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ABSTRACT
A continuous-time homogeneous irreducible Markov chain
XðtÞf g; t 2 ½0;1), taking values on N ¼ 1; :::; kf g; k <1, is considered.
Matrix λ ¼ ðλijÞ of the intensity of transition λij from state i to state j is
known. A unit of the sojourn time in state i gives reward βi so the total

reward during time t is YðtÞ ¼ �
t

0
βXðsÞds. The reward rates βif g are not

known and it is necessary to estimate them. For that purpose the follow-
ing statistical data on r observations are at our disposal: (1) t, observation
time; (2) i, initial state X(0); (3) j, final state XðtÞ; and (4) y, acquired reward
YðtÞ. Two methods are used for the estimation: the weighted least-
squares method and the saddle-point method for the Laplace transfor-
mation of the reward. Simulation study illustrates the suggested
approaches.
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1. Introduction

We consider a continuous-time homogeneous irreducible Markov chain XðtÞf g; t 2 ½0;1Þ,
taking values onN ¼ 1; :::; kf g, k <1; see, for example, Kijima (1997) and Pacheco, Tang, and
Prabhu (2009). Let λi;j be the intensity of a transition from state i to state j ðλi;i ¼ 0Þ, λ ¼ ðλi;jÞ be
the k� kmatrix, Λi ¼

Pk
j¼1

λi;j be the intensity of transition from state i, and δi;j ¼ 1 if i ¼ j and 0

otherwise. The k� kmatrixA ¼ ðAi;jÞ ¼ ðλi;j � δi;jΛiÞÞ is named the generator. Further, a unit

of the sojourn time in state i gives reward βi so the total reward during time t is YðtÞ ¼ �
t

0
βXðsÞds:

It is supposed that βi�βj for i�j.

We suppose that transition intensities λi;j
� �

are known but reward rates βif g are not
known. We need to estimate them, using the following statistical data on r observations
with numbers η ¼ 1; :::; r: (1) tη, observation time, (2), iη, initial state Xð0Þ,(3) jη, final
state XðtηÞ, and (4) yη, acquired reward YðtηÞ.

First we consider reward YðtÞ as a response of the linear regression:

YðtÞ ¼
Xk
i¼1

βiTiðtÞ ¼
Xk
i¼1

βiEðTiðtÞÞ þ Uðt; βÞ (1)

CONTACT Alexander Andronov lora@mailbox.riga.lv Mathematical Methods and Modeling, Transport and
Telecommunication Institute, LV-1019, Lomonosova 1, Riga, Latvia.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ujsp.

JOURNAL OF STATISTICAL THEORY AND PRACTICE
2017, VOL. 11, NO. 3, 407–417
http://dx.doi.org/10.1080/15598608.2017.1282895

© 2017 Grace Scientific Publishing, LLC

http://www.tandfonline.com/ujsp


where TiðtÞ is a sojourn time in the state i of a Markov chain during time t, Uðt; βÞ is a
random variable with zero mean depending on t, and β ¼ ðβ1; :::; βkÞ.

A more general setting of this problem has been considered by Andronov (1992; 2014).
Elaborated methods are used for the specific case under study.

Usually the maximum likelihood method is used for the estimation. This method is
based on the distribution function of the reward Y(t). The calculation of this distribution
function is a rather complicated problem, although the corresponding Laplace transfor-
mation is known and is not complicated; see, for example, Bladt, Meini, Neuts, and
Sericola (2002) and Sericola (2000). Methods known for inverting transformation of
probability distributions (Abate and Whitt 1992; Grawford, Minin, and Suchard 2014)
are inadmissible in our case. Initially we used the following alternative approach: At the
beginning the moments of reward EYðtÞrf g were calculated, and then the required
distribution function was approximated on the basis of the acquired moments.
Unfortunately, this approach did not give good results and another approach was chosen.

Let JjðtÞ be an indicator function of the event XðtÞ ¼ jf g, which equals 1 if the event takes
place and equals 0 otherwise. We denote the Laplace transformation of the reward Y(t) and
JjðtÞ by�i;jðs; t; βÞ ¼ Eðexpð�sYðtÞÞ � JjðtÞjXð0Þ ¼ iÞ, i; j ¼ 1; :::; k. It is tempting to use this
transformation immediately for the estimation of parameters β. For that the method of the
saddle point is used. This is a point ðs�; β�Þ giving a maximum of criterion under interest with
respect to s and minimum with respect to β.

The article is organized as follows. The considered continuous-time Markov chain is
described in the second section. The method of weighted least squares is presented in the
third section. Sections 4–6 are devoted to the method of the saddle point and its
modifications. Results of the simulation study are presented in section 7. Conclusion
remarks end the article.

2. Preliminaries

Let Pi;jðtÞ ¼ PfXðtÞ ¼ jjXð0Þ ¼ ig be the transition probability of the Markov chain X(t),
and PðtÞ ¼ ðPi;jðtÞÞk�k be the corresponding matrix. We suppose that all eigenvalues of
the generator matrix A are different. In this case probabilities PðtÞ ¼ ðPi;jðtÞÞk�k can be
represented in a simple way. Let �i and Zi, i ¼ 1; :::; k, be the eigenvalue and the

corresponding eigenvector of A, � ¼ ð�1; :::; �kÞT , Z ¼ ðZ1; :::;ZkÞ be the matrix of the

eigenvectors, and �Z ¼ Z�1 ¼ ð�ZT
1 ; :::;

�ZT
k ÞT be the corresponding inverse matrix (here �Zη is

the η-th row of �Z). Then (see Bellman 1969)

PðtÞ ¼ expðtAÞ ¼ Zdiagðexpð� tÞÞZ�1 ¼
Xk
i¼1

Ziexpðt�iÞ�Zi: (2)

Let us fix initial state i and final state j of Markov chain XðtÞ and consider the sojourn
time TvðtÞ in the state v 2 N on the interval ð0; tÞ. Then for expectation
τvðt; i; jÞ ¼ EðTvðtÞJjðtÞjXð0Þ ¼ i; XðtÞ ¼ jÞ, we have:

τvðt; i; jÞ ¼ �
t

0
Pi;vðuÞPv;jðt � uÞdu; v ¼ 1; :::; k: (3)
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The conditional mixed second moments τv;v�ðt; i; jÞ ¼ EðTvðtÞTv�ðtÞjXð0Þ ¼ i;XðtÞ ¼ jÞ
and conditional covariance Cv;v�ðt; i; jÞ ¼ CovðTvðtÞ;Tv�ðtÞjXð0Þ ¼ i; XðtÞ ¼ jÞ of the
sojourn time in the states v; v� 2 N on the interval ð0; tÞ are calculated as

τv;v�ðt; i; jÞ ¼ 1
Pi;jðtÞ ð�

t

0
Pi;vðuÞτv�ðt � u; v; jÞduþ �

t

0
Pi;v�ðuÞτvðt � u; v�; jÞduÞ: (4)

Cv;v� ðt; i; jÞ ¼ τv;v�ðt; i; jÞ � Pi;jðtÞ�2τvðt; i; jÞτv� ðt; i; jÞ: (5)

Let us consider the vectors TðtÞ ¼ ðT1ðtÞ; :::;TkðtÞÞT , τðt; i; jÞ ¼ ðτ1ðt; i; jÞ; :::;
τkðt; i; jÞÞT , β ¼ ðβ1; :::; βkÞ, and conditional covariance matrix Cðt; i; jÞ ¼ ðCv;v� ðt; i; jÞÞ
of TðtÞ. The expectation EYðtÞ and the variance DYðtÞ of the reward are calculated as

EYðtÞ ¼ βTETðtÞ; DYðtÞ ¼ βTCovðTðtÞÞβ: (6)

We wish to estimate parameter β ¼ ðβ1; :::; βkÞT using the following statistical data on r
observations: (1) tη, the duration of the η-th observation; (2) iη, the initial state of the η-th
observation Xð0Þ; (3) jη, the final state of the η-th observation XðtηÞ; and (4) yη, the
acquired reward YðtηÞ.

Here we should mention the following reasons, taking into account that βi�βj for i�j.
For two observations with numbers η and η � let iη ¼ iη� ¼ jη ¼ jη� ¼ i0,
YðtηÞ=tη ¼ Yðtη�Þ=tη � . This means that the initial state i0 of the Markov chain retains
itself during both observations with probability 1. Therefore, βi0 ¼ YðtηÞ=tη ¼ Yðtη�Þ=tη � .
This simplifies the problem of the estimation essentially. Further, we suppose that durations
of the observations are sufficiently big that this situation does not take place.

It is supposed that matrix λ is known and has relative small dimension k � 10; therefore,
vector ETðtÞ and covariance matrix CovðTðtÞÞ are known too for each observation η
(needed expressions were represented by Eqs. (3) and (5)).

We begin with the method of weighted least squares.

3. Method of weighted least squares

The method of weighted least squares (Turkington 2002) presupposes minimizing the sum

LSSðβÞ ¼ ð
Xr
η¼1

ωηÞ�1
Xr
η¼1

ωηðyη � EYðtηÞÞ2 ¼ ð
Xr
η¼1

ωηÞ�1
Xr
η¼1

ωηðyη � βTETðtηÞÞ2

¼ ð
Xr
η¼1

ωηÞ�1ðy�HβÞTdiagðω1; :::;ωrÞðy� HβÞ; (7)

where ωη ¼ DYðtηÞ�1 ¼ ðβTCovðTðtηÞÞβÞ�1;

y ¼ ðy1; . . . ; yrÞT ; H ¼ ðETðt1Þ; . . . ;ETðtrÞÞT :

If weights ωη

� �
do not depend on unknown parameters β, then the classical estimator

is calculated as

b ¼ ðHTdiagðω1; :::;ωrÞHÞ�1HTdiagðω1; :::;ωrÞy: (8)
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As weights ωη

� �
depend on unknown parameters β, the usual two-step procedure is

repeated. First, weights are calculated for the given estimator of β; then a new estimator is
recalculated. Usually a small number of iterations is sufficient for convergence.

4. Method of the saddle point

This method uses the explicit form of Laplace transformation
�i;jðs; β; tÞ ¼ Eðexpð�sYðtÞÞ � JjðtÞjXð0Þ ¼ iÞ, i; j ¼ 1; :::; k, of the reward YðtÞ and the
indicator function JjðtÞ of the event XðtÞ ¼ jf g. Let �ðs; β; tÞ ¼ ð�i;jðs; β; tÞÞk�k be corre-
sponding k� k matrix of the Laplace transformations.

Further, let B ¼ diagðβ1; :::; βkÞ. It is known (Bladt, Meini, Neuts, and Sericola 2002;
Sericola 2000) that

�ðs; β; tÞ ¼ expðtðA� sBÞÞ ¼
X1
ψ¼0

1
ψ!

ðtðA� sBÞÞψ: (9)

Let us consider a mini–max criterion

R̂ðs; bÞ ¼
Xr
η¼1

ð 1
PiðηÞ;jðηÞðtðηÞÞ

�ðs; b; tðηÞÞiðηÞ;jðηÞ � expð�syηÞÞ2; (10)

where notations tðηÞ, iðηÞ, and jðηÞ are used instead of tη, iη, and jη to avoid double indexes.
We must find the saddle point ðs�; b�Þ of this function: It is maximum with respect to s

and minimum with respect to b (Minoux, 1989). The maximum with respect to s is
searched in the positive neighborhood of zero. Let us find the derivative of Eq. (9) with
respect to s:

@

@s
�ðs; β; tÞ ¼ @

@s
expðtðA� sBÞÞ ¼ @

@s

X1
ψ¼0

1
ψ!

ðtðA� sBÞÞψ

¼
X1
ψ¼1

1
ψ!

tψ
Xψ�1

m¼0

ðA� sBÞmð�BÞðA� sBÞψ�1�m

¼ �tB�
X1
ψ¼2

1
ψ!

tψ
Xψ�1

m¼0

ðA� sBÞmBðA� sBÞψ�1�m:

(11)

It is necessary to find the gradient of Eq. (9) with respect to β. Let Iγ be the k� k matrix
having unique nonzero element 1 on the γ-th place of the main diagonal. Let MðγÞ and
MðγÞ be the γ-th column and the γ-th row of matrix M correspondingly. Then the partial
derivative with respect to βγ is the following:
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@

@βγ
�ðs; β; tÞ ¼ @

@βγ
expðtðA� sBÞÞ ¼ @

@βγ

X1
ψ¼0

1
ψ!

ðtðA� sBÞÞψ

¼
X1
ψ¼1

1
ψ!

tψ
Xψ�1

m¼0

ðA� sBÞmð�sIγÞðA� sBÞψ�1�m

¼ �s
X1
ψ¼1

1
ψ!

tψ
Xψ�1

m¼0

ðA� sBÞmIγIγðA� sBÞψ�1�m

¼ �s
X1
ψ¼1

1
ψ!

tψ
Xψ�1

m¼0

ððA� sBÞmÞðγÞððA� sBÞψ�1�mÞðγÞ:

(12)

Therefore,

@
@s R̂ðβ; sÞ ¼ 2

Pr
η¼1

ð 1
PiðηÞ;jðηÞðtðηÞÞ�ðs; β; tðηÞÞiðηÞ;jðηÞ � expð�syηÞÞ�

ð 1
PiðηÞ;jðηÞðtðηÞÞ

@
@s�ðs; β; tðηÞÞiðηÞ;jðηÞ þ yηexpð�syηÞÞ:

(13)

@
@βγ

R̂ðβ; sÞ ¼ @
@βγ

Pr
η¼1

ð 1
PiðηÞ;jðηÞðtðηÞÞ�ðs; β; tðηÞÞiðηÞ;jðηÞ � expð�syηÞÞ2

¼ 2
Pr
η¼1

ð 1
PiðηÞ;jðηÞðtðηÞÞ�ðs; β; tðηÞÞiðηÞ;jðηÞ � expð�syηÞÞ�
ð 1
PiðηÞ;jðηÞðtðηÞÞ

@
@βγ

�ðs; β; tðηÞÞiðηÞ;jðηÞÞ:

(14)

Also, the gradient of R̂ðβ; sÞ with respect to vector β ¼ ðβ1; :::; βkÞ can be calculated.

Now we are able to use gradient method to find a saddle point ðs�; β�Þ. It appears that
the maximum with respect to s depends on β negligibly. Now minimization with respect
to β ¼ ðβ1; :::; βkÞ for fixed s � does not pose any problem. Note that calculation of the
infinity sum is restricted by the finite number of the addends.

5. Weighted method of the saddle point

Usually weights are used with the purpose of improving the acquired estimators. The
optimal weight of the given observation is equal to an inverse value of the variance of the
observation. Thus, it is necessary to calculate the variance expð�sYηÞ at the point s for the
η-th observation. As

Eβ expð�sYηÞ
!

¼ 1
PiðηÞ;jðηÞðtðηÞÞ

�ðs; β; tðηÞÞiðηÞ;jðηÞ;
 

then

Varβ expð�sYηÞÞ ¼ Eβðexpð�sYηÞÞ2 � ðEβðexpð�sYηÞÞ
� �2 ¼

1
PiðηÞ;jðηÞðtðηÞÞ�ð2s; β; tðηÞÞiðηÞ;jðηÞ � 1

PiðηÞ;jðηÞðtðηÞÞ�ðs; β; tðηÞÞiðηÞ;jðηÞ
� �2

:

Therefore, the absolute weight wηðβÞ of the η-th observation is
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wηðβÞ ¼ Varβðexpð�sYηÞÞ�1

¼ 1
PiðηÞ;jðηÞðtðηÞÞ�ð2s; β; tðηÞÞiðηÞ;jðηÞ � 1

PiðηÞ;jðηÞðtðηÞÞ�ðs; β; tðηÞÞiðηÞ;jðηÞ
� �2� 	�1

:
(15)

The relative weight of the η-th observation equals wηðβÞ=w�ðβÞ where w�ðβÞ is the
sum of all absolute weights:

w�ðβÞ ¼
Xr
η¼1

wηðβÞ: (16)

Now we can represent the weighted mini–max criterion as

Rwðβ; sÞ ¼
Xr
η¼1

wηðβÞ
w�ðβÞ

1
PiðηÞ;jðηÞðtðηÞÞ

�ðs; β; tðηÞÞiðηÞ;jðηÞ � expð�syηÞ
 !2

: (17)

The derivative with respect to s is

@

@s
Rwðβ; sÞ ¼ 2

Xn
η¼1

wηðβÞ
w�ðβÞ ð

1
PiðηÞ;jðηÞðtðηÞÞ

�ðs; β; tðηÞÞiðηÞ;jðηÞ � expð�syηÞÞ�

� ð 1
PiðηÞ;jðηÞtðηÞ

@

@s
�ðs; β; tðηÞÞiðηÞ;jðηÞ þ yηexpð�syηÞÞ:

(18)

The gradient with respect to β is calculated according to Eq. (12) using the two-step
repeated operations as follows. First, weights wηðβÞ

� �
are calculated for given β, and then

the gradient with respect to β is calculated for fixed wηðβÞ
� �

:

@

@βγ
Rwðβ; sÞ ¼ @

@βγ

Xr
η¼1

wηðβÞ
w�ðβÞ ð

1
PiðηÞ;jðηÞðtðηÞÞ

�ðs; β; tðηÞÞiðηÞ;jðηÞ � expð�syηÞÞ2 ¼

� 2s
Xr
η¼1

wηðβÞ
w�ðβÞ ð

1
PiðηÞ;jðηÞðtðηÞÞ

�ðs; β; tðηÞÞiðηÞ;jðηÞ � expð�syηÞÞ 1
PiðηÞ;jðηÞtðηÞ

�

�
X1
ψ¼1

1
ψ!

tψ
Xψ�1

m¼0

ðððA� sBÞmÞðγÞððA� sBÞψ�1�mÞÞðγÞÞiðηÞ;jðηÞ:

(19)

These operations are repeated until a convergence; usually two to three iterations are
sufficient.

The considered criterion (17) is such that each observation η ¼ 1; :::; r gives its square
of the deviation. This makes the criterion a very unsmooth function. To increase the
smoothing, it is reasonable to unite observations with the same indices iðηÞ, jðηÞ, tðηÞ.
This approach will be considered further.

6. Modified weighted mini–max criterion

Let Ψðt; i; jÞ be the set of the observations with the same values t; i; j; nðt; i; jÞ ¼ Ψðt; i; jÞj j
be a number of such observations. We unite rewards yη

� �
as follows:
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yðt; i; jÞ ¼
X

η2Ψðt;i;jÞ
yη:

Now expð�s yðt; i; jÞÞ is the Laplace transform of reward yðt; i; jÞ. The absolute weight
wðt;i;jÞðβÞ of the observation expð�s yðt; i; jÞÞ is the following:

wt;i;jðβÞ ¼ ðnðt; i; jÞð 1
Pi;jðtÞ�ð2s; β; tÞi;j � ð 1

Pi;jðtÞ�ðs; β; tÞi;jÞ
2ÞÞ�1: (20)

The corresponding theoretical Laplace transformation is ð�ðs; β; tÞi;jÞnðt;i;jÞ. Therefore,
criterion (17) has the following form:

RMðs; βÞ ¼
P
t

P
i

P
j

wt;i;jðβÞ
w�ðβÞ �

�ðð 1
Pi;jðtÞ�ðs; β; tÞi;jÞ

nðt;i;jÞ � expð�syðt; i; jÞÞÞ2:
(21)

where w� is the sum of all weights.
This criterion has a good theoretical foundation. Random variable yðt; i; jÞ is a sum of

many independent identically distributed random addends. Therefore, its distribution is close
to a normal distribution. We need to estimate parameters β ¼ ðβ1; :::; βkÞ on the basis of
samples yðt; i; jÞf g for various t; i; j. The maximum likelihood method leads to criterion (21) .

Now formulas (18) and (19) are of the form:

@
@s RMðs; βÞ ¼ 2

P
t

P
i

P
j

wt;i;jðβÞ
w�ðβÞ ðð 1

Pi;jðtÞ�ðs; β; tÞi;jÞnðt;i;jÞ � expð�syðt; i; jÞÞÞ�

�ðð 1
Pi;jðtÞ Þ

nðt;i;jÞnðt; i; jÞ�ðs; β; tÞnðt;i;jÞ�1
i;j

@
@s�ðs; β; tÞi;j þ yðt; i; jÞexpð�syðt; i; jÞÞÞ:

(22)

@
@βy

RMðβ; sÞ ¼ 2
P
t

P
i

P
j

wt;i;jðβÞ
w�ðβÞ ðð 1

Pi;jðtÞ�ðs; β; tÞi;jÞ
nðt;i;jÞ � expð�syðt; i; jÞÞÞ�

�ð 1
Pi;jðtÞÞ

nðt;i;jÞnðt; i; jÞ�ðs; β; tÞnðt;i;jÞ�1
i;j

@
@βγ

�ðs; β; tÞi;j:
(23)

7. Simulation study

We check the efficiency of suggested methods of the estimation, using the following initial
data. The Markov chain has three states and the following transition matrix:

λ ¼
0 0:2 0:3
0:4 0 0:2
0:2 0:2 0

0
@

1
A:

The eigenvalues and eigenvectors of the generator for A are the following:

χ ¼
0

�0:8
�0:7

0
@

1
A; Z ¼

�0:577 �0:302 �0:100
�0:577 �0:905 �0:796
�0:577 �0:302 0:597

0
@

1
A:

Further three durations of the observations will be considered: t ¼ 8; 10, and 12. The
matrix of transition probabilities between states for various durations are the following:
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Pð8Þ ¼
0:359 0:250 0:391
0:359 0:251 0:390
0:355 0:250 0:395

0
@

1
A; Pð10Þ ¼

0:357 0:250 0:393
0:358 0:250 0:392
0:357 0:250 0:393

0
@

1
A;

Pð12Þ ¼
0:357 0:250 0:393
0:357 0:250 0:393
0:357 0:250 0:393

0
@

1
A:

The vector of the expectation (3) τvðt; i; jÞ ¼ EðTvðtÞjXð0Þ ¼ i; XðtÞ ¼ jÞ of sojourn
time for various initial i and final j states of the Markov chain and observation time t ¼ 8
are the following:

τð8; 1; 1Þ ¼ ð4:514 1:508 1:978ÞT ; τð8; 1; 2Þ ¼ ð3:235 2:618 2:147ÞT ;
τð8; 1; 3Þ ¼ ð3:212 1:260 3:528ÞT ; τð8; 2; 1Þ ¼ ð3:428 2:758 1:814ÞT ;
τð8; 2; 2Þ ¼ ð2:152 3:883 1:3965ÞT ; τð8; 2; 3Þ ¼ ð2:156 2:490 3:354ÞT ;
τð8; 3; 1Þ ¼ ð3:087 1:524 3:389ÞT ; τð8; 3; 2Þ ¼ ð1:829 2:618 3:553ÞT ;
τð8; 3; 3Þ ¼ ð1:793 1:248 4:959ÞT :

The covariance matrices (5) of sojourn time Cðt; i; jÞ ¼
ðCovðTvðtÞ;Tv�ðtÞjXð0Þ ¼ i; XðtÞ ¼ jÞÞ3�3 are presented for time t ¼ 8, Xð0Þ ¼ i ¼ 1,
and Xð8Þ ¼ j ¼ 1; 2; 3:

Cð8; 1; 1Þ ¼
3:776 �1:446 �2:330

�1:446 2:347 �0:901

�2:330 �0:901 3:231

0
B@

1
CA; Cð8; 1; 2Þ ¼

3:360 �1:470 �1:890

�1:470 2:955 �1:485

�1:890 �1:485 3:375

0
B@

1
CA;

Cð8; 1; 3Þ ¼
3:346 �0:807 �2:539

�1:470 2:050 �1:243

�2:539 �1:243 3:782

0
B@

1
CA:

We apply the simulation to get the observed data, using the following reward rates:

β ¼ ð1 2 3ÞT . The acquired data are presented in the Tables 1, 2, and 3. Each table
contains 30 reward values y (odd rows) and 30 final states j (even rows) for initial states
1, 2, and 3 correspondingly and for the observation time t ¼ 8; 10; 12.

Using these data, the initial value of estimate β� ¼ ð0:759 1:987 3:334ÞT was acquired
by the ordinary method of least squares. Using this value the method of weighted least

squares gives estimate β� ¼ ð0:822 1:882 3:346ÞT . To investigate the rate of the conver-
gence, the number of the observations was increased by 90.

The results are presented in Table 4. The last row of this table contains values of the
precision criterion δ ¼ ðβ� β�ÞTdiagðβÞ�1ðβ� β�Þ, where diagðβÞ is a diagonal matrix
with vector β on the main diagonal.

Now we consider the method of the saddle point. First, we note that the value of s,
maximizing criterion (17), depends on β negligibly, when β varies in the range presented
in Table 4. This value for fixed β is the root of function (18) and is calculated easily.
Figure 1 illustrates the small dependence of criterion (17) on β, where curves R1ðsÞ and
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R2ðsÞ correspond to β ¼ ð0:822 1:882 3:346Þ and β ¼ ð0:968 1:840 3:111Þ. The extremal
value of s equals 0.052 in our calculations.

The convergence of the method of the saddle point is illustrated in Table 5, corre-
sponding to the same data as for Table 4 and initial vector β ¼ ð0:822 1:882 3:346Þ.

Two last tables show that the method of the saddle point does not have considerable
advantages compared with the method of weighted least squares. Nevertheless, it can be
preferable when there is no valuable information such as the expectation and the variance
of the sojourn time in the various states.

Additionally, it should be remarked that an estimate of the weighted least squares can
be improved by use of the saddle-point procedure. For example, using the last to the final
estimate of weighted least squares estimate β ¼ ð0:968 1:840 3:111ÞT , we get estimate β ¼
ð0:997 1:862 3:141ÞT with δ ¼ 0:016. This and other examples show that better results are
reached if the acquired estimates of the least squares method are made more precise by the
method of the saddle point.

Table 1. The observed data ðy; jÞ for initial state Xð0Þ ¼ 1.
t ¼ 8 16.50 12.63 10.76 15.24 19.49. 16.67 17.09 15.84 11.05 13.26
t ¼ 8 1 1 1 1 3 3 3 1 1 2
t ¼ 10 11.60 17.71 12.24 16.45 14.19 13.38 13.15 11.69 20.34 14.63
t ¼ 10 0 0 0 1 0 1 2 0 2 1
t ¼ 12 14.82 19.13 15.87 18.59 20.04 16.25 21.98 17.10 19.08 22.25
t ¼ 12 1 1 3 2 1 1 1 2 3 3

Table 2. The observed data ðy; jÞ for initial state Xð0Þ ¼ 2.
t ¼ 8 23.92 18.48 21.29 12.46 14.63. 13.50 18.38 19.54 19.14 13.55
t ¼ 8 3 3 3 3 1 2 1 3 1 1
t ¼ 10 21.18 24.53 23.04 20.22 22.90 15.50 18.54 13.35 17.19 11.00
t ¼ 10 3 1 2 1 2 2 2 1 1 1
t ¼ 12 19.29 21.65 26.37 26.19 20.50 18.64 17.97 24.42 20.91 24.99
t ¼ 12 2 2 3 3 3 1 1 1 3 1

Table 3. The observed data ðy; jÞ for initial state Xð0Þ ¼ 3.
t ¼ 8 32.28 24.70 27.70 17.80 34.37 20.19 16.49 26.29 29.59 12.00
t ¼ 8 2 3 2 2 3 1 1 1 3 1
t ¼ 10 29.83 27.53 25.33 22.21 31.11 17.70 22.58 30.13 24.93 0.91
t ¼ 10 3 1 1 1 2 3 1 3 3 3
t ¼ 12 29.75 22.80 30.85 27.17 33.77 28.00 23.18 23.66 27.12 24.71
t ¼ 12 2 1 3 1 2 2 1 1 1 2

Table 4. Convergence for the method of weighted least squares.
Sample size 90 180 270 360 450 540

β�1 0.822 0.917 1.068 0.953 0.961 0.968
β�2 1.882 1.821 1.743 1.878 1.856 1.840
β�3 3.346 3.376 3.231 3.214 3.153 3.111
δ 0.079 0.070 0.055 0.025 0.020 0.018
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8. Conclusion

Two estimators of the reward rates for continuous-time homogeneous irreducible Markov
chains have been considered: the weighted least squares method and the saddle-point
method. It is ascertained that the best estimates are observed if estimates of the least
squares are improved by the method of the saddle point. Our future research will be
connected with an investigation of asymptotic properties of the suggested approach.
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