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ABSTRACT

Without any doubt, the CreditRisk® model that was launched by
Credit Suisse Financial Products in 1997 is one of the most popular
credit portfolio models in the banking industry. In order to accom-
modate more flexible dependence structures, Fischer and Dietz in

ARTICLE HISTORY
Received 1 July 2015
Accepted 11 January 2016

KEYWORDS
Credit portfolio model;

2012 introduced a generalized CreditRisk* framework. Focusing on
the extension of Fischer and Dietz, the contribution of this article is
twofold: First, we derive an analytic framework that allows for sto-
chastic recovery rates, and for which the corresponding risk figures
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can be obtained via saddlepoint approximation. Second, we propose
a straightforward approach for how to take dependencies between
recovery rates and default rates into account. The corresponding loss
distribution has to be derived using Monte Carlo simulations. We
illustrate the effects of both stochastic recovery rates and depen-
dence between recovery rates and default rates on the level of risk
figures for a specific benchmark portfolio.
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1. Introduction

The focus of this contribution is on credit risk, one of the most important risk types in the
classical banking industry. Typically, the amount of economic capital to be reserved for
credit risk is determined with a credit portfolio model.

Two of the most widespread models are CreditMetrics, launched by J.P. Morgan in
1997 and CreditRisk" (briefly: CR"), an actuarial approach proposed by Credit Suisse
Financial Products (1997) in 1997. In both cases one faces the challenge to model the
dependence between the counterparties in the underlying portfolio. Because in practice
the number of counterparties is simply too high to model their dependencies directly, the
counterparty dependence structure is commonly reduced to the dependency structure
between suitable sector variables.

In the standard CR" model the sectors are assumed to be independent. In practice,
there is no reason to believe that this assumption holds, particularly if we think of industry
or country sectors. Consequently, several proposals appeared in order to introduce
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correlated sectors. At first, Biirgisser et al. (1999) and Giese (2004) came up with two
models that can be embedded within the standard CR" setting but still failed to rebuild
different patterns of variance-covariance structures. Han and Kang (2008) published a
more sophisticated model, where each sector variable is supplemented by a common
background factor. Fischer and Dietz (2011/2012) introduced the common background
vector (CR"-CBV) model as a multivariate extension of the common factor model of Han
and Kang (2008) from one factor to several background factors. However, within the CR"-
CBV framework of Fischer and Dietz, relevant risk parameters such as recovery rates> are
assumed to be deterministic, and dependence between recovery rates and default rates is
neglected.

Against this background, the outline of this article is as follows: section 2 recaps the
generalized CR" model of Fischer and Dietz (2011/2012), whereas section 3 pays attention
to the integration of uncertainty in the measurement of recovery rates within an analytic
framework, generalizing Gordy (2004), who brought up a sophisticated approach to
integrate severity risk into the standard CR" setting. Section 4 is dedicated to the inclusion
of dependence between default rates and recovery rates into the underlying framework’.
Finally, section 5 illustrates the effects of both stochastic recovery rates and dependence
between recovery rates and default rates on the level of risk figures for the benchmark
portfolio. Section 6 concludes.

2. The CR*-CBV model: A short primer

Assume that our loan portfolio consists of n counterparties. Let further A = {A,B,...}
denote the set of all counterparties, ps € [0, 1] the probability of default (PD), v4 > 0 the
arbitrary but deterministic and discretized exposure at default (EAD), and ¢4 € [0, 1] the
loss given default (LGD) of counterparty A € A. With default indicator 14 and
P(14 =1) = pa, the general portfolio loss (variable) is given by

X = ZXA = ZVAGAIA-

AeA AcA

The product vse4 quantifies the potential loss of counterparty A (in case of a default),
whereas the corresponding expected loss of counterparty A reads as E(Xy) = vaeapa.
Within the standard CR" framework, the default indicator 1, is replaced by a Poisson
variable* p, with specific intensity

)\i :pA(on+wA181 +---+WAKSK)7 (1)

where Sy, ..., Sk are certain independent and Gamma-distributed sector variables repre-
senting the state of the economic sector(s). More generally, Fischer and Dietz (2011/2012),
replace Eq. (1) by

2The loss given default (LGD) equals the percentage amount of the outstanding exposure at default that cannot
be recovered. Equivalently, 1 - LGD is commonly termed as recovery rate, briefly RR.

3For instance, Frye (2000) or Altman et al. (2005) found empirical evidence for dependence between default rates
and recovery rates.

“This can be regarded as reasonable approximation, at least for small probabilities of default.
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I
>\SA = pa(Wao + warS1 + ... + waxSk) with  S=8;Sx + Z v 11 (2)
=1

with sector variables Sx~T(6k,1) for k=1,...,K as in the standard setting and
additional background factors T~ F(@l, 1) for [=1,...,L, which are all assumed to

be mutually independent. Hereby L denotes the number of background variables or,
equivalently, the dimension of the background vector. For L =0, the classical CR"
setting is recovered, whereas L =1 includes the already-mentioned proposal of Han
and Kang (2008). Per construction, Si,...,8k are now dependent sector variables,
where dependence arises through the additional common background variables
Ty,...,Tr. It is one of the major advantages of the CR"-CBV model that Eq. (2) can
be reformulated as a standard CR* model with K + L sectors, setting S; =68 fori <K
and S; = T; otherwise:

)‘i =pa (WAo + WarSi + ...+ waxSk + WA,K—HSk—H +...F WA,K+LSK+L) (3)

with artificial weights wa k1 = Zle wakyy for I =1,... L. According to the assump-
tions already described, the first and second moments derive as

E(Sk) = 8i6k + Z b, Var(Sy) = 826, + Z Y20, Cov(S:,S)) Z y,ly,Je,, i#j.
=1 =1

In line with the work of Han and Kang (2008), the unknown parameters of the CR"-CBV
model are chosen such that the (normalized) Euclidian distance between the empir/if:al and
theoretical covariance matrix is minimal, respecting the side condition that 6, 0;, &y >
0 and

L
E(Se) =80+ > vibi=1, waxu>0(AcAl=1,..,1L)

=1

The last assumption ensures that E(A3) = pa.

3. Including stochastic recovery rates

In case of a counterparty default, not all of the outstanding exposure will be lost. Typically,
banks receive revenues from the liquidation of collaterals and/or from the insolvency
quota. The loss given default (LGD) equals the percentage amount of the outstanding
exposure at default that cannot be recovered. Equivalently, 1 - LGD is commonly termed
as recovery rate (RR). Typically, LGDs (or RRs) are estimated from historical loss data for
homogenuous segments, and are applied to the living portfolio as a best a priori estimator.
Keeping the finite number of observations and possible idiosyncratic effects or macro-
economic influences in mind, one might imagine that all estimators are fraught with
uncertainty that should be taken into account when we derive forecasts for the loss
distribution.
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3.1. General framework

Gordy (2004) found a general solution to the shortcoming of missing stochastic LGDs in
the standard CR" framework. He replaced the standard recursion algorithms to calculate
the loss distribution like Panjer recursion (see Gundlach and Lehrbass 2004) and nested
evaluation (see Haaf et al. 2004) by the saddlepoint approximation, which is described in
section 3.3. Thus, discretization of losses is no longer necessary.

The only additional requirement to apply this approach is the independence of the
LGDs €4, A € A, among each other and from the intensities A3. This is necessary to retain
an analytic solution for the portfolio loss distribution. In the case of dependence between
€4 and )\i (so-called PD-LGD dependence) one has to make use of Monte Carlo simula-
tions, as we demonstrate in section 4.

Given mean and standard deviation of the LGDs on a counterparty level, the distribu-
tion of the LGDs can be specified. The only requirement is the existence of the moment
generating function M., of the stochastic LGD €4(A € A). Therewith, the moment
generating function of the portfolio loss X under the assumption of stochastic LGDs can
be deduced with some additional calculation steps as follows.

We incorporate severity risk into the CR*-CBV model by defining the potential loss
(PL) v4 = v4 - €4 as a random variable dependent on the deterministic exposure at default
v4 and the loss given default €4, which is assumed to be a random variable from here on.
The conditional moment generating function of x, is given by

My, 5(2) = B, [My 5., (2)IS] = B, [1 = X + XS explzvaey)I§]
=1\ +ASE,, [exp(zvaea)],
where E,, [exp(zvaea)] is the moment generating function of €4 evaluated at zv4, implying
My 5(2) = 1= X} + AAM,, (2v4) = 1+ \5(Me, (zva) — 1)

~ exp(}\i (M, (zva) — 1))

Due to the conditional independence of (X4),. 4 we get

X\s HMX 5(2) = exp (Z}\ L(zva) 1))

AcA AcA
K+l K+L
= exp (Z Pa Z WakSk(Me, (zva) — 1)) = exp <Z SkPk(z)>
AcA k=0 k=0

with sector polynomials Pi(z) = Z pawak(M,,(zv4) — 1), k=0,...,K + L, which pro-

(4)

vide a condensed representation of the obligor-specific risk in sector k; see Gundlach and
Lehrbass (2004, chap. 6). Thus, the unconditional moment generating function of X has

the form
K+L

Mx(z) = s [Ms(2)] = exp(eo(e) [] s (2t

Hence, the moment generating function of X for the CR"-CBV model with stochastic
LGDs is given by
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-~

K L

-9,

Mx(z) = exp(Po(2)) [ [ (1 = Pi(2)d HI—PK+1 D (5)
k=1 1=1

Thus, we end up with a general representation of the portfolio loss distribution in terms of

the moment generating functions M., of the LGDs €4, A € A. In a second step the

distribution of LGDs has to be chosen.

3.2. The distribution of LGDs

The only restriction to the distribution of €4 is the existence of its moment generating
function. From an economic point of view, the possible values of €4 should be restricted to
the interval [0, 1]. A distribution fulfilling these requirements is the beta distribution.
Because of its support on [0, 1] and its very adjustable structure, it is used as the standard
LGD distribution in the banking practice. The density of the Beta distribution is given by

1 a—1 b—1
_ Jaum* (1—x) for x € (0,1),
o= {3

otherwise,

with a,b > 0 and B(a, b) as the Beta function. The corresponding moment generating
function does not admit a closed-form representation. Indeed, it can be written as a power
series that converges on the whole real axis:

asg+r t"
)=1 — =, telR

This power series has to be approximated by a finite sum, when it is implemented on the
computer. To save computation time other distributions with closed form moment
generating functions can be used. For this purpose, Gordy (2004) suggested using the
Gamma distribution as LGD distribution. From an economic point of view, however, this
assumption is not appropriate because of the corresponding support of the Gamma
distribution on [0, 00]. The parameters of the LGD distribution have to be chosen in
such a way that the expectation and the standard deviation of €4 is equal to the
corresponding estimated empirical mean { and standard deviation 0.

3.3. Derivation of the loss distribution

In order to derive the loss distribution or derivations thereof we use the formula of
Lugannani and Rice (1980), which was introduced by Gordy (2004) to the standard CR*
framework. This formula provides an approximation of the distribution function in the
tail area, but it also can be applied to the whole support of the distribution®. With regard
to some other necessary assumptions, which are satisfied in the CR" setting (see Gordy
2004), the main requirement is the knowledge of the cumulant generating function (CGF)
and its derivatives. Then the survival function can be approximated by

°In the case of very skew loss distributions the Lugannani-Rice formula does not work very well. Wood et al.
(1993) generalized this formula and allowed arbitrary continuous base distributions with existing cumulant
generating functions.
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POC> ) = 1= 000) + 600) (5 - ). )

w

w = sign(z)\/2(zy — Kx(2)) u=2z,/K{(2)

with Kx as the CGF of the portfolio loss, ® and respectively ¢ as the distribution and
density function of the standard normal distribution, and the saddlepoint z as the unique
solution of the saddlepoint equation K}(z) = y. In the CR*-CBV model,

Kx(z) = In(Mx(z)) = Zek In(1 — Pi(2)8) — n(l—Pxu(z)  (8)

HMH

with Pi(z) as defined earlier. Gordy (2004) showed how to calculate the derivatives of Kx
in the standard CR" setting. Knowing that the CR*-CBV setup can be translated back to
the standard CR" approach, the derivatives in the CR*-CBV setting can be deduced
analogously:

Kx(z) = Po(z) + > wi(2) + > Wilz) )
k=1 I=1

with @, (z) = —6 - In(1 — P(2)8) for k=1,...,K and ;(z) = —6; - In(1 — Pxy(2)) for
I=1,...,L. By derivating ¢, (z) and ,(z) we receive the derivatives of Ky. It can be

shown that ! /
Py (2) -~ ~ Pi(2)

\I]k(z) = 6k6k1 — 6kPk(Z) ’ \Ijl(z) = ll _ PK+[(Z) )

e - o140 va (1))

- (e Y )

With reference to section 3.1, the functions Py, k=0,...,K + L, have the following
representation:

as+r (zva)"
ZPAWAkZ<HaA—:bA+r> nf!‘ ' (10)

AcA n=1

We get the derivatives of Py by derivating each addend:

Lo o0 e as+r (zva)"
Pi(2) = > pawarva (H PN r) O

AcA n=0 \r=0
o0 n+1 n
a,+r (zva)
Pl(z paw v2 :
k AWAk A

Now we have deduced an algorithm to calculate the portfolio loss CGF and its first two
derivatives. After that we apply the Lugannani-Rice formula to approximate the loss
distribution within the CR*-CBV setting with by stochastic LGDs. In short:
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Algorithm 1. Calculating the saddlepoint approximated distribution function between
expected loss und maximum loss of a portfolio in the CR*-CBV model enhanced by
stochastic LGDs.

Step 1: Calculate z,,,, by solving K (z) = ymax With Ymax = >, V4 as the maximum
portfolio loss.

Step 2: Calculate z,,,;, by solving K%(2) = ymin, where yin = >, E(L4) as the expected
portfolio loss.

Step 3: Calculate the cumulant generating function and its derivatives for some points
t1,...,t, between z,;, and z,4, With z,;, =t < t, < ... < t,_1 < t, = Znax. Note
that the corresponding portfolio loss values y; are determined by the saddlepoint
equation: y; = Ki(#;) fori=1,...,n.

Step 4: Insert the results of step 3 and the corresponding saddlepoints into the formula
of Lugannani and Rice to determine the approximated values of the distribution
function of the portfolio loss variable X:

FX(yi) = CD(W,) + (p(‘W,)(l/WZ - l/ui) with
w; = sign(t,-) 2(1’,‘)/,' — Kx(t,‘)) and u; =t Kg(ti).

Following algorithm 1, the saddlepoint equation has to be solved two times only (steps
1 and 2) in order to receive the lower and the upper bound of the relevant saddlepoint
interval. If there is an index i € {1,...,n} with Fx(y;,.;) < a < Fx(y;), where F is the
approximated distribution function of the portfolio loss, then the following estimate of the
approximative value at risk holds: y;,_; < VaRu(X) < y;. For |y; — yi_1| — 0 the approx-
imative value at risk can be estimated with arbitrary precision. If one is interested in the
value at risk of one particular confidence level, this value can be directly determined by
solving the respective saddlepoint formula for y.

4. Including dependence between default and recovery rates/LGDs
4.1. General framework

Uncertainty of stochastic LGDs is only one aspect. There is also empirical evidence for
dependence between defaults and recovery rates, see Altman et al. (2005) or Miu and
Ozdemir (2006), for instance. One way to integrate this kind of dependence into the CR"-
CBV framework is to use again a combination of sector specific and idiosyncratic factors
similar to the default mechanism. In order to simplify the construction, we restrict ourselves to
the case where every counterparty is assigned to exactly one sector variable S, that is, for every
A € Athere exists exactly one k * (A) = 1,..., K such that wy y,(4) = 1 and wax = 0 for all
k#k x (A). For p, € [0, 1] we define a latent variable driving the LGD of counterparty A as

Ly = pyLgay +1/1 — p3Ua, (11)

where L (fork = 1,...,K) and Uy (for A € A) follow a standard normal distribution and are
independent from each other. By construction, £, again is standard normally distributed.
Here, Ly represents the sector specific and U, the idiosyncratic influence, whereas the
parameter p, controls their influence on the LGD. In order to introduce dependence between
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PD and LGD, the systematic factor Ly is defined as L := ¢~ (Fi(Sx)), where Fy denotes the
distribution function® of S; and ¢! is the quantile function of the standard normal distribu-
tion. Therefore, we now have an one-to-one dependence between L; and Si (i.e., they are
comonotone). The resulting dependence between PD and LGD is governed by the parameter
P4- In order to ensure that LGD € [0, 1], £ 4 is finally transformed into a Beta-distributed

random variable via €4 := 3, (¢(L4)), where [3’;}7 denotes the quantile function of a Beta
distribution with parameters a and b according to section 3.2.

4.2. Derivation of the loss distribution

As mentioned in section 3, independence of LGDs is necessary in order to retain an analytical
solution. Therefore, we have to utilize a Monte Carlo simulation of the CR*-CBV model in
order to derive the portfolio loss distribution if we switch from independent to dependent
LGDs. The simulation framework based on section 4.1 is given in Algorithm 2.

Algorithm 2. Monte Carlo algorithm for simulative CR*-CBV model.
Forn=1,...,N #(simulation loop)
Determine sector realizations:

Calculate 3,((") = 6kS](<n) +Y0 YI,le(n>
In case of PD-LGD dependence: L,(C") =¢! (Fk (Sg(cn)))

For all A € A #(counterparty loop)
Determine counterparty default:

n K °
kfﬁ =pa- (WAO + Zk:l WAkSk>

D" ~Pois ()\g"))

Determine loss given default if DE{’> =1:

In case of deterministic LGDs,

eﬁp = E(eq)
In case of stochastic but independent LGDs,
er)fvﬁ(am ba), with a4, by given in section 3.2.
In case of stochastic and dependent LGDs,
) ~p 1 ((/) <L‘X’)>j>, with £ according to Eq. (11)

aa,ba

X0 = 3y pl

SSince F, is unknown, we approximate F, by its empirical version Fy.
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if DIV =0

X\ =0
Determine portfolio loss:

(n) — (n)
X = ZAGAXA
Based on the realizations X, ... X(™), the portfolio loss distribution and the risk

figures can be estimated.

5. Results for the IACPM portfolio

In order to demonstrate the effects of our extensions on risk figures we now focus on a
benchmark portfolio underlying the study on “convergence of credit capital models” that
was performed by the International Association of Credit Portfolio Management (IACPM)
and International Swaps and Derivatives Association (ISDA) in 2006. The main idea was
to compare the capital measures (at the portfolio level) generated by different credit capital
models—that is, expected loss (EL) for the portfolio and the amount of economic capital
needed to support the credit risk of the portfolio at various specified confidence levels.

5.1. Portfolio description

For details on the underlying benchmark portfolio we refer to IACPM or ISDA” and to
the distributed files Portfolio Demographics.pdf and Test Portfolio for CR" and Similar
Models.xls. In detail, the US $100 billion test portfolio is comprised of two term loans to
each of 3, 000 obligors across a diverse set of industries and 7 countries dispersed along 8
whole-grade rating buckets and varying LGDs. Exposure amounts varied from 1 to 1, 250
million and tenors ranged from 6 months to 7 years. For our purpose, all tenors are set to
1 year. Moreover, we restricted ourselves to 10 GICS® sectors only and neglected the
country information. More details on the portfolio structure (risk figure in total, by rating
structure and by industry) are given in Tables 1, 2, and 3.

5.2. Specification of the sector VCV

In order to specify the sector variances and sector correlation, T = 15 yearly time
series xy;,...,x15; (for i=1,...,10 sectors) on U.S. corporate defaults from 1995 to

Table 1. Portfolio characteristics: Calculation of EL and PL as stated in section 2.

Name Value

Number of counterparties 3,000

Portfolio exposure (EAD) 100,000,000,000
Portfolio potential loss (PL) 40,552,920,000
Expected loss (EL) 605,258,124
Average PD (arithmetic mean) 0.0173

Average PD (EAD weighted) 0.0151

’See http://www.isda.org or http://www.iacpm.org.
8Global industry classification standard, see http://www.msci.com/gics.
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Table 2. Risk figures by industry sectors S.

Number Sector name Number of CP EAD PL EL

1 Energy 239 12,382,000,000 5,021,260,000 57,988,047
2 Materials 472 17,422,000,000 7,104,600,000 134,098,406
3 Industrials 614 14,186,000,000 5,927,880,000 80,364,896
4 Consumer discretionary 634 20,180,000,000 7,803,100,000 148,957,421
5 Consumer staples 222 3,835,000,000 1,578,860,000 17,808,856
6 Health care 103 1,049,000,000 406,480,000 5,358,676

7 Financials 312 14,277,000,000 5,853,480,000 47,012,264
8 Information technology 150 5,012,000,000 2,071,460,000 68,278,467
9 Telecommunication service 84 7,497,000,000 3,066,040,000 11,312,357
10 Utilities 170 4,160,000,000 1,719,760,000 34,078,735
% 3000 100,000,000,000 40,552,920,000 605,258,124

Table 3. Risk figures by rating grades R.

Rating PD Number of at CP EAD PL EL

1 0.0001 87 3,332,000,000 1,322,100,000 135,781

2 0.0002 213 6,640,000,000 2,854,340,000 587,071

3 0.0002 568 20,667,000,000 8,389,740,000 1,732,522

4 0.0018 1192 38,862,000,000 15,819,440,000 28,163,209
5 0.0127 637 20,513,000,000 8,219,760,000 104,484,723
6 0.0664 190 7,259,000,000 2,844,360,000 188,851,104
7 0.2550 113 2,727,000,000 1,103,180,000 281,303,715
% 3,000 100,000,000,000 40,552,920,000 605,258,124

2009 (from Standard & Poor’s Credit Pro) have been used. Let x; denote the average
(observed) default rate for sector i; then the classical estimators are given by

T T 2 & ~ ~
ry - () LS (a0 %) (5~ %)
3.2 __t=1 t=1 i _ st=1
i T(T — 1)x? J

b
T T ? T T :
T Z x2— Z Xt T Z xtz_jf Z Xej
=1 =1 =1 =1
TT=1) T(T-1)

with estimation results given in Tables 4 and 5. We observe sector variances above average
for the sectors energy and utilities. Above that, empirical correlations are—with one
exception—positive.

5.3. Results on risk figures: Stochastic LGDs

Finally, based on the ITACPM benchmark portfolio, we calculate the value at risk (VaR
as the quantile of the loss distribution) of the portfolio loss for different confidence

Table 4. Estimated sector variances.

Number Sector name o7

1 Energy 2.0769
2 Materials 0.9047
3 Industrials 1.0270
4 Consumer discretionary 0.9692
5 Consumer staples 0.8019
6 Health care 1.2077
7 Financials 1.1302
8 Information technology 1.2681
9 Telecommunication services 1.6537
10 Utilities 2.5277
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Table 5. Empirical sector correlation matrix.

S 1 2 3 4 5 6 7 8 9 10

1 1.0000 04194 03902 05235  0.1655 04348 03972 02061 02205  0.2023
2 1.0000 09141 09029 05665 02629 05809 05980 05681  0.6453
3 1.0000 08166 07065 03674 03916 07585 05831 06146
4 10000 05278 02123 07658 04005 02654  0.3604
5 10000 06334 03733 07510 03725 02218
6 10000 01247 06268 02619  0.1113
7 1.0000 00870 00359  -0.0211
8 10000 07379  0.5889
9 10000  0.8497
10 1.0000

Table 6. Quantiles of the loss distribution with deterministic LGDs computed by saddlepoint approx-
imation relative to the standard CR* model and the corresponding relative deviation (RD) between CR*-
CBV/standard CR™ model and saddlepoint approximation.

L VaR90 RD VaR95 RD VaR95 RD VaR99.95 RD

Standard CR* 1.000 0.07% 1.000 0.08% 1.000 0.09% 1.000 0.11%
CR*-CBV(1) 1177 1.16% 1.340 0.12% 1.654 0.52% 2.065 0.64%
CR*-CBV(2) 1.199 0.53% 1.349 0.17% 1.625 0.03% 1.978 0.14%
CR*-CBV(5) 1.148 2.95% 1316 2.04% 1.654 0.65% 2.109 0.15%

levels, applying the approach discussed in section 3. The results are presented in
Table 6. With respect to high quantiles, CR"-CBV models put more probability mass
in the tail area (see, e.g., Fischer and Dietz 2011/2012) compared to a standard CR"
setting. In addition, in order to quantify the effects of the sector correlation on the risk
figures, we also calculated the corresponding quantiles of the CR"™-CBV model with co-
monotone sectors within the Monte Carlo framework (abbreviation: CR*-MAX): The
results are very close to those of CR*-CBV(5): VaR90 = 1.211, VaR95 = 1.364, VaR99 =
1.855, and VaR99.95 = 2.598.

Next, we compare the results of the nested evaluation by Haaf et al. (2004) with the
saddlepoint approximation of the distribution function. For this purpose, we choose the
Lugannani-Rice formula to approximate the value at risk of the portfolio loss. This choice
is suitable here because of the low skewness of the portfolio loss distribution in the

3
particular models: The third standardized moment E{();D](E}[g]) } attains the value 1.09

in the standard CR* model. In the CR*-CBV model the values of the third standardized
moment are higher than in the standard CR" setting, but remain smaller than 3 in the
observed cases. As our focus is on extraordinary credit risk, we will look at some quantiles
in the tail area. In order to quantify the accuracy of the approximation we use the relative
deviation, which we define by N
B |[VaR — VaR|

B VaR '

where VaR is the exact value at risk calculated by nested evaluation and VaR is the
approximated value at risk calculated by the Lugannani-Rice formula.

In the next step we integrate stochastic LGDs into our model and compare the results
with them above. The Beta distribution is chosen for the distribution of LGDs because of
its support on [0, 1] and sufficient flexibility (see also discussion in section 3.2).

RD:
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Table 7. Quantiles of the loss distribution with deterministic and stochastic LGDs relative to the case of
deterministic LGDs.

L VaR90 VaR95 VaR99 VaR99.9 VaR99.95 VaR99.99
Standard scenario: oygy

Standard CR* 1.090 1.119 1.162 1.196 1.204 1.217
CR*-CBV(1) 1.045 1.049 1.052 1.055 1.055 1.056
CR*-CBV(2) 1.044 1.050 1.056 1.059 1.060 1.062
CR*-CBV(5) 1.046 1.050 1.053 1.057 1.057 1.059
CR*-MAX 1.058 1.055 1.053 1.072 1.074 1.086
Scenario B: 0y,

Standard CR* 1.024 1.033 1.046 1.056 1.059 1.063
CR*-CBV(1) 1.012 1.013 1.013 1.014 1.014 1.014
CR*-CBV(2) 1.011 1.013 1.014 1.015 1.015 1.016
CR*-CBV(5) 1.012 1.013 1.014 1.015 1.015 1.015
CR*-MAX 1.015 1.014 1.016 1.018 1.017 1.021
Scenario C: Glow, Mjgy

Standard CR" 1.089 1.125 1.181 1.227 1.237 1.256
CR*-CBV(1) 1.046 1.051 1.055 1.058 1.058 1.059
CR*-CBV(2) 1.044 1.051 1.059 1.063 1.064 1.065
CR*-CBV(5) 1.047 1.052 1.056 1.060 1.061 1.062
CR*-MAX 1.052 1.056 1.057 1.069 1.077 1.078

In Table 7 the significant influence of stochastic LGDs on the risk figures is discernible.
The real data LGD volatilities of the ITACPM portfolio are denoted as (ahigh). In order to
compare the effects of LGD volatilities, Table 7 also contains the results for halved real
data LGD volatilities 05, = 0.5 - 0pg; (Scenario B) and, in addition, for the halved LGD
mean, that is, simulating higher collateralization quota (Scenario C). In addition, we again
calculated the figures for the co-monotone dependence structure in order to check
whether the results are depending primarily on the chosen sector VCV. Our results
indicate that this is not the case.

There are four main effects that can be recognized from Table 7:

At first, the increase of value at risk depends on the correlation structure used in the
model: The relative markup for (independent) stochastic LGDs, which can be understood
as some sort of idiosyncratic risk, is higher if there is no sector dependence compared to
the case if there is a positive dependence.

This is reasonable because higher systematic risk like in the case of the CR*-CBV model
leads to higher risk figures (even without stochastic LGD) and consequently to a higher
value at risk in the preceding calculations (in comparison to the standard CR" model) if
PD and LGD are independent.

A second observation is related to the quantile level. In our setup the impact of
stochastic LGDs is larger for the higher quantile level. This, however, is not a general
rule. The relative markups on different quantiles due to stochastic LGDs depend strongly
on portfolio structure and absolute value at risk figures in relation to exposure values and
LGD parameters (mean and standard deviation).

The third effect arises from the standard deviation of LGDs. As can be seen in Table 7,
a doubling of the standard deviation leads to a substantial increase of value at risk (in our
setup the markup rises nearly by factor 4).

Finally, Scenario C indicates that the relative markups on different quantiles due to
stochastic LGDs increases when the collateralization quota increases.
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Thus, severity risk should not be neglected in CR" because otherwise credit risk will be
underestimated.

5.4. Results on risk figures: PD-LGD dependence

In a first step, we show that the risk figures of the simulation model (based on 5 million
repetitions) correspond to those of the analytical one. In this way, we can prove that the
simulation framework works well and that simulation errors are not substantial. Secondly,
we illustrate how the dependence between PD and LGD affects the risk figures.

Table 8 shows the value at risk for two loss levels of the analytical frameworks (i.e.,
CR"-CBV(5) model and saddlepoint approximation) and the simulation models as multi-
ples of the CR*-CBV(5) model. As one can see, the risk figures of the simulation model
equals those of the CR™-CBV(5) model in case of deterministic LGDs with a level of
precision of three decimal places. Repeating the simulation again 10 times always gives us
nearly the same results with a maximum deviation below 0.05%. Therefore, we can state
that simulation errors are not substantial. Regarding the saddlepoint approximation we
can state that the deviation to the ordinary CR*-CBV model is clearly below 1%. Although
precision of Monte Carlo simulation is higher compared to the saddlepoint approxima-
tion, the runtime of saddlepoint approximation is lower, on the other hand.

Finally, we analyze how the dependence between PD and LGD affects the loss distribu-
tion. Table 9 shows two quantiles of loss distributions of the CR*™-CBV(5) model, the
simulation model with stochastic but independent LGDs, and the model with PD-LGD
dependence for two different values of p as well as the expected loss. In contrast to the
model with stochastic but independent LGDs, the expected loss increases by 7% (21%) if
PD and LGD depend on each other. Similarly, the value at risk increases by 24% up to
79% depending on the loss level (higher levels increase faster) and the degree of depen-
dence. The risk figures show that the dependence between risk parameters is a clearly
higher source of risk compared to their purely random behavior.

The increase of risk figures is also illustrated in Figure 1, where the upper tail of the loss
distributions in case of deterministic, stochastic, and dependent LGDs is illustrated. The

Table 8. Quantiles of analytical CR*-CBV model (deterministic and stochastic LGDs with saddlepoint
approximation, SA) and Monte Carlo simulation (MCS) framework relative to the CR*-CBV(5) model.

LGD Deterministic Olow Ohigh

model CR*-CBV(5) SA MCS SA MCS SA MCS
VaR99 1 0.994 1.000 1.007 1.019 1.046 1.072
VaR99.95 1 1.002 1.000 1.016 1.031 1.059 1.102

Table 9. Risk figures within simulation model with PD-LGD dependence relative to deterministic model
(i.e. CR™-CBV(5) and CR™-MAX model).

CR*-CBV(5) CR*-MAX

0=0 0=0.1 0=0.3 0=0.3
g=0 Ohigh Ohigh Ohigh Ohigh
EL 1 1 1.070 1.214 1.214
VaR99 1 1.072 1.242 1.600 1.610
VaR99.95 1 1.101 1.330 1.792 1.840
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Figure 1. Upper tail of loss distributions of models with deterministic LGDs, stochastic LGDs (ahigh),
and PD-LGD dependence with parameter p € {0.1,0.3}. The horizontal axis denotes the CDF level in
case of deterministic LGDs. The vertical lines indicate the value at risk on level 0.99 and 0.9995.

horizontal axis denotes the level of the cumulative distribution function (CDF) in case of
deterministic LGDs, whereas the vertical lines indicate the value at risk on different loss
levels, clearly demonstrating how the risk increases along with dependence. For example,
the value at risk on level 0.99 in case of dependent LGDs with p, = 0.3 roughly
corresponds to the value at risk in the deterministic model on level 0.999, whereas the
0.9995 value at risk of the dependent LGD model is around the 0.999996 loss level in the
deterministic case, implying that losses above that level are approximately 120 times more
probable in the framework with PD-LGD dependence compared to the deterministic case.
In the case of co-monotone sectors, the effect is even higher.

6. Summary

The main focus of this contribution is to extend the CR*-CBV framework of Fischer and
Dietz (2011/2012) to stochastic recovery rates, on the one hand, and to dependence
between default rates and recovery rates, on the other hand. Adopting the original
proposal of Gordy (2004) for the standard CR" setting, the integration of stochastic
recovery rates can be implemented within an analytic framework using the theory of
saddlepoint approximation. In contrast, integrating dependence between default rates and
recovery rates has to be done within a Monte Carlo setting, which we introduced in the
second part of the article. For a well-known benchmark portfolio, the empirical results
illustrate that PD-LGD dependence might increase the risk figures significantly (in parti-
cular compared to the increases that might arise from stochastic LGDs or modifications in
the underlying sector correlation structure). However, a reliable estimation of the
unknown parameters that govern the dependence between PD and LGD is still a crucial
issue.
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