the circumference to define the circular distance between to angles.
Specifically, we use the quantity dðψ; θÞ ¼ minðψ� θ; 2π � ðψ� θÞÞ to measure the distance
between two arbitrary angles ψ and θ. Since dðψ; θÞ is a linear quantity, we can apply linear
statistical methods on such distance measures. Then treatment A is the most promising if the
corresponding distance measure dðYA; μ0Þ is lower than that corresponding to treatment B.
Therefore, under circular response models, response YA is more promising than YB, denoted by

YA >
C
YB, if and only if the inequality dðYA; μ0Þ < dðYB; μ0Þ holds. Consequently the relative

effectiveness of treatment A can be measured by ρA ¼ P dðYA; μ0Þ < dðYB; μ0Þ
� �

, which is
nothing but the the probability that treatment A is superior to treatment B. Naturally, for equally
promising treatments ρA ¼ 1

2 and ρA > 1
2 , if treatment A is more promising.

2.2. The allocation function

In any clinical trial, the ethical goal is to skew the allocation toward the better performing
treatment, and consequently, we need a function to accomplish the goal. The preceding
discussion suggests using ρA for the development of an allocation procedure with circular
treatment responses. The relative effectiveness measure, as defined in the preceding, is an
analogue of the allocation function developed by Bandyopadhyay and Biswas (2001) with
entirely different notions. However, for further development, without loss of generality we
take μ0 ¼ 0. Then a quadrant-wise examination reveals that for 0 < YA < π,
dðYA; 0Þ < dðYB; 0Þ reduces to YA < YB < 2π � YA, whereas for π < YA < 2π, the

inequality simplifies to 2π � YA<YB<YA. Therefore, YA >
C
YB holds if and only if

ð0<YA < π;YA <YB < 2π � YAÞ or ðπ<YA < 2π; 2π � YA <YB <YAÞ is satisfied. The
dotted arc outside the circle in Figure 1 indicates the portion described by the rela-

tion YA >
C
YB.

If Fk is the distribution function of Yk with fk as the corresponding density, then we get
the following expression:

ρA ¼
ðπ
0
FBð2π � yÞ � FBðyÞf gfAðyÞdyþ

ð2π
π

FBðyÞ � FBð2π � yÞf g fAðyÞdy:

Interestingly, if we consider another popular choice of distance measure,
d�ðψ; θÞ ¼ 1� cosðψ� θÞ, the region described by the inequality d�ðYA; 0Þ < d�ðYB; 0Þ
remains the same as that by the relation dðYA; 0Þ < dðYB; 0Þ. Hence the quantity ρA remains
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invariant under the choice of distance measure. Moreover,the allocation function is derived
for a general circular response distribution and hence can be implemented in practice for
any class of circular response distributions. However, if the preferred direction is other than
0, one can either transform (Mardia and Jupp 2000), the data to make the preferred
direction 0 radian (or degrees) or derive a similar expression of the concerned allocation
function for the purpose.

2.3. Implementing the allocation in practice

The allocation functions (i.e., ρA), defined earlier, can be used to assign the subjects
according to the degree of effectiveness of treatments whenever the response distribution
becomes completely known to the experimenter. However, the distribution is never
completely known, and we need to use appropriate estimates to run the allocation process.
Specifically, if we assume that the response distributions have a common support and θ k

is the dð� 1Þ component vector of parameters associated with the response distribution of
treatment k, then ρk ¼ ρkðθA; θBÞ, the allocation function for treatment k, becomes a
function of the unknown parameters. Since data become available only with the progress
of the trial, it would be reasonable to use sequentially updated estimates of the allocation
function to set the allocation probability of an entering subject. The methodology is,
therefore, consistent with the response adaptive philosophy of randomization (Atkinson
and Biswas 2014).

In practice, n0 subjects are initially assigned to each treatment arm to get the initial
estimates and to start the response adaptive randomization from the ð2n0 þ 1Þth entering
subject. If the allocation indicator of the ith entering subject is denoted by δk;i (i.e., δk;i ¼ 1
if the subject is assigned to treatment k and 0 otherwise), Yki is the corresponding potential
response if treatment k is given to the subject, and F j is the totality of information
contained in the first j allocation and responses, then a response-adaptive randomization
procedure can be defined by

Pðδk;iþ1 ¼ 1jF iÞ ¼ ρkðbθAi; bθBiÞ; i � 2n0;

(a) 0 < YA < π (b) π < YA < 2π

Figure 1. The region for YA >
C
YB given YA as the dotted arc.
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where ρkðbθAi; bθBiÞ is a reasonable estimate of ρk based on the data available prior to the
entry of the ðiþ 1Þth subject.

In practice, maximum likelihood estimates of θ k are plugged in the expression of ρk to
get the desired allocation probability at each stage. The maximum likelihood estimate of

θ k at stage iþ 1 is, in general, the solution of the equations @Li
@ θ k

¼ 0; where

Li ¼ LiðθA; θBÞ ¼
Yi
j¼1

Y
k¼A;B

fkðYkj; θ kÞ
� �δk;j

is the likelihood of the data based on the response and allocation history of i responses.
Suppose Nkn ¼

Pn
j¼1 δk;j denotes the observed number of allocations to treatment k out

of n assignments following the proposed response adaptive randomization. If the con-
tinuity of ρk ¼ ρkðθA; θBÞ in each of its arguments is assumed, then the proposed
allocation function is achieved in the limit (for details see Hu and Zhang [2004]). Thus,
we have the following result:

As n ! 1;

Nkn

n
! ρkðθA; θBÞ;

almost surely for each k ¼ A;B.

3. Evaluating the performance

3.1. Performance measures and the response distribution

For the assessment of the randomization procedure, we need to consider suitable response
distributions together with appropriate performance measures. The evaluation of any
response adaptive procedure has two major aspects, namely, ethics and efficiency. The
observed proportion of subjects assigned to different treatments serves as a measure of
ethics. The better the effectiveness of the treatment, the higher is the corresponding
proportion. However, skewing the allocation toward the better performing treatment is
not the only objective in a clinical trial, and in addition, detection of a small deviation in
treatment effectiveness with high probability, that is, preserving a higher level of statistical
power for a relevant hypothesis of equality of treatment effects, is also required. Thus, we
calculate the following measures to investigate the performance in small samples:

● The distribution of incoming subjects to different treatments measured by the
expected values of Nkn

n ; k ¼ A;B.
● The power of a relevant test of equality of treatment effects.

However, for the investigation of performance, we further require a specific assumption
regarding the response distribution. We, therefore, assume that the response distribution
for treatment j has a von Mises distribution (Mardia and Jupp 2000) with mean direction
μj and concentration parameter κj with density function
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fjðyÞ ¼ 1
2πI0ðκjÞ exp κjcosðy� μjÞ

n o
;

where 0 < y � 2π, 0< μj � 2π, κj > 0, and

IpðκjÞ ¼ 1
2π

ð2π
0
expðκj cos yÞ cosðpyÞdy

is the modified Bessel function of order p � 0.
Now under a response-adaptive setup with n assignments following the proposed

allocation design, maximum likelihood estimators bμj and bkj are the unique solutions of

tan ðbμjÞ ¼ �Sj
�Cj

and Aðbκj; 0Þ ¼ ð�Cj
2 þ �Sj

2Þ1=2; respectively, where �Cj ¼ 1
Njn

Pn
i¼1 δj;i cosðYjiÞ

and �Sj ¼ 1
Njn

Pn
i¼1 δj;i sinðYjiÞ; j ¼ A;B; and Aðκ; sÞ ¼ Isþ1ðκÞ=IsðκÞ; s ¼ 0; 1; . . . . Plugging

these estimates into the suggested allocation function, the allocation probability for the
(n + 1)th subject is determined.

Following any allocation, the natural question is to carry out an inferential procedure
for possible determination of the effective treatment. Since cosðμAÞ> cosðμBÞ is indicative
of the fact that treatment A performs better, a hypothesis of equality of treatment effects
can be set as H0 : cosðμAÞ ¼ cosðμBÞ. For our purpose, we consider the test developed in
Biswas et al. (2016) under κA�κB. The test is based on the statistic

W ¼ T2
A

S2A
þ T2

B

S2B
� TA

S2A
þ TB

S2B

� �2

=
1
S2A

þ 1
S2B

� �
;

where

Tj ¼ arccos
�Cjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�C2
j þ �S2j

q and S2j ¼
1� Aðbκj; 1Þ
2NjnAðbκj; 0Þ :

Larger values of W indicate deviation from the null hypothesis, and hence we reject H0 if
the observed value of W is too large.

3.2. Simulation study

To study the performance of the proposed allocation in small samples, we conduct a
simulation study with 10,000 repetitions for different values of the parameters and n and
report the expected allocation proportion to treatment A, denoted by EAPA, along with
the corresponding standard deviation, indicated by SD. We also report the power of the
already-mentioned test at the 5% level of significance. These measures are also computed
for complete randomization (CR), where each treatment is assigned with equal probability
and hence a balance in the treatment allocation is expected. Obviously the ethical
perspective is violated in CR but the power of a relevant test is expected to be higher.
Thus, a comparison with CR is necessary to reveal how much better a skewed allocation
rule performs in terms of power in addition to ethics. Fixing μA suitably, we choose μB in
such a way that Δ ¼ dðμB; 0Þ � dðμA; 0Þ>0 is satisfied. That is, the entire simulation is
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conducted considering treatment A as the most promising. If μA and μB are both varying
in the first two quadrants, Δ ¼ μB � μA. On the other hand, if μA is fixed in the first or
third quadrant and μB lies in the third quadrant, Δ reduces to 2π � ðμB þ μAÞ, and hence,
in such a situation, treatment A is superior when μA < 2π � μB. However, if we fix μA in
the third or fourth quadrant, then μA > μB ensures the superiority of treatment A. The
measures are calculated for various combinations of ðμA; μBÞ addressing κA ¼ κB, κA > κB
and κA < κB separately and are provided in Table 1.

Since the allocation design is developed for a general class of circular response
distributions, we further consider the wrapped Cauchy responses having the density
function

fjðyÞ ¼ 1
2π

1� κ2j
1þ κ2j � 2κj cosðy� μjÞ

for response from the jth treatment, where 0 < y � 2π, 0 < μj � 2π, and 0< κj < 1; j ¼
A;B: It is worth mentioning that the mean direction for the above family is μj and κj is the

concentration parameter. However, we provide only the plots (see Figure 3, shown later)
of limiting allocation proportion (LAP) to the better treatment (i.e. treatment A) for

Table 1. Performance comparison for von Mises responses with n ¼ 40; 80.
EAPAðSDÞ Power

ðμA; μB; κA; κBÞ n = 80 n = 40 n = 80 n = 40

(5,5,1,1) .500 (0.08) .500 (0.12) 0.050 [0.050] 0.050 [0.050]
(5,30,1,1) .526 (0.08) .525 (0.11) 0.332 [0.346] 0.148 [0.148]
(5,60,1,1) .594 (0.08) .588 (0.11) 0.849 [0.870] 0.472 [0.490]
(45,90,1,1) .626 (0.08) .617 (0.11) 0.577 [0.640] 0.292 [0.303]
(45,135,1,1) .737 (0.09) .720 (0.10) 0.858 [0.961] 0.605 [0.677]
(45,180,1,1) .768 (0.07) .753 (0.09) 0.920 [0.999] 0.751 [0.816]
(145,145,1,1) .500 (0.07) .500 (0.10) 0.050 [0.050] 0.050 [0.050]
(145,175,1,1) .534 (0.07) .526 (0.11) 0.195 [0.188] 0.102 [0.114]
(145,185,1,1) .538 (0.07) .529 (0.10) 0.196 [0.199] 0.106 [0.112]
(355,330,1,1) .524 (0.08) .525 (0.11) 0.336 [0.349] 0.146 [0.148]
(5,5,2,1) .609 (0.07) .601 (0.11) 0.050 [0.050] 0.050 [0.050]
(5,10,2,1) .614 (0.08) .608 (0.11) 0.080 [0.080] 0.060 [0.060]
(5,20,2,1) .621 (0.07) .615 (0.11) 0.200 [0.231] 0.120 [0.136]
(5,30,2,1) .636 (0.07) .629 (0.10) 0.392 [0.472] 0.224 [0.261]
(5,45,2,1) .672 (0.07) .653 (0.11) 0.592 [0.810] 0.427 [0.499]
(45,90,2,1) .688 (0.06) .681 (0.11) 0.514 [0.751] 0.342 [0.445]
(45,135,2,1) .778 (0.07) .761 (0.10) 0.965 [0.991] 0.636 [0.809]
(145,145,2,1) .411 (0.07) .403 (0.12) 0.050 [0.050] 0.050 [0.050]
(145,175,2,1) .463 (0.06) .454 (0.10) 0.280 [0.281] 0.118 [0.122]
(145,185,2,1) .464 (0.06) .455 (0.10) 0.280 [0.281] 0.116 [0.124]
(355,330,2,1) .638 (0.07) .626 (0.10) 0.400 [0.474] 0.224 [0.262]
(5,5,1,2) .388 (0.07) .395 (0.12) 0.050 [0.050] 0.050 [0.050]
(5,20,1,2) .415 (0.07) .419 (0.11) 0.107 [0.112] 0.060 [0.070]
(5,60,1,2) .569 (0.07) .561 (0.11) 0.902 [0.910] 0.651 [0.627]
(5,75,1,2) .633 (0.07) .625 (0.11) 0.968 [0.988] 0.822 [0.761]
(45,90,1,2) .634 (0.07) .634 (0.11) 0.858 [0.872] 0.492 [0.448]
(45,135,1,2) .774 (0.06) .759 (0.11) 0.996 [0.991] 0.883 [0.852]
(145,145,1,2) .613 (0.08) .602 (0.12) 0.050 [0.050] 0.050 [0.050]
(145,175,1,2) .642 (0.06) .626 (0.09) 0.359 [0.368] 0.184 [0.192]
(145,185,1,2) .644 (0.06) .624 (0.09) 0.361 [0.369] 0.184 [0.194]
(355,300,1,2) .569 (0.07) .561 (0.11) 0.902 [0.910] 0.651 [0.627]

Note. All the figures (except power) are expressed in degrees. Figures within the square brackets indicate the power for CR.
EAP values for the CR are always 0.500 with SD around .04.
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different combinations of the parameters. For the plot, we set μA ¼ 5� and vary μB in the
first two quadrants, ensuring superiority of treatment A considering different combina-
tions of ðκA; κBÞ.
Remark 3.2.1. From Table 1, we find that for κA � κB, EAP is at least 50% to the superior
treatment (i.e., treatment A) and increases with the increasing superiority of treatment A.
On the other hand, for κA < κB, the only exception is that EAP starts from a value less
than 50% under the equality of treatment effects but increases steadily and crosses the 50%
mark as the superiority of treatment A increases. However, if we compare the EAP to the
superior treatment for different choices of ðκA; κBÞ, the highest EAP is observed when a
higher concentration is attached with the superior treatment. An interesting feature of the
EAP figures is that the skewing magnitude depends on the relative position of the arc
ðμA; μBÞ on the unit circle from the preferred direction (i.e., 0 degrees). For example,
consider the EAP values corresponding to the combinations ðμA ¼ 5�; μB ¼ 60�; κA ¼ κB ¼
1Þ and ðμA ¼ 45�; μB ¼ 90�; κA ¼ κB ¼ 1Þ, that is, .594 and .626, respectively. Thus,
higher skewing is observed for lower μB � μA. In further simulations, it is observed that
an equal difference between mean directions does not ensure an equal amount of skewing.
The magnitude of skewing depends on the position of the arc connecting the mean
directions. However, equal arc lengths, equidistant from the preferred direction on either

(a) μA = 5° , 5° < μB < 180° (b) μA = 95° , 95° < μB < 180°

(c) μA = 300° , 180° < μB < 300°

Figure 2. The limiting allocation proportion of treatment A under von Mises distribution
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side, provide an equal amount of skewing for equal concentrations. For further investiga-
tion of the effect of concentration parameters, we have provided a plot (Figure 2) of the
limiting allocation proportion (LAP) to treatment A for varying choices of concentration
parameters. The plot depicts the same story as told by the Table 1 figures, that is, strong
impact of the concentration parameters on the allocation proportions. The same is
observed when the response distribution is wrapped Cauchy (Figure 3).

Now we are in a position to evaluate the effect of different parameters on the power
figures. Apart from minor fluctuations, a loss in power is observed as compared to the
equal allocation. As expected, the higher the magnitude of EAP, more is the deviation
from a balanced allocation and hence the higher is the loss. In particular, EAP values are
higher for the configuration κA � κB and hence the loss is significant. The reverse scenario
is observed for κA < κB. Thus, the present allocation design not only allocates a larger
number of subjects to the better performing treatment arm but also maintains more or
less a similar precision level to CR. Hence the proposed allocation has the ability to
control the trade-off between ethics and statistical precision (i.e., power) for a general class
of circular response distributions.

(a) κA = .5, κB = .5 (b) κA = .8, κB = .5

(c) κA = .5, κB = .8

Figure 3. Limiting allocation proportions (LAP) for wrapped Cauchy responses
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4. Redesigning real clinical trial: SICS data

With an aim to judge the performance of the proposed allocation design in a real
situation, we consider the real trial with astigmatic eyes conducted at the Disha Eye
Hospital and Research Center, Barrackpore, West Bengal, India, over a period of 2 years
(2008–2010) (Bakshi 2010). The study was a randomized trial with 37 astigmatic eyes.
Astigmatism is an optical defect causing blurred vision. In the trial, out of the 37 patients
for small-incision cataract surgery (SICS), the snare technique was applied on 19 patients
and the irrigating vectis technique was applied on the remaining 18 patients. The response
variable is obtained by multiplying 4 by the induced angle of astigmatism in modulo 2π
system, and it is represented through separate rose diagrams for each treatment (i.e., snare
and irrigating vectis techniques). Naturally, the response is circular in nature and hence is
appropriate to judge the performance of the proposed allocation. Details of the trial and
necessary information can be found in Biswas et al. (2015; 2016).

We start with the assumption that the responses to the snare technique (Treatment S)
and irrigating vectis (Treatment V) are both distributed as von Mises distribution with
parameters (μS; κS) and (μV ; κV), respectively. However, for the justification of the validity
of the assumed distribution for the data, we start with separate probability–probability
(P-P) plots, which plot empirical distribution function for each data point against the
corresponding value of the distribution function for the assumed distribution. Naturally, a
fit is judged to be good if the plotted points are scattered close to the diagonal line
connecting the origin with the point (1,1). The estimates of the unknown parameters
assuming von Mises distribution are obtained from the data as μ̂S ¼ 17:57�, κ̂S ¼ 1:478,
μ̂V ¼ 32:04� and κ̂V ¼ 1:504. Assuming these values as the true parameters, we construct
P-P plots for each treatment and provide them in Figure 4. The plot reveals the appro-
priateness of the Von Mises assumption. Watson’s test (Jammalamadaka and SenGupta
2001), an equivalent to a goodness-of-fit test for circular responses, also supports the
preceding distributional assumption. Now treating the estimates of the parameters as the
true parameter values, we redesign the SICS trial using the proposed allocation procedure
with trial size n ¼ 37. For our purpose, we assume that the responses are immediate, that
is, that there are no delays or staggered entries. We carry out the allocation using the

0

π

2

π

3π

2

+

a

0

π
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π

3π
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+

b

Figure 4. Rose diagram for the angle of astigmatism. (a) Responses from irrigating vectis. (b) Responses
from snare technique.
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proposed allocation design and repeat the procedure 10,000 times. The redesigning results
in assigning 53.79% (i.e., 20 in number) subjects to the snare technique with a standard
error of 10%. However, the original trial adopted a balanced procedure to assign 37
patients to the two treatments and concluded with the marginal superiority of the snare
technique. The redesigning using the proposed response adaptive methodology supports
the same feature but with a slightly higher number of assignments to the better treatment,
as there is no overwhelming superiority of either treatment over the other.

In addition, we investigate the consequences, when the responses are assumed to have
wrapped Cauchy distribution (see section 3.2). As done earlier, we assume the response
parameters (μS; κS) and (μV ; κV) for treatments S and V, respectively and obtain the
corresponding estimates μ̂S ¼ 24:070; κ̂S ¼ 0:5073, and μ̂V ¼ 63:840; κ̂V ¼ 0:5078.
Redesigning under the said response model results in 63% allocation to the snare treat-
ment with a standard error of 8%. Thus under the wrapped Cauchy responses, an excess of
about 10% subjects are expected to receive the better treatment. However, these results are
obtained under a misspecified model and therefore the results are not significant, except
for the fact that the proposed allocation design has the ability to assign subjects according
to the treatment superiority.

Thus, in general, the proposed allocation not only favors the better treatment for more
allocation but also shows sensitivity to moderately small difference in effectiveness and
hence can be adopted in trials where the outcome is circular in nature.

5. Concluding remarks

This work considers an important problem of framing a response adaptive allocation
design and analysing the resulting data when the responses are circular in nature. The
proposed methodology is motivated and illustrated by a real-life example of cataract
surgery. However, in real trials the responses are often delayed, covariates are presented,

a b

Figure 5. P-P plot to assess von Mises responses; (a) irrigating vectis; (b) snare.
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or several treatments are used. Considering all these issues, relevant development is the
concern for future development.
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