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ABSTRACT
A normal semiparametric mixture regression model is proposed for
longitudinal data. The proposed model contains one smooth term
and a set of possible linear predictors. Model terms are estimated
using the penalized likelihood method with the EM algorithm. A
computationally feasible alternative method that provides an approx-
imate solution is also introduced. Simulation experiments and a real
data example are used to illustrate the methods.
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1. Introduction

Modeling of longitudinal data has been of special interest in statistics during recent
decades. Depending on the context, several approaches have been used: multivariate
analysis, linear and generalized linear mixed and mixture models, structural equation
models, Bayesian methods, quantile regression, and so on. For comprehensive summaries
of different approaches to longitudinal data analysis we can refer to Fitzmaurice et al.
(2011) and Diggle et al. (2013), for example.

In our approach the focus is on the situation, where the studied population is not
completely homogeneous over time, but is instead comprised of groups of individuals with
the same kind of mean developmental profiles. One approach to understanding such hetero-
geneity is to apply the theory of finite mixtures (FM). Nagin (1999; 2005) and Jones et al.
(2001) apply the generalized linear models theory to FM with the assumption that observa-
tions within a given mixture are independent. A further extension is to take some model
parameters (e.g., polynomial coefficients) as random variables or (latent factors); see, for
example, Muthen and Khoo (1998). These random terms can then be used for modeling the
correlation of the observations within a component mixture. The other kind of mixture
regression application arises if part of the random model parameters arise from a mixture
distribution (see, e.g., Verbeke and Lesaffre 1996).

The focus in the present study is especially on modeling the mean within the mixture using
semiparametric regression techniques (Nummi et al. 2011; Nummi et al. 2013). The mean
consists of one time-dependent smooth term and a set of linear predictors that may or may not
depend on time. Model terms are estimated using the penalized likelihoodmethod with the EM
algorithm. This study also introduces a computationally feasible alternative that provides an
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approximate solution using an ordinary linear models methodology developed for mixture
regression. The data analysis part of the study consists of a simulation experiment and an
analysis of a real longitudinal data set of growth characteristics of Finnish children.

Section 2 introduces the basic multivariate normal mixture model, and its parameter
estimation with the maximum likelihood method. Then the basic model is extended to the
semiparametric mean model. Parameter estimation using penalized likelihood with the EM
algorithm is introduced in detail. Section 3 introduces a method for obtaining a computa-
tionally feasible approximate solution for a semiparametric mean trajectory model and a
simulation study was used to demonstrate the performance of the technique. The section
closes by the real data analysis of growth curves of Finnish children. Finally, section 4
summarizes the main results.

2. Description of the problem

2.1. Theoretical background

The aim is to identify clusters of individuals with the same kind of developmental curves.
Let yi ¼ ðyi1; yi2; . . . ; yipiÞ0 represent the sequence of measurements on individual i over pi
periods and let fiðyijXiÞ denote the marginal probability distribution of yi with possible
time-dependent covariates Xi. It is assumed that fiðyijXiÞ follows a mixture of K densities

fiðyijXiÞ ¼
XK
k¼1

πkfikðyijXiÞ;
XK
k¼1

πk ¼ 1 with πk > 0; (1)

where πk is the probability of belonging to the cluster k and fikðyijXiÞ is the density for the
kth cluster. If the multivariate normal distribution is assumed, we get

fikðyi XiÞ ¼ ð2πÞ�
pi
2

��� ���Σikj�
pi
2 exp � 1

2
ðyi � μikÞ0Σ�1

ik ðyi � μikÞ
� �

; (2)

where μik is a function of covariates Xi with parameters θk and Σik is a variance–
covariance matrix within the kth component, involving σk, which is a vector of unique
covariance parameters. The parameter estimates can then be obtained by maximizing the
log-likelihood function for the entire set of N (independent) individuals y1; . . . ; yN ;

lðϕ��y1; . . . ; yNÞ ¼ XN
i¼1

log fiðyi
��XiÞ (3)

over all unknown parameters ϕ ¼ ðπ1; . . . ; πK ; θ1; . . . ; θK ; σ1; . . . ; σKÞ0. A popular method
for the maximum likelihood (ML) estimation is the EM (expectation and maximization)
algorithm (Dempster et al. 1977) that is often used, for example, for incomplete data
problems. The EM algorithm is an iterative method consisting of two main steps. The
E-step finds the expected log-likelihood under current parameter estimates, and the
subsequent M-step maximizes the expected log-likelihood function. These two steps are
then iterated until convergence. The mixture model EM algorithm implementation details
can be found, for instance, in McLachlan and Peel (2000).

The basic mean model in applications is often a simple linear model, such as an
appropriate low-degree polynomial, in time. For many appropriately smooth curves, this
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provides a reasonable model. However, in certain cases, a low-degree polynomial may not
prove to be sufficient due to irregular or insufficient measuring points or otherwise
complicated mean curve forms, for example. The aim here is to introduce a new, more
flexible semiparametric model with one possible smooth term (time, in our application)
that can be used for mean curve modeling with normal mixture components. The
important advantage is that smoothing is done separately for each mixture component
and thus a very rich set of curves is available for modeling.

2.2. Modeling the conditional mean

The set of covariates Xi is divided into the parametric part Ui and the nonparametric part
ti, where ti is the vector of measuring times ti1; . . . ; tipi . For the ith individual within the
kth mixture we assume the semiparametric model

yik ¼ gik þ Uibk þ εik; (4)

where gik ¼ ½gkðti1Þ; . . . ; gkðtipiÞ�0 is a smooth vector of twice differentiable functions evalu-
ated at ti, Ui is a matrix of h covariates (constant term not included), and bk is a parameter
vector to be estimated. Note that the same measuring points are used for each individual, but
the measurement sequence (number of measurements actually taken) may vary from indivi-
dual to individual. The covariance matrix of random errors εi for the kth group takes the
simple form Σk ¼ σ2kI (Nagin 1999; 2005). For more elaborated covariance modeling, we may
refer to, for example, Ye and Pan (2006) and Leng et al. (2010).

We can define the so-called roughness matrix as G ¼ �Δ�1�0 (from the penalty ∫ g002),
where the nonzero elements of banded p� ðp� 2Þ and ðp� 2Þ � ðp� 2Þ matrices � and Δ
are defined as

�l;l ¼ 1
hl
;�lþ1;l ¼ �ð1

hl
þ 1
hlþ1

Þ;�lþ2;l ¼ 1
hlþ1

and

Δl;lþ1 ¼ Δlþ1;l ¼ lkþ1

6
;Δl;l ¼ hl þ hlþ1

3
;

where hj ¼ tjþ1 � tj; j ¼ 1; 2; :::; ðp� 1Þ and l ¼ 1; 2; :::; ðp� 2Þ (see, e.g., Green and
Silverman 1994). The penalized log-likelihood function is now

lðϕjy1; . . . ; yNÞ ¼
XN
i¼1

log
XK
k¼1

πkfik

( )
�
XK
k¼1

αk
2
g0kGgk

n o
; (5)

where αk is a smoothing parameter and ϕ is a vector of unknown parameters. Maximizing
this log-likelihood is computationally intensive. The next section shows how the solution
can be obtained using the iterative EM algorithm.
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2.3. Estimation with the EM algorithm

In this section, we show how the semiparametric mixture model can be estimated using
the EM algorithm. In this implementation, estimation is viewed as a missing data problem
(see also McLachlan and Peel 2000). We denote

y�i ¼ ðy0i; z0iÞ0;

where zik ¼ 1 if yi stemmed from the kth component; otherwise, zik ¼ 0. The vectors
z1; . . . ; zN can now be seen as realized values of random vectors Z1; . . . ;ZN from the
multinomial distribution. The complete-data, joint log-likelihood function of yi and zi can
be written as

lcðϕÞ ¼
XN
i¼1

XK
k¼1

zik½logðπkÞ þ logðfikÞ�
( )

�
XK
k¼1

αk
2
g0kGgk: (6)

The algorithm’s E step is simply to calculate the conditional expectation of lcðϕÞ under

current parameter estimates ϕ̂ and the observed data. This yields

EðZikjϕ̂; y1; . . . ; yNÞ ¼
π̂kfikðyijXi; ξ̂kÞPK

l¼1
π̂lfilðyijXi; ξ̂lÞ

¼ ẑik; (7)

where ξ̂1; . . . ; ξ̂K are vectors consisting of estimates of mixing distribution mean and
variances. In the M step the expected log-likelihood for the completed data

E½lcðϕÞ� ¼
XN
i¼1

XK
k¼1

ẑik½logðπkÞ þ logðfikÞ�
( )

�
XK
k¼1

αk
2
g0kGgk (8)

is maximized. Note that for the kth component we may denote y ¼ ðy01; . . . ; y0NÞ0, U ¼
ðU0

1; . . . ;U0
NÞ0; and Wk ¼ diagðWk1; . . . ;WkNÞ; where Wki ¼ ẑikIi. The expected log-

likelihood for the kth component ð�2Þ can be written as

� 1
σ2k

½y � ðUbk þ NgkÞ�0Wk½y � ðUbk þNgkÞ� � Nklogðσ2kÞ � αkg
0
kGgk (9)

where Nk ¼
PN
i¼1

piẑik. The solutions are obtained at

b̂k ¼ ½~U0
U��1 ~U

0
f y and Nĝk ¼ Sðy �Ub̂kÞ;

where ~U ¼ ðI� SÞWkU and S ¼ NðN0WkNþ αkGÞ�1N0Wk is the smoother matrix, where
N is an incidence matrix. Note that the maximizing curve ĝk is a natural cubic smoothing
spline with knots at the design points t1; . . . ; tp. The conditions for uniqueness of the solutions
turns out to be identical to the fully parametric regression with explanatory variables ti andUi

(Green and Silverman 1994). Estimates for σ2k and πk can be obtained from

σ̂2k ¼ 1
Nk

½y � ðUb̂k þN ĝkÞ�0Wk½y � ðUb̂k þNĝkÞ� and π̂k ¼
XN
i¼1

ẑik=N
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with
PK
k¼1

π̂k ¼ 1. A further simplification of the M step is easily obtained for complete and

balanced data (parametric part dropped) using

ĝk ¼ ðπ̂kNIþ αkGÞ�1
XN
i¼1

ẑikyi

and

σ̂2k ¼ 1
Nk

XN
i¼1

ẑikðyi � ĝkÞ0ðyi � ĝkÞ:

To update the value of the smoothing parameter αk the following idea is introduced. The
profile log-likelihood for the kth component given y,U1; . . . ;UN , t1; . . . ; tN andW1; . . . ;WN

is written as a function of the smoothing parameter only. This yields lðαÞ ¼ �Nk �
Nklog½σ̂2kðαÞ� and the maximum is obtained when σ̂2kðαÞ is minimized with respect to α.
When α1; . . . ; αK are updated also the estimates for σ21; . . . ; σ

2
K , b1; . . . ; bK ; and g1; . . . ; gK

are readily available. Since each component is smoothed individually, the method allows a
very flexible modeling tool within each of the K components of the mixture model. The EM
steps are iterated until convergence. However, in some cases, the algorithmmay converge to a
localmaximum. Therefore, in practicemany initial values are usually tested. Formore detailed
considerations of the EM algorithm in a similar kind of context we can refer to Fariaa and
Soromenhobre (2010) and to Basford and McLahlan (1985).

Identifiability is a crucial issue in mixture modeling. This topic for a normal mixture is
studied quite extensively in Titterington et al. (1985) and McLachlan and Peel (2000). For
the studies of normal mixture regression we can refer to Huang and Yao (2012) and for
those of normal nonparametric mixture regression to Huang et al. (2013). Especially, the
results in the latter paper are applicable here since the semiparametric regression model of
this article can be considered as a special case of their more general class of models.

Selection of the number of components K is a subject of lively scientific debate. Many
statistical criteria have been presented for the purpose, of which the most important are the
information criterion functions, especially the Akaike information criterion (AIC) and
Bayesian information criterion (BIC). In practice also the overall fit and the interpretability
of the components must be taken into account. See McLachlan and Rathnayake (2014) for a
review article on the topic.

In practical implementations, individuals are often assigned to groups or clusters
c1; . . . ; cK according to posterior probabilities ẑik. This is often done using maximum
posterior probability max ẑikf g or by random integers generated using ẑik as probabilities.
This assignment of individuals to specific clusters can be seen as an important contribu-
tion to longitudinal data analysis. This is because many important latent characteristics
manifest themselves only when analyzing longitudinal data. However, further statistical
analysis of the identified clusters must be accomplished very carefully since they are not
fixed constructs but are based on probabilities.
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3. Data analysis

3.1. Computing using an approximation

In the following, we present a simple method to estimate the semiparametric model using
standard statistical software (e.g., Jones et al. 2001; Leisch 2004; Muthen and Muthen
2007) developed for mixture regression. The method is based on the spline approximation.
For the ith individual in the kth trajectory group (indices dropped), we have the semi-
parametric model

μ ¼ gþ Ub; (10)

where we have the estimate b̂ ¼ ½~U0
U��1 ~U

0
y and ĝ ¼ Sαðy � Ub̂Þ; Sα ¼ ðIþ αGÞ�1 and

~U ¼ ðI� SÞU. The whole semiparametric curve is then fitted by

μ̂ ¼ Sy þ ~Ub̂: (11)

For the smoother matrix S we can show that

S ¼ MðIþ αΛÞ�1M0; (12)

where M is the matrix of p orthogonal eigenvectors of the roughness matrix G and Λ is a
diagonal matrix of corresponding p eigenvalues λ1; . . . ; λp. Note that G and S share the
same set of eigenvectors, but in the reverse order. Subsequently, we assume that eigen-
vectors m1;m2; . . . ;mp of M are ordered according to the eigenvalues γ ¼ 1=ð1þ αλÞ of
S. The sequence of these eigenvectors appears to increase in complexity like a sequence of
orthogonal polynomials and the first two eigenvalues are always 1 (corresponding eigen-
vectors span a straight line model; see, e.g., Ruppert et al. 2005, 79). We can then
approximate S by P ¼ McMc0 , where Mc contains the first c eigenvectors of M. The
number c of needed eigenvectors can be estimated using ordinary model selection criteria
like AIC, BIC, and others (for more details see Nummi et al. 2011; Nummi et al. 2013).
The fit of model (11) is approximated by fitting the approximating mean model

μ� ¼ Mcγþ Ub: (13)

Thus, estimating the semiparametric mean model is now returned to the linear model
framework. Therefore, we can quite easily apply the common mixture regression statistical
software for our analysis.

A simulation study was conducted to test how well the approximation method per-
forms when the data are generated using different, but closely behaving, curve forms. The
following models were used to simulate the data:

(a) yj ¼ 0:1þ 1:5xj � 0:1x2j þ dazj þ εj;
(b) yj ¼ 0:1þ 1:5xj � 0:1x2j þ dbzj þ εj;

where εj,Nð0; 0:25Þ, zj ¼ cosð0:5πxjÞ, xj ¼ j; j ¼ 1; . . . ; 10, da ¼ 0:8, and db ¼ 0. The
series of 10 measurements was repeated 100 times for each model. For these 200 series
of measurements completely random dropouts were also generated with a dropout prob-
ability for a single measurements as pj ¼ 0:2; j ¼ 2; . . . ; 10 (no dropouts in x1).

For the simulated data mixture regression analysis was performed. First, the true
semiparametric mixture model was fitted with gðxÞ as the nonparametric term and z as
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the parametric term (method 1). This is then compared with the fit provided by the
approximating model, where the first five eigenvectors m1; . . . ;m5 and z are used as
explanatory variables (method 2). For both methods 20 runs with different starting values
were tested with K ¼ 1; 2; 3; 4. The following BIC values were observed: method 1,
1646.629, 1559.574, 1612.512, and 1666.069; and method 2, 1637.456, 1536.163,
1565.656, and 1604.579. Clearly K ¼ 2 gives the minimum and this is therefore taken as
the number of groups for both methods. Figure 1 gives the plot of simulated data and the
means in xj; j ¼ 1; . . . ; 10, for the identified groups.

The fits of these two methods were very close to each other. First the mixing proportion
estimates were very close: π̂11 ¼ 0:46; π̂12 ¼ 0:45 (group 1), and π̂21 ¼ 0:54; π̂22 ¼ 0:55
(group 2). The conditional means at points xj; j ¼ 1; . . . ; 10 were also very close for both
groups. For group 1 the fitted curves almost completely overlap and for group 2 only a
slight difference for the last points of xj ðj > 5Þ is observed. This demonstrates that the
approximation works very well when the semiparametric mixture regression model with
one smooth term and parametric part is approximated by the proposed linear model.

3.2. Analysis of height growth

The data used for this study are part of the data of growth measurements of 4,223 children
collected in Finland (Vuorela 2011; Nummi et al. 2014). Birth cohorts from 5 years were
examined in the original data: 1974 (n = 1,108), 1981 (n = 987), 1991 (n = 586), 1995 (n =
786), and 2001 (n = 766). However, for our study we considered only the birth cohort
1974. The children were measured in well-baby clinics, schools, and health care centers
from birth up to age 15 years. The data included anthropometric measurements at birth
and seven routine health checkup times: at 6 months and at 1, 2, 5, 7, 12, and 15 years. In
addition, the gender, the area of residence (urban/rural), and the mother’s pregnancy in
weeks were also included.

Understanding human growth during childhood and adolescence has been of special
interest for pediatricians, health scientists, and the clothing industry, among others.

2 4 6 8 10

1
2

3
4

5
6

7

x

y

Figure 1. Plot of simulated data and conditional means. Solid line corresponds to the true semipara-
metric model (method 1) and dotted curve corresponds to the linear model approximation with c ¼ 5
(method 2).
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Statistical models for growth have been investigated by Gasser et al. (1984), Poortema
(1984), and Karlberg (1987), for example. A recent overview of analytical strategies of
human growth is presented in Johnson (2015). In statistical models, growth is often
divided into age periods. For example, Karlberg (1987) applied the following models:

(1) Infancy: y ¼ aþ b 1� expð�ctÞf g þ ε:
(2) Childhood: y ¼ aþ bt þ ct2 þ ε:
(3) Puberty: y ¼ a=½1þ exp �bðt � t�Þf g� þ ε:

Here, y is height, t is the age, a, b and c are parameters to be estimated, and t� is the peak
velocity age. Naturally, the age period for which each of the models applies varies from
individual to individual. It is also well known that infant birth weights influence further
childhood development, including mortality and morbidity. As a result, it could be interest-
ing to use the birth weight as a parametric term and evaluate its effects on different mean
developmental curves. The basic model for the ith individual in the kth group takes the form

yij ¼ gkðtijÞ þ βkui þ εij;

where ui is the birth weight a child and εij is the independent and identically normally
distributed random error term with VarðεijÞ ¼ σ2k.

The data were first divided into two parts by gender, because it is well known that the
growth curves differ. The actual analysis started by fitting the cubic smoothing spline over both
data sets when K ¼ 1 and the smoothing parameter was then estimated using the method of
generalized cross-validation. The estimated degrees of freedom (EDF) for a smoother were
,7:998 for both data sets. Therefore, a natural choice for the approximation model dimension
is c ¼ 7. This gives us seven first eigenvectors of S that are used in approximation models.

The approximation model was fitted for k ¼ 1; . . . ; 7 and the corresponding criterion
values are plotted in Figure 2. It is clear from Figure 2 that for both genders, the decrease
in criterion values when k > 6 is relatively small. Therefore, we took k ¼ 6 and k ¼ 7 as
possible candidate models. However, the graphical investigation of the fitted trajectory
curves revealed that k ¼ 7 may not provide any new relevant information from the
interpretation point of view. Therefore, our choice was K ¼ 6 for both genders. The fitted
curves are presented in Figure 3 with model covariates fitted to their mean values.

The parameter estimates of each of the groups are given in Table 1. Clearly, birth weight
has some effect and the effects are not similar for genders. For boys the estimates β̂km does

not vary much over the groups. However, the smallest estimate β̂3m ¼ 2:042 was obtained for
the largest group 3. For girls the estimates vary depending on the group. Interestingly, the

largest estimate, β̂6m ¼ 4:043, is obtained for group 6 where the level of the mean curve is the
lowest (Figure 3). It seems possible that birth weight is an important factor in the develop-
ment of further height growth. Especially, this finding is very interesting for girls. However,
further analysis of this connection is a topic of further research work.

4. Concluding remarks

The aim of this study was to apply nonparametric regression techniques for mean
modeling of normal mixtures. Here, the mean consisted of one time-dependent smooth
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Figure 2. AIC, BIC, and ICL values of the fitted models for k ¼ 1; . . . ; 7 (males on the left-hand side and
females on the right-hand side).
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Figure 3. Fitted trajectory curves μ̂�k ¼ M5γ̂k þ ub̂k of the final models when birth weight ui is set to
the mean value (males on the left-hand and females on the right-hand side).

Table 1. Model parameter estimates for both genders, where the groups are set in decreasing order
according in the level of the mean curve at the end of the follow-up period.

Group π̂M π̂F β̂1M SE(β̂1M) β̂1F SE(β̂1F )

1 0.0842 0.1095 2.986 0.3178 2.035 0.259
2 0.1969 0.2329 2.285 0.1960 1.796 0.223
3 0.3497 0.0697 2.042 0.1405 3.954 0.353
4 0.1292 0.3196 2.520 0.2586 2.411 0.174
5 0.1431 0.1910 2.647 0.2207 2.801 0.264
6 0.0970 0.0774 2.668 0.2570 4.043 0.790
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term and a set of linear predictors that may or may not depend on time. The article also
showed how to obtain a computationally simple approximate solution. We believe that
our approach provides a new, more flexible method, for the analysis of normal mixtures.
Modeling the within-trajectory covariance matrix remains an interesting challenge for
further research. Further analysis of height or weight growth data with different statistical
methods using more background covariates also remains a topic of a future study.
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