

On the likelihood ratio test for the equality of multivariate normal populations with two-step monotone missing data

Miki Hosoya and Takashi Seo

Department of Mathematical Information Science, Tokyo University of Science, Tokyo, Japan

ABSTRACT

In this article, we consider the problem of testing the equality of multivariate normal populations when the data set has missing observations with a two-step monotone pattern. The likelihood ratio test (LRT) statistic for the simultaneous testing of the mean vectors and the covariance matrices is given under the condition of two-step monotone missing data. An approximate modified likelihood ratio test (MLRT) statistic is presented using linear interpolation based on the coefficients of the MLRT statistic in the case of complete data sets. As an alternative approach, we propose approximate MLRT statistics of two kinds with two-step monotone missing data using the decompositions of the likelihood ratio (LR). An approximate upper percentile of the LRT statistic with two-step monotone missing data is also derived based on an asymptotic expansion for the LRT statistic in the case of complete data sets. Finally, we investigate the accuracy of the approximations using Monte Carlo simulation.

ARTICLE HISTORY

Received 31 January 2016 Accepted 19 July 2016

KEYWORDS

Asymptotic expansion; linear interpolation; modified likelihood ratio test statistic: monotone missing date

AMS SUBJECT CLASSIFICATIONS 62E20; 62H10

1. Introduction

Let $\mathbf{x}_1^{(\ell)}, \mathbf{x}_2^{(\ell)}, \dots, \mathbf{x}_{N^{(\ell)}}^{(\ell)}$ be independent *p*-dimensional sample vectors and $\mathbf{x}_{1,N^{(\ell)}+1}^{(\ell)}$, $x_{1,N^{(\ell)}+2}^{(\ell)}, \ldots, x_{1N^{(\ell)}}^{(\ell)}$ be independent p_1 -dimensional sample vectors from the ℓ th population $(\ell = 1, 2, ..., m)$, where $p_1 and the <math>\mathbf{x}_j^{(\ell)}$ s and $\mathbf{x}_{1j}^{(\ell)}$ s are mutually independent. We assume that

$$\boldsymbol{x}_1^{(\ell)}, \boldsymbol{x}_2^{(\ell)}, \ldots, \boldsymbol{x}_{N_1^{(\ell)}}^{(\ell)} \sim N_p(\boldsymbol{\mu}^{(\ell)}, \boldsymbol{\Sigma}^{(\ell)}),$$

and

$$\mathbf{x}_{1,N_{1}^{(\ell)}+1}^{(\ell)}, \mathbf{x}_{1,N_{1}^{(\ell)}+2}^{(\ell)}, \dots, \mathbf{x}_{1N^{(\ell)}}^{(\ell)} \sim N_{p_{1}}\left(\boldsymbol{\mu}_{1}^{(\ell)}, \boldsymbol{\Sigma}_{11}^{(\ell)}\right),$$

where

$$oldsymbol{\mu}^{(\ell)} = egin{pmatrix} oldsymbol{\mu}_1^{(\ell)} \ oldsymbol{\mu}_2^{(\ell)} \end{pmatrix}, \ \ oldsymbol{\Sigma}^{(\ell)} = egin{pmatrix} oldsymbol{\Sigma}_{11}^{(\ell)} & oldsymbol{\Sigma}_{12}^{(\ell)} \ oldsymbol{\Sigma}_{21}^{(\ell)} & oldsymbol{\Sigma}_{22}^{(\ell)} \end{pmatrix}.$$

CONTACT Takashi Seo 🖾 seo@rs.tus.ac.jp 🖃 Department of Mathematical Information Science, Tokyo University of Science, 1–3, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.

© 2016 Grace Scientific Publishing, LLC

We partition $\mathbf{x}_{j}^{(\ell)}$ into a $p_1 \times 1$ random vector and a $p_2 \times 1$ random vector, as $\mathbf{x}_{j}^{(\ell)} = (\mathbf{x}_{1j}^{(\ell)'}, \mathbf{x}_{2j}^{(\ell)'})'$, where $\mathbf{x}_{ij}^{(\ell)}$: $p_i \times 1$, $i = 1, 2, j = 1, 2, \ldots, N_1^{(\ell)}$, $\ell = 1, 2, \ldots, m$, and $p = p_1 + p_2$. That is, the data set is of the form

where an asterisk indicates a missing observation. Such a data set describes two-step monotone missing data from an ℓ th population.

In this article, we consider the *m*-population problem of the simultaneous testing of the mean vectors and the covariance matrices when the data sets have the same two-step monotone missing data. For the case without missing data, the LRT statistic and the MLRT statistic have previously been derived, and an asymptotic expansion of the null distribution for MLRT statistic has been given (see Muirhead 1982; Siotani, Hayakawa, and Fujikoshi 1985; Srivastava 2002). The one-population problem under the condition of two-step monotone missing data has been discussed by Hao and Krishnamoorthy (2001) and Hosoya and Seo (2015). In particular, Hosoya and Seo (2015) derived the LRT statistic and the approximate MLRT statistics. Recently, Tsukada (2014) discussed the simultaneous testing of the mean vectors and the covariance matrices for an *m*-population problem under the condition of two-step monotone missing data. In this article, we present an extension of the results for a one-population problem given in Hosoya and Seo (2015) to an m-population problem. The remainder of this article is organized as follows. In section 2, we derive the MLEs using the transformation matrix, and derive the LRT statistic under the condition of two-step monotone missing data. In section 3, we propose three approximate MLRT statistics using the coefficients of the MLRT statistic for the complete data. In section 4, as an alternative approach, we propose an approximate upper percentile of the LRT statistic. Finally, in section 5 the accuracy of the approximation and the asymptotic behavior of the modified statistics are investigated using Monte Carlo simulation.

2. MLE and LRT statistic

In this section, we consider the LRT statistic for testing the equality of multivariate normal populations with two-step monotone missing data. To derive the LRT statistic for

$$H_0: \boldsymbol{\mu}^{(1)} = \boldsymbol{\mu}^{(2)} = \dots = \boldsymbol{\mu}^{(m)}, \quad \boldsymbol{\Sigma}^{(1)} = \boldsymbol{\Sigma}^{(2)} = \dots = \boldsymbol{\Sigma}^{(m)} \text{vs.} H_1: \text{ not } H_0, \quad (1)$$

we first consider the MLEs of the mean vectors and the covariance matrices under the null and nonnull hypotheses. The MLEs for a one-population problem were derived using the decomposition of the density into conditional densities by Kanda and Fujikoshi (1998). Similarly to the one-population case, we can obtain the MLEs for the *m*-population problem under the condition of two-step monotone missing data. Following the derivation of Kanda and Fujikoshi (1998), we use the following transformed parameters ($\eta^{(\ell)}, \Delta^{(\ell)}$):

$$oldsymbol{\eta}^{(\ell)} = egin{pmatrix} oldsymbol{\eta}_1^{(\ell)} \ oldsymbol{\eta}_2^{(\ell)} \end{pmatrix} = egin{pmatrix} oldsymbol{\mu}_1^{(\ell)} \ oldsymbol{\mu}_2^{(\ell)} - oldsymbol{\Delta}_{21}^{(\ell)} oldsymbol{\mu}_1^{(\ell)} \end{pmatrix}, \ oldsymbol{\Delta}^{(\ell)} = egin{pmatrix} oldsymbol{\Delta}_{11}^{(\ell)} & oldsymbol{\Delta}_{12}^{(\ell)} \ oldsymbol{\Delta}_{21}^{(\ell)} & oldsymbol{\Delta}_{22}^{(\ell)} \end{pmatrix} = egin{pmatrix} oldsymbol{\Sigma}_{11}^{(\ell)} & oldsymbol{\Sigma}_{11}^{(\ell)} & oldsymbol{\Sigma}_{11}^{(\ell)} & oldsymbol{\Sigma}_{12}^{(\ell)} \ oldsymbol{\Sigma}_{21}^{(\ell)} oldsymbol{\Sigma}_{11}^{(\ell)} & oldsymbol{\Sigma}_{22}^{(\ell)} \end{pmatrix}, \ oldsymbol{\Delta}^{(\ell)} = egin{pmatrix} oldsymbol{\Delta}_{12}^{(\ell)} & oldsymbol{\Delta}_{12}^{(\ell)} \\ oldsymbol{\Delta}_{21}^{(\ell)} & oldsymbol{\Delta}_{22}^{(\ell)} \end{pmatrix} = egin{pmatrix} oldsymbol{\Sigma}_{11}^{(\ell)} & oldsymbol{\Sigma}_{11}^{(\ell)} & oldsymbol{\Sigma}_{12}^{(\ell)} \ oldsymbol{\Sigma}_{21}^{(\ell)} oldsymbol{\Sigma}_{11}^{(\ell)} & oldsymbol{\Sigma}_{22}^{(\ell)} \end{pmatrix},$$

where $\Sigma_{22\cdot 1}^{(\ell)} = \Sigma_{22}^{(\ell)} - \Sigma_{21}^{(\ell)} \Sigma_{11}^{(\ell)^{-1}} \Sigma_{12}^{(\ell)}$. We note that the pair $(\boldsymbol{\eta}^{(\ell)}, \boldsymbol{\Delta}^{(\ell)})$ is in one-to-one correspondence with $(\boldsymbol{\mu}^{(\ell)}, \boldsymbol{\Sigma}^{(\ell)})$.

Under H_1 , the MLEs of $\eta^{(\ell)}$ and $\Delta^{(\ell)}$ are given by

$$\hat{\pmb{\eta}}^{(\ell)} = egin{pmatrix} \hat{\pmb{\eta}}_1^{(\ell)} \ \hat{\pmb{\eta}}_2^{(\ell)} \end{pmatrix} = egin{pmatrix} rac{1}{N^{(\ell)}} (N_1^{(\ell)} oldsymbol{ar{x}}_{(1)1}^{(\ell)} + N_2^{(\ell)} oldsymbol{ar{x}}_{(2)}^{(\ell)}) \ \hat{\pmb{x}}_{(1)2}^{(\ell)} - \hat{\pmb{\Delta}}_{21}^{(\ell)} oldsymbol{ar{x}}_{(1)1}^{(\ell)} \end{pmatrix},$$

and

$$\hat{\Delta}^{(\ell)} = \begin{pmatrix} \hat{\Delta}_{11}^{(\ell)} & \hat{\Delta}_{12}^{(\ell)} \\ \hat{\Delta}_{21}^{(\ell)} & \hat{\Delta}_{22}^{(\ell)} \end{pmatrix} = \begin{pmatrix} \frac{1}{N^{(\ell)}} (W_{(1)11}^{(\ell)} + W_{(2)}^{(\ell)}) & W_{(1)11}^{(\ell)^{-1}} W_{(1)12}^{(\ell)} \\ W_{(1)21}^{(\ell)} W_{(1)11}^{(\ell)^{-1}} & \frac{1}{N_1^{(\ell)}} W_{(1)22 \cdot 1}^{(\ell)} \end{pmatrix},$$

respectively, where

$$\begin{split} \bar{\boldsymbol{x}}_{(1)}^{(\ell)} &= \begin{pmatrix} \bar{\boldsymbol{x}}_{(1)1}^{(\ell)} \\ \bar{\boldsymbol{x}}_{(1)2}^{(\ell)} \end{pmatrix}, \ \bar{\boldsymbol{x}}_{(1)1}^{(\ell)} = \frac{1}{N_1^{(\ell)}} \sum_{j=1}^{N_1^{(\ell)}} \boldsymbol{x}_{1j}^{(\ell)}, \ \ \bar{\boldsymbol{x}}_{(1)2}^{(\ell)} &= \frac{1}{N_1^{(\ell)}} \sum_{j=1}^{N_1^{(\ell)}} \boldsymbol{x}_{2j}^{(\ell)}, \\ \bar{\boldsymbol{x}}_{(2)}^{(\ell)} &= \frac{1}{N_2^{(\ell)}} \sum_{j=N_1^{(\ell)}+1}^{N_1^{(\ell)}} \boldsymbol{x}_{1j}^{(\ell)}, \ N^{(\ell)} = N_1^{(\ell)} + N_2^{(\ell)}, \end{split}$$

and

$$\begin{split} \boldsymbol{W}_{(1)}^{(\ell)} &= \begin{pmatrix} \boldsymbol{W}_{(1)11}^{(\ell)} & \boldsymbol{W}_{(1)12}^{(\ell)} \\ \boldsymbol{W}_{(1)21}^{(\ell)} & \boldsymbol{W}_{(1)22}^{(\ell)} \end{pmatrix} = \sum_{j=1}^{N_1^{(\ell)}} \left(\boldsymbol{x}_j^{(\ell)} - \bar{\boldsymbol{x}}_{(1)}^{(\ell)} \right) \left(\boldsymbol{x}_j^{(\ell)} - \bar{\boldsymbol{x}}_{(1)}^{(\ell)} \right)', \\ \boldsymbol{W}_{(2)}^{(\ell)} &= \sum_{j=N_1^{(\ell)}+1}^{N_1^{(\ell)}} \left(\boldsymbol{x}_{1j}^{(\ell)} - \bar{\boldsymbol{x}}_{(2)}^{(\ell)} \right) \left(\boldsymbol{x}_{1j}^{(\ell)} - \bar{\boldsymbol{x}}_{(2)}^{(\ell)} \right)' + \frac{N_1^{(\ell)}N_2^{(\ell)}}{N^{(\ell)}} \left(\bar{\boldsymbol{x}}_{(1)1}^{(\ell)} - \bar{\boldsymbol{x}}_{(2)}^{(\ell)} \right) \left(\bar{\boldsymbol{x}}_{(1)1}^{(\ell)} - \bar{\boldsymbol{x}}_{(2)}^{(\ell)} \right)', \\ \boldsymbol{W}_{(1)22\cdot 1}^{(\ell)} &= \boldsymbol{W}_{(1)22}^{(\ell)} - \boldsymbol{W}_{(1)21}^{(\ell)} \boldsymbol{W}_{(1)11}^{(\ell)^{-1}} \boldsymbol{W}_{(1)12}^{(\ell)}. \end{split}$$

On the other hand, under H_0 the MLEs of $\eta(=\eta^{(1)}=\eta^{(2)}=\cdots=\eta^{(m)})$ and $\Delta(=\Delta^{(1)}=\Delta^{(2)}=\cdots=\Delta^{(m)})$ are given by

$$ilde{m{\eta}} = egin{pmatrix} ilde{m{\eta}}_1 \ ilde{m{\eta}}_2 \end{pmatrix} = egin{pmatrix} rac{1}{N} \sum_{\ell=1}^m (N_1^{(\ell)} ar{m{x}}_{(1)1}^{(\ell)} + N_2^{(\ell)} ar{m{x}}_{(2)}^{(\ell)}) \ rac{1}{N_1} \sum_{\ell=1}^m N_1^{(\ell)} (ar{m{x}}_{(1)2}^{(\ell)} - ar{m{\Delta}}_{21} ar{m{x}}_{(1)1}^{(\ell)}) \end{pmatrix},$$

and

$$ilde{\mathbf{\Delta}} = egin{pmatrix} ilde{\mathbf{\Delta}}_{11} & ilde{\mathbf{\Delta}}_{21}' \ ilde{\mathbf{\Delta}}_{21} & ilde{\mathbf{\Delta}}_{22} \end{pmatrix},$$

respectively, where

$$\begin{split} N &= \sum_{\ell=1}^{m} N^{(\ell)}, \ \ N_{1} = \sum_{\ell=1}^{m} N_{1}^{(\ell)}, \\ \tilde{\Delta}_{11} &= \frac{1}{N} \sum_{\ell=1}^{m} \sum_{j=1}^{N^{(\ell)}} \left(\boldsymbol{x}_{1j}^{(\ell)} - \tilde{\boldsymbol{\eta}}_{1} \right) \left(\boldsymbol{x}_{1j}^{(\ell)} - \tilde{\boldsymbol{\eta}}_{1} \right)', \\ \tilde{\Delta}_{21} &= \sum_{\ell=1}^{m} \left\{ \sum_{j=1}^{N_{1}^{(\ell)}} \boldsymbol{x}_{2j}^{(\ell)} \boldsymbol{x}_{1j}^{(\ell)'} - N_{1}^{(\ell)} \left(\frac{1}{N_{1}} \sum_{\ell=1}^{m} N_{1}^{(\ell)} \bar{\boldsymbol{x}}_{(1)2}^{(\ell)} \right) \bar{\boldsymbol{x}}_{(1)1}^{(\ell)'} \right\} \\ &\times \sum_{\ell=1}^{m} \left\{ \sum_{j=1}^{N_{1}(\ell)} \boldsymbol{x}_{1j}^{(\ell)} \boldsymbol{x}_{1j}^{(\ell)'} - N_{1}^{(\ell)} \left(\frac{1}{N_{1}} \sum_{\ell=1}^{m} N_{1}^{(\ell)} \bar{\boldsymbol{x}}_{(1)1}^{(\ell)} \right) \bar{\boldsymbol{x}}_{(1)1}^{(\ell)'} \right\}^{-1}, \\ \tilde{\Delta}_{22} &= \frac{1}{N_{1}} \sum_{\ell=1}^{m} \sum_{j=1}^{N_{1}^{(\ell)}} \left(\boldsymbol{x}_{2j}^{(\ell)} - \tilde{\boldsymbol{\Delta}}_{21} \boldsymbol{x}_{1j}^{(\ell)} - \tilde{\boldsymbol{\eta}}_{2} \right) \left(\boldsymbol{x}_{2j}^{(\ell)} - \tilde{\boldsymbol{\Delta}}_{21} \boldsymbol{x}_{1j}^{(\ell)} - \tilde{\boldsymbol{\eta}}_{2} \right)'. \end{split}$$

We can obtain the MLEs $\tilde{\eta}$ and Δ in a straightforward method using the one-population case of Kanda and Fujikoshi (1998). We note that the MLEs for the two-population case are derived by Seko, Kawasaki, and Seo (2011). For the MLEs by other notations under the *k*-step monotone missing data, see Jinadasa and Tracy (1992) and Yagi and Seo (2014; 2015).

From the preceding MLEs, we obtain the following theorem.

Theorem 2.1. Suppose that the data sets have the same two-step monotone missing pattern. Then, the LR of the hypothesis test (1) is given by

$$\lambda = \frac{\prod_{l=1}^{m} |\hat{\mathbf{\Delta}}_{11}^{(\ell)}|^{\frac{1}{2}N^{(\ell)}} |\hat{\mathbf{\Delta}}_{22}^{(l)}|^{\frac{1}{2}N_{1}^{(\ell)}}}{|\tilde{\mathbf{\Delta}}_{11}|^{\frac{1}{2}N} |\tilde{\mathbf{\Delta}}_{22}|^{\frac{1}{2}N_{1}}}$$

We note that under H_0 , $-2\log\lambda$ is asymptotically distributed as a χ^2 distribution with f = p(p+3)(m-1)/2 degrees of freedom, when $N_1^{(\ell)}$, $N^{(\ell)} \to \infty$ with $N_1^{(\ell)}/N^{(\ell)} \to \delta^{(\ell)} \in (0, 1]$, $\ell = 1, 2, ..., m$. In particular, it should be noted that a χ^2 approximation is not useful for small samples. In sections 3 and 4, we present the modified LRT statistics and an approximate upper percentile of the LRT statistic $(-2\log\lambda)$ itself.

3. Approximate MLRT statistics

In this section, we propose an approximate MLRT statistic using linear interpolation based on the MLRT statistic in the case of a complete data set. Furthermore, as an alternative approach we provide two approximate MLRT statistics using the decomposition of the LR.

First, we consider the LR in the case of a complete data set. Let $\mathbf{x}_1^{(\ell)}, \mathbf{x}_2^{(\ell)}, \ldots, \mathbf{x}_{N^{(\ell)}}^{(\ell)}$ be sample vectors of size $N^{(\ell)}$ from $N_p(\boldsymbol{\mu}^{(\ell)}, \boldsymbol{\Sigma}^{(\ell)})$, with $\ell = 1, 2, \ldots, m$, and let $\lambda_{c,N}$ be the LR for the complete data set. Then the LR is given by

$$\lambda_{c,N} = \frac{\prod_{\ell=1}^{m} \left| \frac{1}{N^{(\ell)}} V^{(\ell)} \right|^{\frac{1}{2}N^{(\ell)}}}{\left| \frac{1}{N} (V + B) \right|^{\frac{1}{2}N}},$$

where

$$\begin{split} \mathbf{V}^{(\ell)} &= \sum_{i=1}^{N^{(\ell)}} (\mathbf{x}_i^{(\ell)} - \bar{\mathbf{x}}^{(\ell)}) (\mathbf{x}_i^{(\ell)} - \bar{\mathbf{x}}^{(\ell)})', \quad \mathbf{V} = \sum_{\ell=1}^m \mathbf{V}^{(\ell)}, \quad \mathbf{B} = \sum_{\ell=1}^m N^{(\ell)} (\bar{\mathbf{x}}^{(\ell)} - \bar{\mathbf{x}}) (\bar{\mathbf{x}}^{(\ell)} - \bar{\mathbf{x}})', \\ \bar{\mathbf{x}}^{(\ell)} &= \frac{1}{N^{(\ell)}} \sum_{i=1}^{N^{(\ell)}} \mathbf{x}_i^{(\ell)}, \quad \bar{\mathbf{x}} = \frac{1}{N} \sum_{\ell=1}^m N^{(\ell)} \bar{\mathbf{x}}^{(\ell)}, \quad N = \sum_{\ell=1}^m N^{(\ell)}. \end{split}$$

Furthermore, the MLRT statistic is given by $-2\rho_{c,N}\log\lambda_{c,N}$, where

678 🛞 M. HOSOYA AND T. SEO

$$\rho_{c,N} = 1 - \frac{2p^2 + 9p + 11}{6N(p+3)(m-1)} \left(\sum_{\ell=1}^m \frac{N}{N^{(\ell)}} - 1 \right),$$

and its cumulative distribution function can be expanded as

$$\Pr\left(-2\rho_{c,N}\log\lambda_{c,N} \le x\right) = G_f(x) + \frac{\gamma_1}{M^2} \left\{G_{f+4}(x) - G_f(x)\right\} + O(M^{-3}),$$

where

$$M = \rho_{c,N} N, \quad k_1^{(\ell)} = \frac{N^{(\ell)}}{N},$$

$$\gamma_1 = \frac{1}{288} \left[6p(p+1)(p+2)(p+3) \left(\sum_{\ell=1}^m \frac{1}{\left\{k_1^{(\ell)}\right\}^2} - 1 \right) - \frac{(2p^2 + 9p + 11)^2 (2p-1)}{p(p+3)(m-1)} \left(\sum_{\ell=1}^m \frac{1}{k_1^{(\ell)}} - 1 \right)^2 \right],$$

and $G_f(x)$ and $G_{f+4}(x)$ are the cumulative distribution functions of the χ^2 distribution with f(=p(p+3)(m-1)/2) and f+4 degrees of freedoms, respectively. This means that if the χ^2 distribution is used as an approximation to the distribution of $-2\rho_{c,N}\log\lambda_{c,N}$, the error involved is not of order M^{-1} , but rather of order M^{-2} . The derivation of MLRT was presented by Muirhead (1982, 513).

In this section, we consider an approximation to the correction factor $\rho_{\rm miss}$, because it is not easy to determine $\rho_{\rm miss}$ for the MLRT statistic $(-2\rho_{\rm miss}\log\lambda)$ under the condition of two-step monotone missing data. As with the one-population case considered in Hosoya and Seo (2015), we can propose an approximate MLRT statistic $-2\rho_{\rm L}\log\lambda$, where

$$\rho_{\rm L} = 1 - \frac{2p^2 + 9p + 11}{6p(p+3)(m-1)} \left\{ \left(\sum_{\ell=1}^m \frac{1}{N^{(\ell)}} - \frac{1}{N} \right) p_1 + \left(\sum_{\ell=1}^m \frac{1}{N_1^{(\ell)}} - \frac{1}{N_1} \right) p_2 \right\}.$$

Next, we provide two approximate MLRT statistics using the decompositions of LR(λ). First, the LR can be decomposed as $\lambda = \xi_1 \xi_2$, where

$$\xi_1 = rac{\prod_{\ell=1}^m \left| \hat{\Delta}_{11}^{(\ell)}
ight|^{rac{1}{2}N^{(\ell)}}}{\left| \hat{\Delta}_{11}
ight|^{rac{1}{2}N}}, \quad \xi_2 = rac{\prod_{\ell=1}^m \left| \hat{\Delta}_{22}^{(\ell)}
ight|^{rac{1}{2}N_1^{(\ell)}}}{\left| \hat{\Delta}_{22}
ight|^{rac{1}{2}N_1}}.$$

Because ξ_1 takes the form of the LR for H_0 in the case of without missing data, we can use the MLRT statistic $-2\rho_{\xi_1}\log\xi_1$ instead of $-2\log\xi_1$, where

$$\rho_{\xi_1} = 1 - \frac{2p_1^2 + 9p_1 + 11}{6N(p_1 + 3)(m - 1)} \left(\sum_{\ell=1}^m \frac{N}{N^{(\ell)}} - 1 \right).$$

On the other hand, the quantity ξ_2 can be decomposed as $\xi_2 = \xi_2^{\dagger} \xi_2^{\dagger}$, where ξ_2^{\dagger} takes the form of the LR for H_0 in the case of without missing data. Therefore, we can use the

MLRT statistic $-2\rho_{\xi_2}\log\xi_2^{\dagger}$ instead of $-2\log\xi_2^{\dagger}$, where

$$\begin{split} \rho_{\xi_2} &= 1 - \frac{2p_2^2 + 9p_2 + 11}{6N_1(p_2 + 3)(m - 1)} \left(\sum_{\ell=1}^m \frac{N_1}{N_1^{(\ell)}} - 1 \right), \\ \xi_2^{\dagger} &= \frac{\prod_{\ell=1}^m \left| \hat{\Delta}_{22}^{(\ell)} \right|^{\frac{1}{2}N_1^{(\ell)}}}{\left| \frac{1}{N_1} \left(\boldsymbol{V}_{p_2} + \boldsymbol{B}_{p_2} \right) \right|^{\frac{1}{2}N_1}}, \quad \xi_2^{\dagger\dagger} &= \frac{\left| \frac{1}{N_1} \left(\boldsymbol{V}_{p_2} + \boldsymbol{B}_{p_2} \right) \right|^{\frac{1}{2}N_1}}{\left| \tilde{\Delta}_{22} \right|^{\frac{1}{2}N_1}}, \\ \boldsymbol{V}_{p_2} &= \sum_{\ell=1}^m \boldsymbol{V}_{p_2}^{(\ell)}, \quad \boldsymbol{B}_{p_2} &= \sum_{\ell=1}^m N_1^{(\ell)} \left(\hat{\boldsymbol{\eta}}_2^{(\ell)} - \tilde{\boldsymbol{\eta}}_2 \right) \left(\hat{\boldsymbol{\eta}}_2^{(\ell)} - \tilde{\boldsymbol{\eta}}_2 \right)', \\ \boldsymbol{V}_{p_2}^{(\ell)} &= \sum_{j=1}^{N_1^{(\ell)}} \left(\boldsymbol{x}_{2j}^{(\ell)} - \hat{\boldsymbol{\Delta}}_{21}^{(\ell)} \boldsymbol{x}_{1j}^{(\ell)} - \hat{\boldsymbol{\eta}}_2^{(\ell)} \right) \left(\boldsymbol{x}_{2j}^{(\ell)} - \hat{\boldsymbol{\Delta}}_{21}^{(\ell)} \boldsymbol{x}_{1j}^{(\ell)} - \hat{\boldsymbol{\eta}}_2^{(\ell)} \right)'. \end{split}$$

Thus, we propose a new approximate MLRT statistic given by $-2\log \tau$, where

$$au = (\xi_1)^{
ho_{\xi_2}} (\xi_2^{\dagger})^{
ho_{\xi_2}} \xi_2^{\dagger\dagger}.$$

In addition, we consider the testing of the equality of covariance matrices; that is,

$$H_{01}: \mathbf{\Sigma}^{(1)} = \mathbf{\Sigma}^{(2)} = \cdots = \mathbf{\Sigma}^{(m)}$$
 vs. $H_{11}:$ not H_{01}

In the case of complete data, the MLRT statistic is given by $-2\rho_{c\cdot\Sigma}^* \log \lambda_{c\cdot\Sigma}^*$, where

$$\rho_{c \cdot \Sigma}^* = 1 - \frac{2p^2 + 3p - 1}{6(p+1)(m-1)} \left(\sum_{\ell=1}^m \frac{n}{n^{(\ell)}} - 1 \right), \quad \lambda_{c \cdot \Sigma}^* = \frac{\prod_{\ell=1}^m \left| \frac{1}{n^{(\ell)}} V^{(\ell)} \right|^{\frac{1}{2}n^{(\ell)}}}{\left| \frac{1}{n} V \right|^{\frac{1}{2}n}},$$

 $n^{(\ell)} = N^{(\ell)} - 1$ and $n = \sum_{\ell=1}^{m} n^{(\ell)}$. This result can be modified to get an unbiased MLRT statistic (see Muirhead 1982, 308). Letting

$$\xi_{11}^{*} = \frac{\prod\limits_{\ell=1}^{m} \left(\frac{1}{n^{(\ell)}}\right)^{\frac{1}{2}n^{(\ell)}p_{1}} \left| \mathbf{V}_{p_{1}}^{(\ell)} \right|^{\frac{1}{2}n^{(\ell)}}}{\left(\frac{1}{n}\right)^{\frac{1}{2}np_{1}} \left| \mathbf{V}_{p_{1}} \right|^{\frac{1}{2}n}}, \quad \xi_{21}^{*} = \frac{\prod\limits_{\ell=1}^{m} \left(\frac{1}{n_{1}^{(\ell)}}\right)^{\frac{1}{2}n_{1}^{(\ell)}p_{2}} \left| \mathbf{V}_{p_{2}}^{(\ell)} \right|^{\frac{1}{2}n_{1}^{(\ell)}}}{\left(\frac{1}{n_{1}}\right)^{\frac{1}{2}n_{1}p_{2}} \left| \mathbf{V}_{p_{2}} \right|^{\frac{1}{2}n_{1}}},$$

 ξ_{11}^* and ξ_{21}^* take the form of the LR for H_{01} in the case of without missing data. Therefore, we can give the MLRT statistics as $-2\rho_{\Sigma \cdot p_1}^* \log \xi_{11}^*$ and $-2\rho_{\Sigma \cdot p_2}^* \log \xi_{21}^*$, respectively, where

$$\rho_{\Sigma \cdot p_1}^* = 1 - \frac{2p_1^2 + 3p_1 - 1}{6(p_1 + 1)(m - 1)} \left(\sum_{\ell=1}^m \frac{n}{n^{(\ell)}} - 1 \right),$$

680 🛞 M. HOSOYA AND T. SEO

$$\rho_{\Sigma \cdot p_2}^* = 1 - \frac{2p_2^2 + 3p_2 - 1}{6(p_2 + 1)(m - 1)} \left(\sum_{\ell=1}^m \frac{n_1}{n_1^{(\ell)}} - 1 \right).$$

Then, by considering the decompositions of ξ_1 and ξ_2 using ξ_{11}^* and ξ_{21}^* , we can propose the approximate MLRT statistic $-2\log\varphi$, where

$$\begin{split} \varphi &= \left(\xi_{11}^*\right)^{\rho_{\Sigma p_1}^*} \left(\xi_{21}^*\right)^{\rho_{\Sigma p_2}^*} \frac{\lambda}{\xi_{11}\xi_{21}},\\ \xi_{11} &= \frac{\prod\limits_{\ell=1}^m \left(\frac{1}{N^{(\ell)}}\right)^{\frac{1}{2}N^{(\ell)}p_1} \left| \boldsymbol{V}_{p_1}^{(\ell)} \right|^{\frac{1}{2}N^{(\ell)}}}{\left(\frac{1}{N}\right)^{\frac{1}{2}Np_1} \left| \boldsymbol{V}_{p_1} \right|^{\frac{1}{2}N}}, \quad \xi_{21} &= \frac{\prod\limits_{\ell=1}^m \left(\frac{1}{N^{(\ell)}_1}\right)^{\frac{1}{2}N^{(\ell)}p_2} \left| \boldsymbol{V}_{p_2}^{(\ell)} \right|^{\frac{1}{2}N^{(\ell)}}}{\left(\frac{1}{N_1}\right)^{\frac{1}{2}N_1p_2} \left| \boldsymbol{V}_{p_2} \right|^{\frac{1}{2}N_1}}. \end{split}$$

4. An approximate upper percentile of the LRT statistic

In this section, we derive an approximate upper percentile of $-2 \log \lambda$ when the data sets have the same two-step monotone missing pattern. First, in the case of complete data sets, we can obtain the following lemma by using the result of Muirhead (1982, 513).

Lemma 4.1. Suppose that $\mathbf{x}_1^{(\ell)}, \mathbf{x}_2^{(\ell)}, \dots, \mathbf{x}_{N^{(\ell)}}^{(\ell)}$ are distributed as $N_p(\boldsymbol{\mu}^{(\ell)}, \boldsymbol{\Sigma}^{(\ell)})$, with $\ell = 1, 2, \dots, m$. Then, under the null hypothesis H_0 given in Eq. (1), the upper percentile of the MLRT statistic, $-2\rho_{c,N}\log\lambda_{c,N}$, can be expanded as

$$u_{MLR\cdot N}(\alpha) = \chi_{f}^{2}(\alpha) + \frac{1}{M^{2}} \frac{2\gamma_{1}}{f(f+2)} \chi_{f}^{2}(\alpha) \Big\{ \chi_{f}^{2}(\alpha) + f + 2 \Big\} + \mathcal{O}(M^{-3}),$$

where

$$M = \rho_{c,N}N, \ \rho_{c,N} = 1 - \frac{2p^2 + 9p + 11}{6N(p+3)(m-1)} \left(\sum_{\ell=1}^m \frac{N}{N^{(\ell)}} - 1\right), \ f = \frac{1}{2}p(p+3)(m-1),$$

and $\chi_f^2(\alpha)$ is the upper percentile of the χ^2 distribution with f degrees of freedom. Furthermore, the upper percentile of $-2\log \lambda_{c,N}$ is given by

$$\begin{split} u_{LR\cdot c}(\alpha) &= \chi_f^2(\alpha) + \frac{\nu}{N} \left(\sum_{\ell=1}^m \frac{1}{k_1^{(\ell)}} - 1 \right) \chi_f^2(\alpha) \\ &+ \frac{1}{N^2} \chi_f^2(\alpha) \left\{ \nu^2 \left(\sum_{\ell=1}^m \frac{1}{k_1^{(\ell)}} - 1 \right)^2 + \frac{2\gamma_1}{f} + \frac{2\gamma_1}{f(f+2)} \chi_f^2(\alpha) \right\} + \mathcal{O}(N^{-3}), \end{split}$$

where

where

$$v = \frac{2p^2 + 9p + 11}{6(p+3)(m-1)}, \quad k_1^{(\ell)} = \frac{N^{(\ell)}}{N},$$

$$y_1 = \frac{1}{288} \left[6p(p+1)(p+2)(p+3) \left(\sum_{\ell=1}^m \frac{1}{\left\{k_1^{(\ell)}\right\}^2} - 1 \right) - \frac{(2p^2 + 9p + 11)^2(2p-1)}{p(p+3)(m-1)} \left(\sum_{\ell=1}^m \frac{1}{k_1^{(\ell)}} - 1 \right)^2 \right].$$

By applying a linear interpolation procedure and letting $u_{LR\cdot m}(\alpha)$ be the upper percentile of $-2\log \lambda$, an approximate upper percentile of $-2\log \lambda$ can be proposed as

$$\begin{split} u_{\mathrm{LR}\cdot\mathbf{m}}^*(\alpha) &= \chi_f^2(\alpha) + \frac{\nu}{Np} \left\{ p_1 \left(\sum_{\ell=1}^m \frac{1}{k_1^{(\ell)}} - 1 \right) + c_1 p_2 \left(\sum_{\ell=1}^m \frac{1}{k_2^{(\ell)}} - 1 \right) \right\} \chi_f^2(\alpha) \\ &+ \frac{1}{N^2 p} \left[p_1 \left\{ \nu^2 \left(\sum_{\ell=1}^m \frac{1}{k_1^{(\ell)}} - 1 \right)^2 + \frac{2\gamma_1}{f} + \frac{2\gamma_1}{f(f+2)} \chi_f^2(\alpha) \right\} \\ &+ c_1^2 p_2 \left\{ \nu^2 \left(\sum_{\ell=1}^m \frac{1}{k_2^{(\ell)}} - 1 \right)^2 + \frac{2\gamma_2}{f} + \frac{2\gamma_2}{f(f+2)} \chi_f^2(\alpha) \right\} \right] \chi_f^2(\alpha), \end{split}$$

where

$$c_{1} = \frac{N}{N_{1}}, \ k_{2}^{(\ell)} = \frac{N_{1}^{(\ell)}}{N_{1}},$$

$$\gamma_{i} = \frac{1}{288} \left[6p(p+1)(p+2)(p+3) \left(\sum_{\ell=1}^{m} \frac{1}{\left\{k_{i}^{(\ell)}\right\}^{2}} - 1 \right) - \frac{(2p^{2}+9p+11)^{2}(2p-1)}{p(p+3)(m-1)} \left(\sum_{\ell=1}^{m} \frac{1}{k_{i}^{(\ell)}} - 1 \right)^{2} \right],$$

$$i = 1, 2.$$

The approximation result just given is an extension of the result for the one-population case given in Hosoya and Seo (2015, 89).

5. Accuracy of the approximations

Now we compute the upper percentiles of the null distributions of the LRT statistic and the approximate MLRT statistics with two-step monotone missing data for the *m*-population problem using Monte Carlo simulation (with 10⁶ runs). In particular, we evaluate the asymptotic behavior of the χ^2 approximations and the accuracy of the approximate upper percentiles of $-2\log\lambda$.

Tables 1a, 1b, and 1c present the simulated upper 100α percentiles of $-2\log\lambda$, $-2\rho_{\rm L}\log\lambda$, $-2\log \tau$, and $-2\log \varphi$ and the approximate upper percentiles of $-2\log \lambda \left(u_{\text{LR-m}}^*(\alpha)\right)$ for $m = 2, 3, 5; (p_1, p_2) = (8, 4); \alpha = 0.05, 0.01;$ and the following three cases of $(N_1^{(\ell)}, N_2^{(\ell)}):$

Sample si	ze			Upper percentile		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2 ho_{ m L}\log\lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$
			$\alpha = 0.05$			
20	20	169.56	131.22	155.65	146.73	152.45
40	40	133.19	118.13	127.85	125.20	129.37
80	80	121.97	115.07	119.53	118.42	120.40
160	160	117.32	114.01	116.14	115.63	116.56
320	320	115.17	113.54	114.59	114.35	114.80
20	10	172.56	127.04	155.74	147.09	160.27
40	20	134.40	116.68	127.83	125.30	132.39
80	40	122.53	114.45	119.50	118.44	121.69
160	80	117.61	113.73	116.16	115.66	117.15
320	160	115.31	113.41	114.59	114.36	115.08
20	40	166.76	135.34	155.44	146.26	145.64
40	80	131.93	119.50	127.82	125.04	126.60
80	160	121.35	115.64	119.49	118.32	119.17
160	320	117.06	114.31	116.17	115.64	115.99
			$\alpha = 0.01$			
20	20	186.84	144.59	171.54	161.57	167.65
40	40	146.18	129.66	140.35	137.47	142.02
80	80	133.80	126.24	131.13	129.90	132.10
160	160	128.72	125.08	127.42	126.88	127.87
320	320	126.35	124.56	125.71	125.45	125.93
20	10	190.09	139.94	171.60	162.01	176.34
40	20	147.30	127.87	140.14	137.35	145.36
80	40	134.27	125.42	130.95	129.82	133.52
160	80	129.02	124.76	127.42	126.90	128.51
320	160	126.53	124.44	125.73	125.47	126.24
20	40	183.87	149.22	171.37	161.19	160.11
40	80	144.95	131.30	140.45	137.39	138.96
80	160	133.13	126.86	131.08	129.85	130.75
160	320	128.49	125.46	127.52	126.91	127.24

Table 1a. The simulated values for $-2\log \lambda$, $-2\rho_L \log \lambda$, $-2\log \tau$, and $-2\log \varphi$ and the approximate value for $-2\log \lambda$ when m = 2 and $(p_1, p_2) = (8, 4)$.

Note. $\chi_f^2(0.05) = 113.145$, $\chi_f^2(0.01) = 124.116$.

Table 1b. The simulated values for $-2\log \lambda$, $-2\rho_L \log \lambda$, $-2\log \tau$, and $-2\log \varphi$ and the approximate value for $-2\log \lambda$ when m = 3 and $(p_1, p_2) = (8, 4)$.

Sample si	ze			Upper percentile		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2 ho_{ m L}\log\lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$
			$\alpha = 0.05$			
20	20	302.09	241.37	278.46	261.58	275.55
40	40	245.06	220.43	236.15	230.90	238.78
80	80	226.93	215.53	222.85	220.62	224.26
160	160	219.18	213.67	217.21	216.20	217.96
320	320	215.63	212.92	214.66	214.16	215.05
20	10	306.92	234.95	278.53	262.10	288.00
40	20	247.14	218.17	236.15	231.05	243.67
80	40	227.89	214.53	222.83	220.69	226.37
160	80	219.69	213.25	217.25	216.26	218.93
320	160	216.04	212.87	214.83	214.34	215.52
20	40	297.60	247.76	278.33	261.13	264.63
40	80	243.03	222.68	236.11	230.65	234.27
80	160	226.00	216.54	222.88	220.55	222.24
160	320	218.74	214.16	217.23	216.17	217.01

Sample s	ize			Upper percentile		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2 ho_{ m L}\log\lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$
			$\alpha = 0.01$			
20	20	324.15	259.00	298.77	280.46	295.13
40	40	262.26	235.90	252.68	247.03	255.48
80	80	242.83	230.63	238.46	236.11	239.87
160	160	234.46	228.57	232.37	231.25	233.11
320	320	230.73	227.83	229.70	229.16	230.00
20	10	329.41	252.16	298.96	281.14	308.56
40	20	264.40	233.40	252.66	247.18	260.74
80	40	243.72	229.43	238.35	236.03	242.13
160	80	234.97	228.09	232.38	231.34	234.15
320	160	230.79	227.41	229.51	229.01	230.49
20	40	319.28	265.81	298.41	280.04	283.37
40	80	260.11	238.33	252.72	246.91	250.64
80	160	241.54	231.43	238.18	235.72	237.71
160	320	233.97	229.07	232.38	231.22	232.10

Table 1b. (Continued).

Note. $\chi_f^2(0.05) = 212.304$, $\chi_f^2(0.01) = 227.056$.

Table 1c. The simulated values for $-2\log \lambda$, $-2\rho_L \log \lambda$, $-2\log \tau$, and $-2\log \varphi$ and the approximate value for $-2\log \lambda$ when m = 5 and $(p_1, p_2) = (8, 4)$.

Sample s	ize			Upper percentile		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2 ho_{ m L}\log\lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$
			$\alpha = 0.05$			
20	20	555.35	454.89	515.93	482.05	511.13
40	40	461.01	419.31	445.84	435.14	450.04
80	80	430.13	410.68	423.15	418.61	425.61
160	160	417.11	407.68	413.75	411.64	414.92
320	320	411.11	406.47	409.46	408.44	409.95
20	10	563.70	444.74	516.24	482.79	531.80
40	20	464.50	415.49	445.76	435.32	458.26
80	40	431.93	409.14	423.26	418.86	429.19
160	80	418.00	406.97	413.81	411.77	416.58
320	160	411.46	406.03	409.39	408.39	410.75
20	40	547.54	465.00	515.50	481.16	492.88
40	80	457.47	422.99	445.68	434.79	442.42
80	160	428.54	412.39	423.19	418.55	422.18
160	320	416.32	408.48	413.76	411.61	413.29
			$\alpha = 0.01$			
20	20	584.02	478.38	542.51	506.58	536.97
40	40	484.15	440.36	468.24	456.99	472.49
80	80	451.60	431.18	444.30	439.59	446.75
160	160	437.70	427.80	434.17	431.92	435.51
320	320	431.47	426.59	429.73	428.67	430.29
20	10	592.69	467.61	542.85	507.28	558.79
40	20	487.89	436.41	468.25	457.14	481.15
80	40	453.35	429.43	444.26	439.66	450.52
160	80	438.77	427.19	434.40	432.23	437.25
320	160	431.88	426.18	429.72	428.66	431.13
20	40	576.00	489.17	542.02	505.82	517.73
40	80	480.38	444.18	467.99	456.52	464.47
80	160	449.67	432.73	444.04	439.21	443.14
160	320	437.15	428.92	434.48	432.15	433.80

Note. $\chi_f^2(0.05) = 405.244, \, \chi_f^2(0.01) = 425.347.$

$$\left(N_1^{(\ell)}, N_2^{(\ell)}\right) = \begin{cases} (t, t), & t = 20, 40, 80, 160, 320, \\ (2t, t), & t = 10, 20, 40, 80, 160, \\ (t, 2t), & t = 20, 40, 80, 160, \end{cases}$$

where $N_1^{(1)} = N_1^{(2)}$ and $N_2^{(1)} = N_2^{(2)}$.

Tables 2a, 2b, and 2c present the actual type I error rates for the upper percentiles of $-2\log\lambda$, $-2\rho_L\log\lambda$, $-2\log\tau$, and $-2\log\varphi$, as well as $u_{LR\cdot m}^*(\alpha)$ from Tables 1a, 1b, and 1c, which are given by

$$\begin{split} &\alpha_{\rm CHI} = \Pr\Big\{-2\log\lambda > \chi_f^2(\alpha)\Big\}, \quad \alpha_{\rho_{\rm L}} = \Pr\Big\{-2\rho_{\rm L}\log\lambda > \chi_f^2(\alpha)\Big\}, \\ &\alpha_{\tau} = \Pr\Big\{-2\log\tau > \chi_f^2(\alpha)\Big\}, \quad \alpha_{\varphi} = \Pr\Big\{-2\log\varphi > \chi_f^2(\alpha)\Big\}, \end{split}$$

and

$$\alpha_{u_{\mathrm{LR}\cdot\mathrm{m}}^*} = \Pr\{-2\log\lambda > u_{\mathrm{LR}\cdot\mathrm{m}}^*(\alpha)\},\$$

respectively.

Table 2a. The type I error rates when m = 2 and $(p_1, p_2) = (8, 4)$.

Sample size	•			Type I error rate		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$lpha_{ m CHI}$	$lpha_{ ho ext{L}}$	α_{τ}	$lpha_{arphi}$	$\alpha_{u^*_{\mathrm{LR}\cdot\mathrm{m}}}$
			$\alpha = 0.05$			
20	20	0.841	0.260	0.677	0.534	0.179
40	40	0.307	0.091	0.216	0.176	0.076
80	80	0.134	0.064	0.106	0.094	0.060
160	160	0.083	0.056	0.073	0.068	0.055
320	320	0.065	0.053	0.060	0.059	0.053
20	10	0.869	0.198	0.680	0.542	0.129
40	20	0.331	0.077	0.217	0.179	0.062
80	40	0.141	0.059	0.105	0.094	0.055
160	80	0.086	0.054	0.072	0.068	0.053
320	160	0.066	0.052	0.060	0.058	0.052
20	40	0.814	0.330	0.675	0.527	0.234
40	80	0.285	0.105	0.216	0.174	0.089
80	160	0.126	0.068	0.105	0.093	0.065
160	320	0.081	0.058	0.073	0.068	0.057
			$\alpha = 0.01$			
20	20	0.663	0.104	0.447	0.302	0.059
40	40	0.126	0.022	0.076	0.057	0.017
80	80	0.038	0.014	0.027	0.023	0.013
160	160	0.020	0.012	0.017	0.015	0.011
320	320	0.014	0.011	0.013	0.012	0.011
20	10	0.708	0.069	0.451	0.310	0.036
40	20	0.141	0.018	0.076	0.057	0.013
80	40	0.041	0.012	0.027	0.023	0.011
160	80	0.021	0.011	0.017	0.015	0.011
320	160	0.014	0.011	0.013	0.012	0.010
20	40	0.622	0.146	0.445	0.296	0.086
40	80	0.113	0.028	0.076	0.056	0.022
80	160	0.035	0.015	0.027	0.023	0.014
160	320	0.019	0.012	0.017	0.015	0.012

Note. The closer to α in the values α_{CHI} , $\alpha_{\rho L}$, α_{τ} , α_{ϕ} , and $\alpha_{u_{1Rm}^*}$ of each low is in boldface.

Sample size	2			Type I error rate		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$\alpha_{ m CHI}$	$lpha_{ ho m L}$	α_{τ}	$lpha_{arphi}$	$\alpha_{u_{\mathrm{LR}\cdot\mathrm{m}}^*}$
			$\alpha = 0.05$			
20	20	0.943	0.332	0.808	0.624	0.220
40	40	0.402	0.102	0.273	0.206	0.083
80	80	0.162	0.068	0.123	0.104	0.063
160	160	0.092	0.057	0.078	0.072	0.056
320	320	0.068	0.053	0.063	0.060	0.053
20	10	0.959	0.249	0.810	0.632	0.151
40	20	0.435	0.085	0.274	0.209	0.067
80	40	0.173	0.062	0.122	0.104	0.057
160	80	0.096	0.055	0.079	0.072	0.054
320	160	0.070	0.053	0.063	0.061	0.052
20	40	0.925	0.421	0.806	0.616	0.295
40	80	0.371	0.120	0.273	0.203	0.100
80	160	0.153	0.074	0.123	0.103	0.070
160	320	0.089	0.060	0.079	0.072	0.059
			$\alpha = 0.01$			
20	20	0.839	0.144	0.605	0.382	0.078
40	40	0.186	0.026	0.105	0.070	0.020
80	80	0.049	0.015	0.034	0.027	0.014
160	160	0.023	0.012	0.018	0.016	0.012
320	320	0.015	0.011	0.014	0.013	0.011
20	10	0.874	0.094	0.608	0.389	0.045
40	20	0.210	0.020	0.105	0.071	0.014
80	40	0.054	0.013	0.033	0.027	0.012
160	80	0.024	0.011	0.018	0.016	0.011
320	160	0.016	0.010	0.013	0.013	0.010
20	40	0.802	0.206	0.602	0.374	0.119
40	80	0.165	0.033	0.104	0.068	0.026
80	160	0.045	0.017	0.034	0.026	0.015
160	320	0.022	0.013	0.018	0.016	0.012

Table 2b. The type I error rates when m = 3 and $(p_1, p_2) = (8, 4)$.

Note. The closer to α in the values α_{CHI} , $\alpha_{\rho L}$, α_{τ} , α_{ϕ} , and $\alpha_{u_{LRm}^*}$ of each low is in boldface.

Table 2c. The type I error rates when m = 5 and $(p_1, p_2) = (8, 4)$.

Sample size				Type I error rate		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$\alpha_{ m CHI}$	$lpha_{ ho ext{L}}$	$lpha_{ au}$	$lpha_{arphi}$	$lpha_{u^*_{\mathrm{LR}\cdot\mathrm{m}}}$
			$\alpha = 0.05$			
20	20	0.992	0.452	0.933	0.742	0.293
40	40	0.542	0.120	0.365	0.251	0.095
80	80	0.207	0.072	0.148	0.116	0.067
160	160	0.107	0.059	0.088	0.077	0.058
320	320	0.074	0.054	0.066	0.062	0.054
20	10	0.995	0.342	0.935	0.751	0.194
40	20	0.584	0.097	0.367	0.255	0.073
80	40	0.222	0.065	0.149	0.118	0.060
160	80	0.112	0.056	0.088	0.077	0.055
320	160	0.076	0.053	0.066	0.062	0.053
20	40	0.986	0.563	0.931	0.736	0.398
40	80	0.501	0.146	0.365	0.249	0.118
80	160	0.192	0.080	0.148	0.116	0.075
160	320	0.102	0.062	0.088	0.076	0.061

Sample size	2			Type I error rate		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$\alpha_{ m CHI}$	$lpha_{ ho m L}$	$\alpha_{ au}$	$lpha_{arphi}$	$\alpha_{u^*_{\mathrm{LR}\cdot\mathrm{m}}}$
			$\alpha = 0.01$			
20	20	0.964	0.226	0.811	0.509	0.116
40	40	0.293	0.033	0.159	0.091	0.023
80	80	0.068	0.016	0.043	0.031	0.015
160	160	0.027	0.012	0.021	0.018	0.012
320	320	0.017	0.011	0.015	0.013	0.011
20	10	0.977	0.148	0.816	0.518	0.063
40	20	0.331	0.025	0.160	0.093	0.017
80	40	0.076	0.014	0.044	0.032	0.013
160	80	0.029	0.012	0.021	0.018	0.011
320	160	0.017	0.011	0.015	0.013	0.011
20	40	0.947	0.320	0.809	0.501	0.183
40	80	0.259	0.043	0.159	0.090	0.032
80	160	0.062	0.019	0.043	0.031	0.017
160	320	0.026	0.014	0.021	0.018	0.013

Table	2c.	(Continued).

Note. The closer to α in the values α_{CHI} , $\alpha_{\rho \text{L}}$, α_{τ} , α_{φ} , and $\alpha_{u_{\text{IR}m}^*}$ of each low is in boldface.

It may be noted from Tables 1a, 1b, and 1c that the simulated values get closer to the upper percentiles of the χ^2 distribution when both of the sample sizes $N_1^{(\ell)}$ and $N_2^{(\ell)}$ become large. From the results presented in Tables 2a, 2b, and 2c, we note that the actual type I error rates get closer to the value of α when the sample sizes $N_1^{(\ell)}$ and $N_2^{(\ell)}$ become large, even when *m* is large. Furthermore, it can be seen from the tables that our approximations are accurate for the majority of cases. In particular, it should be noted that the values of $u_{\text{LR-m}}^*$ are highly accurate for all cases.

Tables 3a, 3b, and 3c present the same upper percentiles as those given in Tables 1a, 1b, and 1c for m = 2, 3, 5; $(p_1, p_2) = (8, 4)$; $\alpha = 0.05, 0.01$; and $\left(N_1^{(\ell)}, N_2^{(\ell)}\right) = (t_1, t_2)$, where $t_1 = 40, 80, 160, 320$ and $t_2 = 10, 30, 60, 120$ for Table 3a and $t_1 = 30, 60, 120$ and $t_2 = 10, 40, 80, 160, 320$ for Tables 3b and 3c, and the sets $\left(N_1^{(\ell)}, N_2^{(\ell)}\right)$ are a combination of t_1 and t_2 . Tables 4a, 4b, and 4c present the actual type I error rates $\alpha_{\text{CHI}}, \alpha_{\rho_{\text{L}}}, \alpha_{\tau}$, and α_{φ} from Tables 3a, 3b, and 3c.

Sample si	ze			Upper percentile		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2\rho_L\log\lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$
			$\alpha = 0.05$			
40	10	135.56	115.63	127.93	125.49	134.99
80	10	123.37	113.68	119.54	118.58	123.50
160	10	118.07	113.26	116.13	115.70	118.15
320	10	115.63	113.22	114.65	114.45	115.60
40	30	133.69	117.50	127.84	125.25	130.63
80	30	122.82	114.30	119.57	118.54	122.17
160	30	117.90	113.43	116.14	115.69	117.78
320	30	115.55	113.24	114.62	114.42	115.50

Table 3a. The simulated values for $-2\log \lambda$, $-2\rho_L \log \lambda$, $-2\log \tau$, and $-2\log \varphi$ and the approximate value for $-2\log \lambda$ when m = 2 and $(p_1, p_2) = (8, 4)$.

Sample si	ze			Upper percentile		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2 ho_L\log\lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$
40	60	132.50	119.01	127.89	125.15	127.68
80	60	122.14	114.74	119.44	118.36	120.94
160	60	117.70	113.62	116.13	115.67	117.36
320	60	115.45	113.26	114.58	114.37	115.38
40	120	131.35	120.21	127.80	124.94	125.31
80	120	121.74	115.54	119.64	118.50	119.66
160	120	117.45	113.89	116.15	115.65	116.81
320	120	115.37	113.37	114.60	114.37	115.18
			lpha=0.01			
40	10	148.84	126.96	140.53	137.91	148.24
80	10	135.29	124.67	131.10	130.05	135.52
160	10	129.55	124.27	127.43	126.97	129.62
320	10	126.84	124.20	125.76	125.55	126.81
40	30	146.67	128.90	140.29	137.46	143.41
80	30	134.70	125.36	131.16	130.05	134.05
160	30	129.38	124.47	127.44	126.97	129.21
320	30	126.74	124.20	125.72	125.49	126.71
40	60	145.24	130.46	140.24	137.30	140.15
80	60	134.02	125.90	131.10	129.93	132.70
160	60	128.96	124.49	127.25	126.73	128.75
320	60	126.55	124.15	125.61	125.38	126.57
40	120	144.28	132.05	140.38	137.24	137.54
80	120	133.55	126.75	131.24	130.00	131.28
160	120	128.91	125.01	127.48	126.92	128.14
320	120	126.59	124.40	125.75	125.49	126.35

Table 3a. (Continued).

Note. $\chi_f^2(0.05) = 113.145$, $\chi_f^2(0.01) = 124.116$.

Table 3b. The simulated values for $-2\log \lambda$, $-2\rho_L \log \lambda$, $-2\log \tau$, and $-2\log \varphi$ and the approximate value for $-2\log \lambda$ when m = 3 and $(p_1, p_2) = (8, 4)$.

Sample siz	ze			Upper percentile		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2 ho_L\log\lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$
			$\alpha = 0.05$			
30	10	264.73	220.39	247.48	239.81	260.82
60	10	235.41	214.01	226.93	224.01	235.37
120	10	223.36	212.71	219.08	217.81	223.46
30	40	258.81	226.61	247.17	239.07	247.06
60	40	233.33	216.13	226.95	223.90	230.57
120	40	222.67	213.35	219.06	217.72	222.00
30	80	256.29	229.75	247.16	238.88	241.29
60	80	232.00	217.57	226.96	223.78	227.60
120	80	222.11	213.92	219.09	217.70	220.78
30	160	254.50	232.07	247.12	238.62	237.42
60	160	230.72	218.78	226.90	223.61	225.05
120	160	221.40	214.52	219.02	217.59	219.43
30	320	253.44	233.55	247.15	238.56	235.15
60	320	229.84	219.71	226.87	223.51	223.26
120	320	220.86	215.15	219.07	217.59	218.24

Sample s	ize			Upper percentile		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2\rho_L \log \lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$
			$\alpha = 0.01$			
30	10	283.13	235.71	264.73	256.64	279.22
60	10	251.70	228.81	242.63	239.62	251.81
120	10	239.00	227.61	234.42	233.06	239.00
30	40	277.09	242.61	264.62	255.92	264.40
60	40	249.56	231.17	242.74	239.46	246.65
120	40	238.07	228.10	234.21	232.79	237.45
30	80	274.35	245.95	264.56	255.61	258.20
60	80	248.16	232.72	242.79	239.41	243.45
120	80	237.51	228.76	234.26	232.81	236.14
30	160	272.55	248.52	264.56	255.49	254.05
60	160	246.86	234.08	242.74	239.22	240.72
120	160	236.75	229.39	234.22	232.67	234.69
30	320	271.37	250.07	264.58	255.42	251.62
60	320	245.83	234.99	242.64	239.10	238.81
120	320	236.23	230.12	234.32	232.74	233.41

Table	3b.	(Continued).
-		

Note. $\chi_f^2(0.05) = 212.304$, $\chi_f^2(0.01) = 227.056$.

Table 3c. The simulated values for $-2\log \lambda$, $-2\rho_L \log \lambda$, $-2\log \tau$, and $-2\log \varphi$ and the approximate value for $-2\log \lambda$ when m = 5 and $(p_1, p_2) = (8, 4)$.

Sample si	ze	Upper percentile						
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2 ho_{ m L}\log\lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$		
			$\alpha = 0.05$					
30	10	493.84	419.39	464.65	448.85	486.85		
60	10	444.68	408.29	430.18	424.11	444.37		
120	10	424.24	406.04	416.90	414.19	424.26		
30	40	483.96	429.77	464.30	447.95	463.82		
60	40	441.17	411.91	430.26	423.98	436.27		
120	40	422.97	407.03	416.77	414.03	421.80		
30	80	479.63	434.94	464.23	447.60	454.10		
60	80	438.59	414.03	429.99	423.60	431.23		
120	80	422.01	408.01	416.82	414.00	419.72		
30	160	476.59	438.78	464.22	447.41	447.53		
60	160	436.72	416.37	430.17	423.62	426.90		
120	160	420.97	409.18	416.88	413.99	417.41		
30	320	474.60	441.08	464.07	447.17	443.66		
60	320	435.30	418.03	430.23	423.56	423.85		
120	320	419.83	410.05	416.75	413.81	415.38		
			$\alpha = 0.01$					
30	10	518.77	440.57	488.06	471.55	511.30		
60	10	466.70	428.51	451.53	445.18	466.50		
120	10	445.25	426.15	437.53	434.73	445.33		
30	40	508.28	451.37	487.57	470.46	487.03		
60	40	463.14	432.42	451.69	445.11	457.98		
120	40	443.95	427.22	437.46	434.59	442.74		
30	80	503.78	456.83	487.52	470.06	476.79		
60	80	460.41	434.63	451.36	444.58	452.68		
120	80	443.01	428.32	437.56	434.57	440.56		

Tab	le 3c.	(Continued).
-----	--------	------------	----

Sample si	ze			Upper percentile		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$-2\log\lambda$	$-2 ho_{ m L}\log\lambda$	$-2\log \tau$	$-2\log \varphi$	$u^*_{\mathrm{LR}\cdot\mathrm{m}}(\alpha)$
30	160	500.65	460.93	487.56	469.82	469.88
60	160	458.28	436.93	451.41	444.54	448.12
120	160	441.91	429.54	437.60	434.56	438.13
30	320	498.54	463.33	487.35	469.69	465.82
60	320	456.90	438.77	451.55	444.53	444.92
120	320	440.73	430.46	437.51	434.39	435.99

Note. $\chi^2_f(0.05) = 405.244, \, \chi^2_f(0.01) = 425.347.$

Table 4a. The type I error rates when m = 2 and $(p_1, p_2) = (8, 4)$.

Sample size	e			Type I error rate		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$\alpha_{ m CHI}$	$lpha_{ ho_{ m L}}$	α_{τ}	$lpha_{arphi}$	$lpha_{u^*_{\mathrm{LR}\cdot\mathrm{m}}}$
			$\alpha = 0.05$			
40	10	0.351	0.068	0.216	0.180	0.053
80	10	0.152	0.054	0.105	0.095	0.049
160	10	0.090	0.051	0.073	0.069	0.050
320	10	0.068	0.051	0.061	0.059	0.050
40	30	0.317	0.084	0.217	0.177	0.069
80	30	0.144	0.058	0.105	0.095	0.054
160	30	0.089	0.052	0.072	0.069	0.051
320	30	0.068	0.051	0.060	0.059	0.050
40	60	0.295	0.100	0.217	0.175	0.084
80	60	0.137	0.061	0.105	0.094	0.058
160	60	0.087	0.053	0.073	0.069	0.052
320	60	0.067	0.051	0.060	0.059	0.050
40	120	0.275	0.113	0.216	0.173	0.095
80	120	0.130	0.067	0.106	0.094	0.064
160	120	0.085	0.055	0.073	0.068	0.054
320	120	0.066	0.051	0.060	0.059	0.051
			$\alpha = 0.01$			
40	10	0.153	0.015	0.076	0.059	0.011
80	10	0.046	0.011	0.028	0.024	0.010
160	10	0.022	0.010	0.017	0.015	0.010
320	10	0.015	0.010	0.013	0.013	0.010
40	30	0.132	0.020	0.076	0.057	0.016
80	30	0.043	0.012	0.027	0.024	0.011
160	30	0.022	0.011	0.017	0.015	0.010
320	30	0.015	0.010	0.013	0.012	0.010
40	60	0.119	0.026	0.076	0.056	0.020
80	60	0.039	0.013	0.027	0.023	0.012
160	60	0.021	0.011	0.016	0.015	0.010
320	60	0.015	0.010	0.013	0.012	0.010
40	120	0.107	0.030	0.076	0.055	0.024
80	120	0.037	0.015	0.028	0.024	0.014
160	120	0.021	0.011	0.017	0.016	0.011
320	120	0.015	0.010	0.013	0.012	0.010

Note. The closer to a in the values α_{CHI} , α_{ρ_L} , α_{τ} , α_{φ} , and $\alpha_{u^*_{LRm}}$ of each low is in boldface.

690 🛞 M. HOSOYA AND T. SEO

Table 4b. T	The type I	error rates	when	m = 3 and	(p_1, p_2)	= (8, 4).
-------------	------------	-------------	------	-----------	--------------	-----	------	----

Sample size				Type I error rate		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$\alpha_{ m CHI}$	$lpha_{ ho_{ m L}}$	α_{τ}	$lpha_{arphi}$	$lpha_{u^*_{\mathrm{LR}\cdot\mathrm{m}}}$
			$\alpha = 0.05$			
30	10	0.680	0.101	0.435	0.322	0.067
60	10	0.266	0.059	0.162	0.133	0.050
120	10	0.127	0.052	0.091	0.082	0.050
30	40	0.601	0.157	0.431	0.312	0.117
60	40	0.237	0.071	0.162	0.131	0.064
120	40	0.121	0.055	0.091	0.082	0.053
30	80	0.564	0.191	0.431	0.309	0.146
60	80	0.220	0.080	0.162	0.131	0.073
120	80	0.116	0.058	0.092	0.082	0.056
30	160	0.537	0.218	0.430	0.306	0.167
60	160	0.205	0.089	0.161	0.129	0.081
120	160	0.110	0.062	0.091	0.081	0.060
30	320	0.521	0.236	0.430	0.305	0.180
60	320	0.195	0.096	0.162	0.128	0.088
120	320	0.105	0.065	0.091	0.081	0.063
			$\alpha = 0.01$			
30	10	0.436	0.026	0.210	0.134	0.015
60	10	0.099	0.012	0.049	0.037	0.010
120	10	0.035	0.011	0.023	0.020	0.010
30	40	0.354	0.048	0.208	0.127	0.032
60	40	0.085	0.016	0.049	0.037	0.014
120	40	0.033	0.011	0.022	0.019	0.011
30	80	0.319	0.063	0.207	0.126	0.043
60	80	0.076	0.019	0.050	0.037	0.017
120	80	0.031	0.012	0.023	0.019	0.012
30	160	0.295	0.076	0.206	0.124	0.052
60	160	0.069	0.022	0.049	0.036	0.019
120	160	0.029	0.013	0.022	0.019	0.013
30	320	0.281	0.086	0.207	0.123	0.058
60	320	0.064	0.024	0.049	0.036	0.021
120	320	0.027	0.014	0.022	0.019	0.014

Note. The closer to *a* in the values α_{CHI} , α_{ρ_L} , α_{τ} , α_{φ} , and $\alpha_{u_{LRm}^*}$ of each low is in boldface.

Considering Tables 3a, 3b, and 3c, it should be noted that the behavior of the simulated values and the accuracy of the approximation exhibit the same tendencies as the corresponding results of Tables 1a, 1b, and 1c. That is, it can be observed that the proposed approximation procedures are considerably accurate, even for cases when the sample size is not large and m is moderately large.

Thus, it can be concluded that the approximation $u_{LR\cdot m}^*(\alpha)$ is highly accurate, and the accuracy of the approximation is considerably higher than that of the χ^2 approximation $(\chi_f^2(\alpha))$ in almost all cases.

Sample size	2			Type I error rate		
$N_1^{(\ell)}$	$N_2^{(\ell)}$	$\alpha_{ m CHI}$	$lpha_{ ho_{ m L}}$	ατ	$lpha_{arphi}$	$lpha_{u^*_{\mathrm{LR}\cdot\mathrm{m}}}$
			$\alpha = 0.05$			
30	10	0.843	0.121	0.581	0.399	0.074
60	10	0.356	0.062	0.206	0.155	0.051
120	10	0.156	0.053	0.105	0.090	0.050
30	40	0.769	0.200	0.577	0.389	0.144
60	40	0.315	0.078	0.206	0.154	0.068
120	40	0.147	0.057	0.105	0.089	0.054
30	80	0.731	0.248	0.576	0.385	0.185
60	80	0.290	0.089	0.205	0.152	0.080
120	80	0.139	0.060	0.105	0.089	0.058
30	160	0.701	0.285	0.574	0.382	0.215
60	160	0.268	0.102	0.205	0.151	0.092
120	160	0.131	0.065	0.105	0.088	0.063
30	320	0.682	0.310	0.573	0.380	0.233
60	320	0.253	0.112	0.206	0.150	0.101
120	320	0.124	0.069	0.105	0.088	0.067
			$\alpha = 0.01$			
30	10	0.645	0.033	0.329	0.182	0.017
60	10	0.152	0.013	0.069	0.046	0.010
120	10	0.046	0.011	0.027	0.022	0.010
30	40	0.540	0.067	0.325	0.175	0.042
60	40	0.127	0.018	0.069	0.045	0.015
120	40	0.042	0.012	0.027	0.022	0.011
30	80	0.491	0.090	0.324	0.172	0.059
60	80	0.112	0.022	0.068	0.044	0.018
120	80	0.040	0.013	0.027	0.021	0.012
30	160	0.456	0.111	0.324	0.171	0.074
60	160	0.101	0.026	0.068	0.044	0.022
120	160	0.037	0.014	0.027	0.021	0.014
30	320	0.434	0.125	0.323	0.168	0.082
60	320	0.092	0.030	0.069	0.044	0.026
120	320	0.034	0.016	0.027	0.021	0.015

Table 4c. The type I error rates when m = 5 and $(p_1, p_2) = (8, 4)$.

Note. The closer to α in the values α_{CHI} , α_{ρ_L} , α_{τ} , α_{ϕ} , and $\alpha_{u^*_{LR,m}}$ of each low is in boldface.

Acknowledgments

The authors thank the referee for his useful comments.

Funding

The second author's research was in part supported by JSPS Grant-in-Aid for Scientific Research (C) (26330050).

References

Hao, J., and K. Krishnamoorthy. 2001. Inferences on a normal covariance matrix and generalized variance with monotone missing data. *Journal of Multivariate Analysis* 78:62–82.

Hosoya, M., and T. Seo. 2015. Simultaneous testing of the mean vector and the covariance matrix with two-step monotone missing data. *SUT Journal of Mathematics* 51:83–98.

- Jinadasa, K. G., and D. S. Tracy. 1992. Maximum likelihood estimation for multivariate normal distribution with monotone sample. *Communications in Statistics—Theory and Methods* 21:41–50.
- Kanda, T., and Y. Fujikoshi. 1998. Some basic properties of the MLE's for a multivariate normal distribution with monotone missing data. *American Journal of Mathematical and Management Sciences* 18:161–190.
- Kawasaki, T., and T. Seo. 2016. Bias correction for T^2 type statistic with two-step monotone missing data. *Statistics* 50:76–88.
- Krishnamoorthy, K., and M. K. Pannala. 1999. Confidence estimation of a normal mean vector with incomplete data. *Canadian Journal of Statistics* 27:395–407.
- Muirhead, R. J. 1982. Aspects of multivariate statistical theory. New York, NY: John Wiley & Sons.
- Seko, N., T. Kawasaki, and T. Seo. 2011. Testing equality of two mean vectors with two-step monotone missing data. American Journal of Mathematical and Management Science 31:117–135.
- Siotani, M., T. Hayakawa, and Y. Fujikoshi. 1985. Modern multivariate statistical analysis: A graduate course and handbook. Columbus, OH: American Science Press.
- Srivastava, M. S. 2002. *Methods of multivariate statistics*. New York, NY: Wiley-Interscience (John Wiley & Sons).
- Tsukada, S. 2014. Equivalence testing of mean vector and covariance matrix for multipopulations under a two-step monotone incomplete sample. *Journal of Multivariate Analysis* 132:183–196.
- Yagi, A., and T. Seo. 2014. A test for mean vector and simultaneous confidence intervals with three-step monotone missing data. American Journal of Mathematical and Management Sciences 33:161–175.
- Yagi, A., and T. Seo. 2015. Tests for equality of mean vectors and simultaneous confidence intervals with two-step or three-step monotone missing data patterns. *American Journal of Mathematical and Management Sciences* 34:213–233.