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ABSTRACT
In this article we consider the problem of estimating location and scale
parameters of the Maxwell distribution from both frequentist and
Bayesian points of view. Additionally, some properties of the distribution,
namely, stochastic ordering, Rényi and Shannon entropies, and order
statistics, are derived. Behavior of the estimators from different frequen-
tist approaches, namely, maximum likelihood, method ofmoments, least
square’s, and weighted least square as well as Bayes estimators of para-
meters, is compared with respect to bias, mean squared errors, and the
coverage percentage extracted from bootstrap confidence intervals. The
existence and uniqueness of the maximum likelihood estimators are also
discussed. The Bayes estimators and the associated credible intervals are
obtained using importance sampling technique under squared error loss
function. A gamma prior is used for the scale parameter and a uniform
prior for the location parameter. An examplewith flood-level data is used
to illustrate applicability of procedures discussed.
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1. Introduction

Maxwell (1867) derived a mathematical formulation in three-dimensional space to describe
the distributions of speeds of molecules in thermal equilibrium and it came to be known as
the Maxwell distribution. Not all molecules move at the same speed and a few molecules
move at faster speeds, resulting in a leptokurtic distribution, that is, unimodal with a longer
right tail. A major characteristic of the Maxwell distribution is that it has a smooth
increasing failure rate, because of which it is useful in those life-testing and reliability studies
in which the assumption of constant failure rate, such as in the case of exponential
distribution, is not realistic.

In the statistics literature, we come across hundreds of continuous univariate distributions
(see Johnson et al. 1994). Several distributions have been extensively used over the past
decades for modeling data in varied fields such as engineering, actuarial, environmental,
and medical sciences, biological studies, demography, economics, finance, and insurance.
However, in several situations with lifetime, rainfall, flood, or earthquake data, the popular
distributions do not fit well to data (see Kumaraswamy 1976; 1978) or the estimation of
distribution parameters is not tractable (see Chattopadhyay et al. 2014). In such situations,
other not-as-popular distributions might provide a better fit and/or have a smaller number of
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parameters to be estimated. The Maxwell distribution, which plays an important role in
physics, reliability analysis, and other applied sciences, provides an alternative option to be
used in such cases and needs to be studied further.

Typically, the Maxwell distribution has been described using only one parameter, a
scale parameter, which limits its applicability in practice (see Feller 1971). Using various
techniques, it is possible to introduce additional parameters and expand the family of
distributions for added flexibility (see Gupta and Kundu 1999; Adamidis et al. 2005; Kus
2007; Barreto-Souza et al. 2011; Ristic and Balakrishnan 2012). In this study, we are
interested in expanding the Maxwell to a two-parameter distribution by incorporating a
location parameter and then developing point and interval estimators for both location
and scale parameters.

Tyagi and Bhattacharya (1989a; 1989b) for the first time considered one parameter (scale)
Maxwell distribution as a model for the distribution of lifetimes. They obtained the mini-
mum variance unbiased and the Bayes estimators of the scale parameter, and the reliability
function of this distribution. Chaturvedi and Rani (1998) generalized the Maxwell distribu-
tion through some transformation on a gamma distributed random variable. They also
obtained the classical and Bayes estimators of the parameters. Howlader and Hossain (1998)
derived the highest posterior density (HPD) intervals for the unknown scale parameter, as
well as for a future observation considering an asymptotically locally invariant prior
proposed by Hartigan (1964). Podder and Roy (2003) estimated the parameter of this
distribution under the Modified Linear Exponential Loss Function (MLINEX). Bekker
and Roux (2005) studied the maximum likelihood estimator (MLE), as well as the Bayes
estimators of the truncated first moment and hazard function of the Maxwell distribution.
Krishna and Malik (2009) obtained the MLE and the Bayes estimators of the reliability
characteristics under a type II censoring scheme. Dey and Maiti (2010) considered one-
parameter Maxwell distribution with a scale parameter and obtained Bayes estimators using
noninformative and conjugate priors under symmetric as well as asymmetric loss functions,
namely, the quadratic loss function, squared-log error loss function, and modified linear
exponential loss function. Performances of all these estimators were compared on the basis
of their estimated risk. Krishna and Malik (2012) compared the MLE and the Bayes
estimators of the scale parameter and the reliability function under a progressive type II
censoring scheme. Recently, Dey et al. (2013) studied the one-parameter Maxwell
distribution under different loss functions, namely, the squared error loss function and
precautionary loss function, and compared the performances of these estimators. They also
obtained predictive density and HPD prediction interval for a future observation.

Let X follow a two-parameter Maxwell distribution, M(θ, μ); then the probability
density function (PDF) of X is

f ðx; θ; μÞ ¼ 4ffiffiffi
π

p θ
3
2 x � μð Þ2; x > μ; θ > 0 (1)

where θ and μ are the scale and the location parameters, respectively. The corresponding
cumulative distribution function (CDF) is

Fðx; θ; μÞ ¼ 2ffiffiffi
π

p Γð3=2; θ x� μð Þ2Þ; x > μ: (2)

292 S. DEY ET AL.



The objective of this study is to describe some parametric estimation methods for the
two-parameter Maxwell distribution and to identify the most efficient estimators. Some
useful structural properties of the Maxwell distribution, specifically, stochastic ordering,
entropies, and order statistics, are described in the appendix.

Frequentist methods, also referred to as traditional methods, such as the maximum like-
lihood estimator (MLE) and the method of moments (ME) estimator, and less commonly
used techniques such as the least-square estimator (LSE) and weighted least-square estimator
(WLSE) are presented in this article. The performance of each of these methods is studied
using simulations for different sample sizes and compared in terms of their resulting biases,
mean squared errors (MSE), and the coverage percentage of 95% bootstrap confidence
intervals. The Bayes estimators are obtained using importance sampling technique under
squared error loss function and compared with frequentist estimators. Different estimation
methods appeal differently to their users. With computational advances, the need to have an
estimator with closed form has decreased substantially. Thus, a user may prefer to employ the
uniformly minimum variance estimation method although the estimator does not have a
closed-form expression.

Different estimation methods were compared for the generalized Rayleigh distribution
by Kundu and Raqab (2005); for the generalized logistic distribution by Alkasasbeh
and Raqab (2009); for the Weibull distribution by Teimouri et al. (2013); and for a two-
parameter Rayleigh distribution by Dey et al. (2014). To our knowledge, so far no attempt
has been made to study statistical properties of a two-parameter Maxwell distribution and
to compare different estimation methods for it.

The rest of the article is organized as follows: section 2 describes the maximum like-
lihood, the method of moment, the least square, and the weighted least square estimators.
The Bayes estimators are presented in section 3. Section 4 introduces both frequentist and
Bayesian interval estimation for the parameters of the Maxwell distribution. In section 5, the
performance of several estimation procedures based on coverage percentages of bootstrap
confidence intervals using frequentist and Bayesian approaches is provided. The methodol-
ogy developed in this article and the usefulness of the two-parameter Maxwell distribution
are illustrated by using flood-level data. Some concluding remarks are provided in section 6,
and results about three theoretical properties of a two-parameter Maxwell distribution
are given in the appendix.

2. Maxwell parameter estimation using frequentist approaches

Here we describe how to obtain the maximum likelihood (MLE), method of moments
(ME), ordinary least square (LSE), and the weighted least squares (WLSE) estimators of
the parameters θ and μ using a random sample of size n from M(θ, μ) population.

2.1. Maximum likelihood estimation

When both θ and μ are unknown, the log-likelihood function for the Maxwell distribution is

log L θ; μ;ð Þ ¼ 3n
2
log θþ 2

Xn
i¼1

log xi � μð Þ � θ
Xn
i¼1

xi � μð Þ2þC (3)
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where C is an additive constant. The normal equations to estimate unknown parameters θ
and μ are

@ log L
@θ

¼ 3n
2θ

�
Xn
i¼1

ðxi � μÞ2 ¼ 0 (4)

and

@ log L
@μ

¼ �
Xn
i¼1

2
ðxi � μÞ þ 2θ

Xn
i¼1

ðxi � μÞ ¼ 0: (5)

As the closed-form solution for θ and μ from Eqs. (4) and (5) is not possible, use of
iterative methods to find the numerical solutions is recommended to obtain the MLEs of θ
and μ. The existence of unique MLEs of parameters is shown in Theorem 2.1.1.

Theorem 2.1.1. The unique MLEs of θ and μ exist for ðμ; θÞ 2 ½0; xð1ÞÞ � ð0;1Þ:

Proof. First we show the existence of MLEs of θ and μ, and then their uniqueness. Let Ω ¼
ð0;1Þ � ð�1; xð1ÞÞ and Ω1 ¼ ð0;1Þ � ½0; xð1ÞÞ: Over the domain of the log-likelihood
function ð0;1Þ� ½0; xð1ÞÞ; both second derivatives of the log-likelihood function are nega-
tive. Hence for a fixed θ ðor μÞ; log Lðθ; μÞ is a strictly concave function of μ (or θ). Now,

● For a fixed θ; lim
μ!�1

log Lðθ; μÞ ¼ �1 and lim
μ!x1

log Lðθ; μÞ ¼ �1.

● For a fixed μ, lim
θ!0

log Lðθ; μÞ ¼ �1: and lim
θ!1

log Lðθ; μÞ ¼ �1:

Therefore, for a fixed θ ðor μÞ; log Lðθ; μÞ is a unimodal function with respect to μ (or θ). For
ðθ0; μ0Þ 2 Ω consider a set

A ¼ ðθ; μÞ : ðθ; μÞ 2 Ω; log Lðθ; μÞ � log Lðθ0; μ0Þ
� �

:

Then A is a closed, bounded set, and hence compact. Since log Lðθ; μÞ is a continuous
function of (θ, μ), it has a maximum at some point in A, say (θ1, μ1). In the case μ1 � 0;
for any ðθ; μÞ 2 Ω; note that

log L θ1; μ1
� �

> log L θ; μ1
� �

> log L θ; μð Þ:

Hence θ1; μ1
� �

is the unique MLE of θ; μð Þ. Also for μ1<0, and any θ; μð Þ 2 Ω1,

log L θ1; μ1
� �

> log L θ1; 0ð Þ > log L θ1; μð Þ > log L θ; μð Þ:

Hence, θ1; 0ð Þ is the MLE of θ; μð Þ and it is unique.

2.2. Moment estimators

The MEs of θ and μ, namely, θ̂ME and μ̂ME, respectively, are obtained as

μ̂ME ¼ �X � θ̂�1=2
me

2
Γ 1=2ð Þ (6)
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and

θ̂ME ¼ 1
S2

� �
3
2
� 4

Γ 1=2ð Þð Þ2
" #

(7)

by solving

�X ¼ μþ 1ffiffiffi
θ

p 2
Γ 1=2ð Þ and S2 ¼ 1

θ

3
2
� 4

Γ 1=2ð Þð Þ2
" #

where

S2 ¼ n� 1ð Þ�1
Xn

i¼1
xi � �xð Þ2

2.3. Least squares estimators

The least square estimators of the unknown location and scale parameters of the Maxwell
distribution can be obtained by following the method used by Swain et al. (1988) to
estimate the parameters of beta distribution. Let G X jð Þ

� �
denotes the distribution function

of the ordered random variable X jð Þ. It is well known that

E G X jð Þ
� �	 
 ¼ j

nþ 1ð Þ and V G X jð Þ
� �	 
 ¼ j n� jþ 1ð Þ

nþ 1ð Þ2 nþ 2ð Þ
if X1;X2; . . . ;Xn is a random sample of size n from a distribution function G �ð Þ. Then the
LSEs of θ and μ are obtained by minimizing

Xn
j¼1

G XðjÞ
� �� j

nþ 1

� �2

with respect to unknown parameters θ and μ. Thus, the LSEs of θ and μ, say, θ̂LSE and μ̂LSE,
respectively, can be obtained by minimizing

Xn
j¼1

1� 2ffiffiffi
π

p Γ
3
2
; θ xðjÞ � μ
� �2� �
 �

� j
nþ 1

� �2
(8)

with respect to θ and μ.

2.4. Weighted least squares estimators

The WLSEs of θ and μ, say, θ̂WLSE and μ̂WLSE, respectively, can be obtained by minimizing

Xn
j¼1

wj G XðjÞ
� �� j

nþ 1

� �2
(9)

with respect to θ and μ. The weights used in WLSEs are wj ¼ V G XðjÞ
� �� �	 
�1

.
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3. Bayes estimation of Maxwell parameters

Consider the squared error loss function (SELF) to estimate the unknown parameters θ and
μ of theMaxwellM θ; μð Þ distribution. Note that estimators using other loss functions can be
obtained similarly. If all the parameters of the model are unknown, a joint conjugate prior
for the parameters does not exist. Thus, we consider piecewise independent priors. Note that
for a known μ, θ has a conjugate gamma prior as follows:

g1 θð Þ / θa�1e�bθ; θ > 0; a; b > 0: (10)

For μ, we consider a nonproper uniform prior as follows:

g2 θμð Þ / dμ; 0 < θμ < 1:

The joint posterior distribution of θ and μ, after some simplification, is obtained as
follows:

π θ; μjDatað Þ ¼
θ
3n
2þa�1Qn

i¼1
xi � θμð Þ2e�θ bþ

Pn

i¼1
xi�μð Þ2ð Þ

ð1
0

ðxð1Þ
0

θ
3n
2þa�1Qn

i¼1
xi � μð Þ2e�θ bþ

Pn

i¼1
xi�μð Þ2ð Þdμdθ

(11)

Therefore, the Bayes estimator of some function of θ and μ, say ζ θ; μð Þ, under SELF,
should be the posterior mean

ζ̂ θ; μjDatað Þ ¼

ð1
0

ðxð1Þ
0

ζ θ; μð Þθ3n
2þa�1Qn

i¼1
xi � μð Þ2e�θ bþ

Pn

i¼1
xi�μð Þ2ð Þdμdθð1

0

ðxð1Þ
0

θ
3n
2þa�1Qn

i¼1
xi � μð Þ2e�θ bþ

Pn

i¼1
xi�μð Þ2ð Þdμdθ

; (12)

provided it is finite.
The estimators are in the form of a ratio of two integrals for which closed-form solutions

are unavailable. Therefore, one may apply Lindley’s approximation (obtained using some
adjustment to the MLE) to derive the Bayes estimator. Even though it is achievable, the
associated credible interval is unattainable. Thus, we propose the importance sampling
method to obtain the Bayes estimates and associated credible intervals. Chen and Shao
(1999), and Kundu and Pradhan (2009) have shown that by proper importance sampling
method, a simulation consistent Bayes estimator and the associated credible interval can be
constructed. To implement the importance sampling procedure, using

k ¼ 3n
2
þ a� 1

� �
nx21ð Þ � 2xð1Þ

Xn
i¼1

xi þ bþ
Xn
i¼1

x2i

 !3n
2þa�1

;

we rewrite Eq. (11) as

π θ; μj jDatað Þ ¼ f1 θ μ;Datajð Þf2 μ Datajð Þh μð Þð1
0

ðx 1ð Þ

0
θ μ;Datajð Þf2 μ Datajð Þh μð Þdμdθ

; (13)
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where

f1 θ μ;j Datað Þ ¼ bþPn
i¼1 x1 � μð Þ2� �3n

2þa

Γ 3n
2 þ a
� � θ

3n
2
þ a� 1e

� θ bþ
Xn

i¼1
xi � μð Þ2

� �
; θ > 0; (14)

f2 μ Datajð Þ ¼ k 2
Pn

i¼1 xi � nμ
� �

nμ2 � 2μ
Pn

i¼1 xi þ bþPn
i¼1 x

2
i

� �3n
2þa

; 0 < μ < x 1ð Þ (15)

and

h μð Þ ¼
Qn

i¼1 xi � μð Þ2� ��
2
Pn

i¼1 xi � nμ
� �� �

for μ < x 1ð Þ
0 for μ � x 1ð Þ :



(16)

Note that f1 θ μ;Datajð Þ is a gamma density function with shape parameter (3n/2) + a and

scale parameter bþPn
i¼1 xi � μð Þ2, respectively. Also, for μ<x 1ð Þ, f2 μ Datajð Þ is a proper

density function with an easily invertible distribution function, namely,

F2 μ Datajð Þ ¼
nx21ð Þ � 2x 1ð Þ

Pn
i¼1 xi þ bþPn

i¼1 x
2
i

� �3n
2þa�1

nμ2 � 2μ
Pn

i¼1 xi þ bþPn
i¼1 x

2
i

� �3n
2þa�1

: (17)

A simple procedure can be used to generate a random sample from Eq. (17) based on the
samples x1; x2; . . . ; xn from M μ; θð Þ as follows. Generate a random variate u from a
uniform (0, 1) distribution. If we let

y ¼ A� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � Bn

p

n
;

where

A ¼
Xn
i¼1

xi; B ¼
Xn
i¼1

x2i þ b� C;

and

C ¼
nx21ð Þ � 2x 1ð Þ

Pn
i¼1 xi þ bþPn

i¼1 x
2
i

� �
u1=

3n
2þa�1ð Þ ;

then y is a random variate generated from Eq. (17).
The following procedure is proposed to compute the Bayes estimator of ζ θ; μð Þ:

● Step 1: Generate μ from f2 μ Datajð Þ using Eq. (17).
● Step 2: Generate θ μj from gamma 3n=2þ a; bþPn

i¼1 xi � μð Þ2� �
.

● Step 3: Repeat steps 1–2 N times to obtain θ1; μ1
� �

; � � � ; θN ; μN
� �

.
● Step 4: Then a simulation consistent estimator of Eq. (12) can be obtained as
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PN
i¼1 ζ θi; μi

� �
h μi
� �

PN
i¼1 h μi

� � : (18)

4. Interval estimators for Maxwell parameters

Previously we have proposed several point estimation procedures for the parameters of the
Maxwell distribution, and here we describe the interval estimation procedures.

4.1. A large-sample frequentist approach to interval estimation

As shown earlier, the MLE of the vector of unknown parameters η ¼ θ; μð Þ cannot be
derived in closed form. As it is taxing to derive the exact distributions of the MLEs, the
interval estimators are not easy to obtain. However, a large-sample approximation to the
probability bounds for Maxwell parameters can be obtained. It is known from Lawless
(1982) that the asymptotic distribution of the MLE of η, that is, η̂, is

η̂� ηÞ ! N2 0; I�1 ηð Þ� �
;

�
where I�1 ηð Þ is the inverse of the observed information matrix of the unknown para-
meters η ¼ θ; μð Þ. Therefore,

var θ̂
� �

cov θ̂; μ̂
� �

cov μ̂; θ̂
� �

var μ̂ð Þ

2
64

3
75 ¼ I�1 ηð Þ ¼

� @2 log L
@θ2

� @2 log L
@θ@μ

� @2 log L
@μ@θ � @2 log L

@μ2

2
4

3
5
�1
�������
θ;μð Þ¼ θ̂;μ̂ð Þ

¼ 3n
.
2θ̂2 �2

Pn
i¼1 xi � μ̂ð Þ

�2
Pn

i¼1 xi � μ̂ð Þ 2nθ̂þPn
i¼1 2

�
xi � μ̂ð Þ2� �

2
4

3
5
�1

(19)

Then the approximate 100 1� αð Þ% confidence intervals for the parameters θ and μ,
respectively, are given by

θ̂�zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var θ̂
� �r

and μ̂�zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var μ̂ð Þ

p
where zα=2 is the upper α=2-th percentile of the standard normal distribution.

4.2. Bayes approach to interval estimation

The HPD credible interval of ζ θ; μð Þ using the importance sampling procedure can be
constructed as follows. Suppose ζρ is such that P ζ � ζp Dataj� � ¼ p, for 0 < p < 1. In other
words, ζρ is the estimated pth quantile using a frequentist approach. Consider the function

g θ; μð Þ ¼ 1 if ζ � ζp
0 if ζ > ζp:



(20)
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such that E g θ; μð Þ Datajð Þ ¼ p. To obtain a simulation-consistent Bayes estimate of ζρ under
SELF from the generated sample θ1; μ1

� �
; � � � ; θN ; μN

� �� �
, let weights be

w1 ¼
h μi
� �

PN
i¼1 h μi

� � ;
and ζ i ¼ ζ θi; μi

� �
for i ¼ 1; 2; . . . ;N. Order pairs ζ i;wið Þ, i ¼ 1; 2; . . . ;N with respect to

values of ζ to give ζ 1ð Þ;w 1½ �
� �

; � � � ; ζ Nð Þ;w N½ �
� �� �

. That is, ζ 1ð Þ<ζ 2ð Þ< � � �<ζ Nð Þ, and w i½ � is
the weight associated with the ith ordered value of ζ, namely, ζ ið Þ. It is worth mentioning
that these weights do not play any role in ordering of pairs ζ i;wið Þ. Then a simulation-

consistent Bayes estimate of ζp can be obtained as ζ̂p ¼ ζ Npð Þ, where
XNp

i¼1

w i½ � � p<
XNpþ1

i¼1

w i½ �:

A 100 1� αð Þ% credible interval for ζ can be obtained as ζ̂δ; ζ̂δþ1�α

� �
where

δ ¼ w 1½ �;w 1½ � þ w 2½ �; � � � ;
XN1�α

i¼1

w i½ �:

Therefore, a 100 1� αð Þ% HPD credible interval of ζ is given by ζ̂δ	; ζ̂δ	þ1�α

� �
, where δ	

is that value of δ for which the following inequality holds for all values of δ:

ζ̂δ	þ1�α � ζ̂δ	
� �

� ζ̂δþ1�α � ζ̂δ
� �

:

5. A comparison of different estimators

Here we compare the effectiveness of different estimation methods discussed earlier for
Maxwell parameters. In these comparisons, bias and the mean squared errors are used as
measures of effectiveness of the estimation method. A simulation study was designed for
this purpose. All computations were performed using Intel Core 2 Quad Processor and all
programs were coded in R software.

Two different priors were used to compare the Bayes estimates: (i) a close to a
noninformative prior (Prior 0) with a ¼ b ¼ 0:001, where small values close to zero
were used for a and b so that the posterior always becomes integrable, and (ii) an
informative prior (Prior 1) with a ¼ 2 and b ¼ 1. We considered two conditions: (1)
θ ¼ 1, μ ¼ 0, and (2) θ ¼ 1, μ ¼ 1. In total, 10,000 independent random samples, of sizes
n = 10, 20, 40, 60, and 100, were obtained using the procedure described in section 3. Six
different estimates of θ and μ were computed from each sample, namely, MLE, ME, LSE,
WLSE, BAYES1, and BAYES2. Here BAYES1 refers to the Bayes estimate using the
noninformative prior and BAYES2 refers to the Bayes estimate using the informative

prior. The bias, that is, E θ̂
� �

� θ
� �

, and MSE were computed for six different estimators

for θ and μ using samples of five different sizes. The bootstrap confidence intervals based
on percentiles (Efron 1982) were also computed using the following algorithm:
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(1) From the sample x1; x2; . . . ; xn, compute the estimators θ̂ and μ̂.
(2) Generate a bootstrap sample x	1; x

	
2; . . . ; x

	
n, using θ̂ and μ̂ as parameters.

(3) Compute the estimators θ̂	1 and μ̂	1 based on the bootstrap sample.
(4) Repeat steps 2 and 3 N times, and compute θ̂	i and μ̂	i for i ¼ 1; 2; . . . ;N.
(5) Arrange θ̂	i in ascending order and obtain θU and θL the upper and the lower limits,

respectively, of a 100 1� γð Þ% bootstrap confidence interval for θ, using (γ/2)-th

and 1� γ=2ð Þ-th percentiles of ordered values of θ̂	i .
(6) Arrange μ̂	i in ascending order and obtain μU and μL the upper and the lower limits,

respectively, of a 100 1� γð Þ% bootstrap confidence interval for μ, using (γ/2)-th
and 1� γ=2ð Þ-th percentiles of ordered values of μ̂	i .

The Bayes estimates in each run are computed based on 10,000 importance samples.
Performance of different estimators was compared using bias, MSE, and the coverage

percentage of bootstrap confidence intervals. For parameters θ and μ, respectively, Figures
1 and 3 provide comparison of distributions of bias and MSE for six different estimators
studied using samples of size 10, 20, 40, 60, and 100. Similarly, Figures 2 and 4 provide
information about the effect of sample size on bias and MSE for θ and μ, respectively. The
coverage percentages of bootstrap confidence intervals for θ and μ using samples of size
10, 20, 40, 60, and 100 for these six methods are summarized in Figures 5 and 6.

From Figure 1 and Figure 3, comparison of performance of different estimators leads
to the conclusion that overall LSE resulted in lower bias for θ, whereas ME and WLSE
methods resulted in lower bias for μ, compared to the remaining methods studied here.
All estimators of θ are biased and mostly right-skewed, but their bias distributions have
different spreads. On the other hand, the distributions of MSE of θ seem to have fairly
similar spreads in almost all cases. Overall, LSE and WLSE resulted in slightly less
biased estimates of θ but with slightly higher MSE than the other estimators. All

(a) Bias (b) MSE

Figure 1. Comparison of distributions of (a) average bias and (b) MSE for the estimates of θ using
different estimation methods for θ = 1 and μ = 0 and 1.
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estimators of μ are also biased but with different patterns; some tend to overestimate
while the others tend to underestimate μ. The shapes and spreads of distributions of
MSE(μ) are also different from estimator to estimator, as well as between two different
values of μ studied. Overall, ME and WLSE resulted in lowest amount of bias among
six estimators studied, but they do not necessarily have the lowest MSE. The Bayes
estimators for both θ and μ resulted in slightly larger bias than other estimators except
for MLE.

(a) Bias (b) MSE

Figure 2. Comparison of (a) average bias and (b) MSE for the estimates of θ using different estimation
methods as a function of sample sizes (n = 10, 20, 40, 60, and 100) considered in the simulation study
for θ = 1 and μ = 0 and 1.

(a) Bias (b) MSE

Figure 3. Comparison of distributions of (a) average bias and (b) MSE for the estimates of using
different estimation methods for θ = 1 and μ = 0 and 1 for the sample sizes considered in the
simulation study.
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Although Bayes estimates and MLE have similar distributions, the MLE has larger MSE.
The performance of the Bayes estimator with informative and noninformative priors is
almost similar.

Figures 2 and 4 show that all estimators of θ and μ are biased for small sample sizes
with fairly large MSE. However, for the configurations studied, both bias and MSE
approach zero rapidly as sample size increases. By sample size 40, estimators of θ are

(a) Bias (b) MSE

Figure 4. Comparison of (a) average bias and (b) MSE for the estimates of μ using different estimation
methods as a function of sample sizes considered in the simulation study for θ = 1 and μ = 0 and 1.

Figure 5. Comparison of distributions of coverage percentages for the 95% bootstrap confidence
intervals based on different estimation procedures for θ.
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essentially unbiased for all practical purposes. However, the estimators of μ need slightly
larger sample sizes to become almost unbiased. A similar trend is observed for MSE with
respect to the sample size used.

Figures 5 and 6 present the performance of estimators studied based on coverage
percentage of 95% bootstrap confidence intervals for θ and μ, respectively. It is clear
that MLEs produced lower coverage compared to the remaining estimators. Both Bayes
estimators performed consistently well along with MEs. Similar patterns were observed
from smaller to larger sample sizes.

Example 1. To illustrate the performance of estimation procedures discussed here, a
data set obtained from Dumonceaux and Antle (1973) is used. This data set gives the
maximum flood levels (in millions of cubic feet per second per 4-year period cycle) of the
Susquehenna River at Harrisburg, PA, for the period of 1890–1969.

From summary statistics in Table 1, we see that the distribution is positively skewed.

To check the shape of the empirical hazard function, the scaled TTT (total time on test)
transform plot (Aarset 1987) is presented in Figure 7. Its concave shape indicates that the
hazard function of the distribution will be an increasing function. Therefore, the Maxwell
distribution is a possible option along with gamma, lognormal, and Rayleigh distributions

Figure 6. Comparison of distributions of coverage percentages for the 95% bootstrap confidence
intervals based on different estimation procedure for μ.

Table 1. Summary statistics of the flood level data.
Sample size Minimum Q1 Median Q3 Maximum Mean SD

20 0.2650 0.3345 0.4070 0.4578 0.7400 0.4232 0.1253

JOURNAL OF STATISTICAL THEORY AND PRACTICE 303



to analyze this data set. All four of these distributions were fitted to the data. The resulting
goodness-of-fit test outcomes are listed in Table 2. From Table 2 we see that the Maxwell
model is a possible option along with gamma, log-normal, and Raleigh distributions.
Although all of these distributions provide acceptable fits, the Maxwell distribution
resulted in the least opposing evidence, followed by the log-normal distribution.

Assuming the underlying distribution is a two-parameter Maxwell, the estimates of θ
and μ were obtained using different methods presented earlier, which are listed in Table 3.

● MLE: To obtain MLEs, the contour plot of log-likelihood function for the flood-level
data was used (see Figure 8). The maximum of the log-likelihood function is

Figure 7. Scaled total time on test (TTT) transform plot of flood level data.

Table 2. Goodness-of-fit test results.
KS statistic p value

Gamma (three-parameter) 0.176 0.530
Lognormal (two-parameter) 0.155 0.713
Maxwell (two-parameter) 0.152 0.742
Rayleigh (two-parameter) 0.179 0.506

Table 3. Estimates of Maxwell parameters from flood-level data.

Estimation method θ̂ μ̂

MLE 18.2109 0.1635
ME 14.4529 0.1263
LSE 20.6898 0.1618
WLSE 19.6799 0.1571
Bayes 19.4258 0.1698
95% confidence interval (7.0716, 29.3501) (0.0847, 0.2421)
95% credible interval (17.1876, 22.4571) (0.1657, 0.2145)
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indicated by a dot in the innermost contour. The coordinates of this point provide
the MLEs of θ and μ, that is, θ̂ 
 18:2109 and μ̂ 
 0:1634, respectively.

● ME: The MEs of θ and μ, respectively, were computed using Eqs. (6) and (7).
● LSE: The LSEs of θ and μ, respectively, were obtained by minimizing Eq. (8) with
respect to θ and μ by using R software.

● WLSE: The WLSEs of θ and μ, respectively, were obtained by minimizing Eq. (9)
with respect to θ and μ by using R software.

● Bayes estimators: For computing Bayes estimates, we have used the hyperparameter
values of (10) as a ¼ b ¼ 0:001, so that the posterior distribution becomes integrable.
In total, 10,000 importance samples were used.

From Table 3, we observe that all procedures except ME resulted in fairly similar
estimates. Both θ̂ME and μ̂ME are considerably lower than estimates using other methods.
The confidence intervals for both θ and μ are wider than the credible intervals.

Figure 9a depicts that different estimation procedures discussed in this study for
Maxwell model resulted in CDFs similar to each other when applied to the flood data
set. Moreover, we also observe a minor overestimation in the upper tail of the empirical
CDF for all methods.

Figure 9b presents the performance of Maxwell distribution as compared to some
competing models fitted to the flood data (listed in Table 2). Parameters were estimated
using the MLE procedure. As seen earlier, goodness-of-fit scores of log-normal and
Maxwell models are very competitive. Both of these models perform quite similarly
along with the Rayleigh model whereas the Gamma model exhibits some overestimation
in the beginning and underestimation later for the flood data.

Figure 8. Contour plot of log likelihood function for different values of θ and μ for flood-level data.
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6. Conclusion

In this article we have considered several estimation techniques for estimating the
unknown parameters of a two-parameter Maxwell distribution, namely, the maximum
likelihood estimators, the method of moments estimators, the least square estimators,
the weighted least square estimators, and the Bayes estimators. Results of a simulation
study to compare these methods are presented, which show that the Bayes estimators
under informative prior work well in terms of biases and mean squared errors; even
the performance of Bayes estimators under the informative prior is as competitive as
that under a noninformative prior. As the choice of hyperparameters of the prior
distribution plays a significant role in Bayesian methodology, users are advised to be
cautious about using an informative prior in real-life applications. The performance of
maximum likelihood estimators is fairly reasonable and competitive. We recommend
using the maximum likelihood estimators or the Bayes estimators in practice. We also
compared this model with some existing competing models and the Maxwell model
performed reasonably well.
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Appendix

A few structural properties of the Maxwell distribution, specifically, stochastic ordering, entropies,
and order statistics are described here.

A.1. Stochastic ordering

Stochastic ordering of positive continuous random variables is an important tool for judging the
comparative behavior. There are different types of stochastic orderings, which are useful in ordering
random variables in terms of different properties. Here we consider four different stochastic orders,
namely, the usual, the hazard rate, the mean residual life, and the likelihood ratio order for two
independent Maxwell random variables under a restricted parameter space.

If X and Y are independent random variables with CDFs FX and FY, respectively, then X is said to
be smaller than Y in the

● Usual stochastic (st) order (i.e, X �st Y) if FX xð Þ � FY yð Þ for all x.
● Hazard rate (hr) order (i.e., X �hr Y) if hX xð Þ � hY yð Þ for all x.
● Mean residual life (mrl) order (i.e., X �mrl Y) if mX xð Þ � mY yð Þ for all x.
● Likelihood ratio (lr) order (i.e., X �lr Y) if fX xð Þ=fY yð Þ decreases in x.

Theorem A.1.1 shows that the Maxwell distribution is ordered with respect to the strongest, that
is, the likelihood ratio ordering under the restricted space of

θ1 ¼ θ2 ¼ θ and x > μ2 > μ1
� �

or θ1 > θ2 and μ1 ¼ μ2 ¼ μ
� �

: (21)

This shows the flexibility of two-parameter Maxwell distribution.

Theorem A.1.1. If X and Y are two independent two-parameter Maxwell distributions,
then all four stochastic orderings exist under the restricted space of Eq. (21).

Proof. Let X,M θ1; μ1
� �

and Y,M θ2; μ2
� �

. The log-likelihood ratio of X to Y is
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log
fX xð Þ
fY xð Þ ¼ log θ1=θ2ð Þ1:5þ2 log x� μ1

� �� log x� μ2
� �	 
� θ1 x� μ1

� �2þθ2 x� μ2
� �2

and the derivative of log-likelihood ratio with respect to x is

d
dx

log
fX xð Þ
fY xð Þ ¼ �2

μ2 � μ1
x� μ1
� �

x� μ2
� �

" #
� 2 x θ1 � θ2ð Þ � θ1μ1 þ θ2μ2
	 


:

● Consider θ1 ¼ θ2 ¼ θ. Then the derivative of log-likelihood ratio with respect to x is
negative for x > μ2 > μ1 and positive for x > μ1 > μ2. This implies that X �lr Y
provided x > μ2 > μ1.

● Now consider μ1 ¼ μ2 ¼ μ. Then the derivative of log-likelihood ratio with respect to
x is negative for θ1 > θ2 and positive for θ1 < θ2. This implies that X �lr Y provided
μ1 ¼ μ2 ¼ μ and θ1 > θ2.

Hence we conclude that X �lr Y under the restricted space of Eq. (21). Shaked and
Shanthikumar (1994) have shown that the following relation exists among four stochastic
orderings of distributions listed earlier:

X �lr Y ) X �hr Y ) X �mrl Y
+

X �st Y
(22)

Therefore, using Eq. (22) and the result of likelihood ratio ordering, we can conclude that
in addition to the likelihood ratio ordering, the usual stochastic, the hazard rate, and the
mean residual life ordering also exists, for the two-parameter Maxwell distributions under
the restricted parameter space of Eq. (21).

A.2. Entropies

There are many different entropy measures available in the literature. Two popular entropy
measures are the Rényi entropy and Shannon entropy. Entropy of a random variable X is a
measure of variation of the uncertainty or disorder in a population. For a two-parameter
Maxwell distribution, the Rényi entropy (as defined by Rényi [1961]) is given by

Υη Xð Þ ¼ 1
1� η

log
22η�1θ0:5 η�1ð Þ

π
η
2ηηþ0:5

Γ 0:5þ ηð Þ
" #

(23)

where η > 0 and η � 1. The Shannon entropy (as defined by Shannon [1951]) for the two-
parameter Maxwell distribution is given by

E � log f xð Þ½ � ¼ γþ 0:5 log πð Þ � log θð Þ � 1ð Þ (24)

where γ is an Euler gamma constant.
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A.3. Order statistics

Let Xð1Þ < Xð2Þ < � � � < XðnÞ denote the order statistics of a random sample X1;X2; . . . ;Xn

from the continuous population with the PDF in Eq. (1); then the PDF of the kth order
statistics XðkÞ, following the results from Arnold et al. (1998), is given by

fX kð Þ x kð Þ
� � ¼ n!θ1:5

k� 1ð Þ! n� kð Þ!
Xn�k

m¼0

n� k

m

� �
�1ð Þm 2kþmþ1

π kþmð Þ=2

� Γ 1:5 ; θ x kð Þ � μ
� �2� �h ik�1þm

x kð Þ � μ
� �2

e�θ x kð Þ�μð Þ2 :
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