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Does climate policy uncertainty affect carbon
emissions in China? A novel dynamic ARDL
simulation perspective
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This study provides new insights into the impact of climate policy uncertainty, energy con-

sumption, and economic development on China’s carbon emissions. In doing so, we develop a

novel index of China’s climate policy uncertainty (CCPU). We then use the newly constructed

dynamic autoregressive distributed lag (ARDL) simulation model, the frequency-domain

causality (FDC) test, and the fully modified OLS (FMOLS) estimation to investigate these

potential relationships from 2005 to 2021. The empirical results suggest that increasing

CCPU reduces carbon emissions in most parts of China, which improves environmental

degradation. Furthermore, the effects of energy consumption and economic growth on car-

bon emissions are confirmed to be positive in each location. Finally, the results of the FDC

and FMOLS confirm the robustness of the model. Our findings suggest that information from

the CCPU can be used to forecast CO2 emissions in China. Furthermore, the government

should strike a balance between economic growth and environmental regulation and promote

the use of renewable energy to reduce carbon emissions. Proactively developing climate

policy is important to achieve the goal of carbon neutrality.
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Introduction

C limate risk has created an unparalleled obstacle to long-
term economic growth in a large number of countries
(Diffenbaugh and Burke, 2019; Pástor et al., 2021). The

Paris Agreement, which went into force in November 2016, is a
significant milestone that has strengthened the global response to
climate change and provided a new framework for climate policy.
Consequently, policies aimed at addressing climate change have
been of high priority to governments for decades and all are
working to reduce greenhouse gas (GHG) emissions (Lee and
Chen, 2020; Sun et al., 2021). Nevertheless, there still exist sig-
nificant uncertainties in the course of such climate policy
implementation. The most recent example is the US withdrawal
from the Paris Agreement in 2017, which has created significant
uncertainty regarding the execution of climate policies.

Climate policy uncertainty refers to the degree of ambiguity
and unpredictability surrounding government policies and reg-
ulations related to climate change mitigation and adaptation. It
arises from potential changes in policy or regulation, such as the
implementation or elimination of carbon taxes, subsidies for
renewable energy, or the adoption of new emissions targets. These
uncertainties might have far-reaching consequences for the
macroeconomy and the carbon neutrality target (Lee et al., 2021;
Su et al., 2021; Wang et al., 2019; Wen et al., 2022).

Over the past two decades, China has experienced the highest
rate of economic expansion and energy consumption among
emerging economies (Khan et al., 2022). The past economic
development model has led to a multiplication of greenhouse gas
(GHG) emissions such as CO2, accounting for 27% of the total
global GHG emissions in 2019. However, the Paris Agreement
aims to cut CO2 emissions and mitigate climate deterioration,
with the objective of keeping the global temperature rise under
2°C within this century. As the largest carbon emitter, China
needs to take action. Indeed, the Chinese government has already
committed to peaking its CO2 emissions by 2030 and achieving
the carbon neutrality target by 2060 (Wang et al., 2019). To this
end, it is of great policy importance to measure how China’s
climate policy has changed and whether the policy changes have
an impact on carbon emissions. Understanding the influence of
climate policy uncertainty on carbon emissions and investigating
the underlying mechanism is vital for authorities and policy-
makers to achieve these goals in China.

Among existing studies, several potential channels could
explain the theoretical link between policy uncertainty and CO2

emission (Jiang et al., 2019; Ullah et al., 2021; Yu et al., 2021; Wan
et al., 2022; Wen et al., 2022). These include the direct policy
adjustment channel (Jiang et al., 2019), the energy intensity effect
(Yu et al., 2021), and the innovation investment channel (Wan
et al., 2022; Wen et al., 2022). For example, high levels of
uncertainty about climate risk or climate policy could hinder
energy consumption and nonessential transportation for indivi-
duals and firms. At the same time, the increase in CPU might
encourage renewable energy consumption and increase research
and development (R&D) innovation on climate-friendly inno-
vation, thus leading to lower CO2 emissions (Gavriilidis, 2021).

Considering the abovementioned reality, the current study
aims to analyze the influence of CPU on carbon emissions in
China. The following are the main contributions of the current
paper to the literature. First, we made a novel China’s climate
policy uncertainty index. We take newspaper content from nine
major Chinese newspapers and then search for relevant keywords
to construct the index. Our novel index is in line with key
domestic climate policy changes. The index construction provides
a new perspective for quantifying climate policy change. Second,
although some studies have examined the impact of basic
determinants on CO2 emissions such as economic growth and

energy consumption, they have not elaborated on the impacts of
climate policy uncertainty on CO2 emissions. In view of this, this
study considers the important role of climate policy uncertainty
and analyzes whether and how uncertainty regarding climate
policy affects CO2 emissions, enriching the study of the macro
effects of climate policy. Moreover, to uncover the heterogeneity
of the influence of climate policy uncertainty on carbon emis-
sions, this paper explores this relationship from a regional per-
spective. Finally, we employ the dynamic autoregressive
distributed lag (DARDL) framework to reveal the long- and
short-run effects of the concerned variables on carbon emissions
and the frequency-domain causality (FDC) test for the robustness
check. By doing so, our papers contribute to a better under-
standing of how climate policy uncertainty affects carbon emis-
sions, which helps to achieve the goal of carbon neutrality.

Literature review
The impact of policy uncertainty, energy consumption, and
economic growth on carbon emissions has been the subject of
extensive research in recent years, particularly in the context of
the energy transition and low-carbon development initiatives.
Understanding the relationship between these factors is crucial
for effective policy-making and sustainable development.

Several studies have examined the influence of energy con-
sumption on carbon emissions. For example, Adedoyin and
Zakari (2020) conducted a study on the UK and found that
energy use has a significant and beneficial effect on carbon
emissions in the long term. Adams et al. (2020) investigated 10
resource-rich economies and identified a significant relationship
between energy use and carbon emissions. Similarly, Abbasi and
Adedoyin (2021) focused on China and found that energy con-
sumption has a substantial positive impact on carbon emissions
in both the short and long term.

Moreover, for the sake of sustainable development, scholars
have studied the relationship between renewable energy con-
sumption and carbon emissions. Khan et al. (2022) examined
four East Asian economies and found that renewable energy
consumption mitigates CO2 emissions. Atsu and Adams (2021)
analyzed BRICS countries and found a significantly negative
impact of renewable energy use on carbon emissions. However,
Xue et al. (2022) found no significant long-term effect of clean
energy usage on carbon emissions in France.

Besides that, the existing research has also extensively explored
the relationship between economic growth and carbon emissions,
often using the environmental Kuznets curve (EKC) hypothesis.
Adedoyin and Zakari (2020) found a significant positive effect of
economic growth on carbon emissions in the UK. Shahbaz et al.
(2020) supported the EKC hypothesis by finding an inverted
U-shaped relationship between carbon emissions and economic
development in the UK. Adams et al. (2020) identified a positive
relationship between economic growth and carbon emissions in
10 resource-rich countries. Abbasi and Adedoyin (2021) found
significant positive effects of economic growth on China’s carbon
emissions. Syed et al. (2022) documented that economic devel-
opment increases carbon emissions across different quantiles in
BRICS economies.

In addition, the impact of policy uncertainty on carbon emis-
sions has gained attention in recent years, but the findings in the
literature are inconsistent. Some studies have found positive
relationships, indicating that increasing policy uncertainty can
lead to environmental aggravation. Jiang et al. (2019), Adams
et al. (2020), and Pirgaip and Dinçergök (2020) found positive
correlations between policy uncertainty and carbon emissions.
Atsu and Adams (2021) also found a significant positive impact
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of policy uncertainty on carbon emissions in BRICS economies.
Anser et al. (2021) and Yu et al. (2021) provided further evidence
of the positive effects of policy uncertainty on carbon emissions.

Contrary to these findings, some studies have shown that
increased policy uncertainty could slow carbon emissions. Ade-
doyin and Zakari (2020), Ahmed et al. (2021), and Syed et al.
(2022) found evidence of the negative impact of policy uncer-
tainty on carbon emissions. Gavriilidis (2021) and Liu and Zhang
(2022) documented the negative influences of policy uncertainty
on carbon emissions in their respective studies. However, con-
tradictory findings have also been reported, with Abbasi and
Adedoyin (2021) and Nakhli et al. (2022) finding no significant
influence of policy uncertainty on carbon emissions in specific
contexts. The disparities in findings may be attributed to varia-
tions in sampling periods and methodological frameworks
employed in these studies.

Several shortcomings and weaknesses should be addressed and
improved upon based on the preceding literature research. First,
although several studies in the literature have focused on the factors
driving China’s carbon emissions and considered the role of energy
use and economic development, the majority of them have pri-
marily used national carbon emissions and do not consider the
impact of policy uncertainty. Besides that, several types of research
have uncovered that carbon emissions are influenced by policy
uncertainty. However, few studies detect the effect of climate policy
uncertainty on CO2 emissions. Climate challenges have been
increasingly prominent in recent years, as have the corresponding
climate governance policy uncertainties. Therefore, exploring the
impact of climate policy uncertainty on carbon emissions has policy
implications. Based on the above discussion, the current paper aims
to add to the body of evidence that climate policy uncertainty can
be used to explain changes in China’s CO2 emissions.

Theoretical model, methodology, and data
Theoretical model. In this section, we adopt the approach of
Fried et al. (2021) and employ a general dynamic environment
Cobb-Douglas model. This model is a well-established and widely
used theoretical approach for analyzing the relationships between
environmental issues and underlying determinants. Our goal is to
uncover the influence of CCPU on carbon emissions. We assume
that the economy comprises entrepreneurs and workers with
infinite lives, which has two sectors: the “fossil” sector that emits
carbon and the “clean” sector that does not. y is the final good in
the economy, which is produced from labor input l, a clean
intermediate input xc, and a carbon-intensive fossil intermediate
input xf. Moreover, we assume that interest rates and labor supply
are exogenous variables. Therefore, the aggregate output y can be
written as:

y ¼ ðxcÞγðxcÞθl1�γ�θ ð1Þ
where γ and θ indicate the factor shares of the clean and fossil
inputs, xc is clean capital (kc), and xf is fossil intermediate that
satisfies the minimum between fossil fuel and fossil capital
(min[kf, f]). Both production functions have constant returns
to scale.

Taking prices as given, the representative firms choose the
optimal share of fossil and clean inputs and labor to maximize
profits. If the government implements a specific climate policy, all
choices are made at the start of the term. The first-order
conditions (F.O.C.) suggest the following expressions for the
prices of the fossil and clean inputs, pf and pc:

pf ¼ θðxcÞγðxf Þθ�1 and pc ¼ γðxcÞγ�1ðxf Þθ ð2Þ
Let Vc(kc) represent the clean firm’s value function in the

steady-state before the policy change, and Tc(kc) imply the value

function in period t of the transition after the government
implements the new climate policy. Therefore, the clean firm’s
value function in the steady state before the policy change equals:

VcðkcÞ ¼ max
kc0

pckc � icþ 1
1þr

� �
½ρTc

1ðkc
0 Þ þ ð1� ρÞVcðkc0 Þ�

on

s:t: kc
0 ¼ ð1� δÞkc þ ic

ð3Þ
where pckc denotes the total revenue from production, ic

represents the investment ρ is the probability of uncertainty
due to the government introduction of climate policy, r indicates
the exogenous interest rate, and δ denotes the depreciation rate.

Moreover, the clean firm’s value function in period t of the
transition equals:

Tc
t ðkcÞ ¼ max

kc0
pckc � icþ 1

1þr

� �
Tc
tþ1ðkc

0 Þ
on

s:t: kc
0 ¼ ð1� δÞkc þ ic

ð4Þ

Since all uncertainty is eliminated after the implementation of
the established climate policy by the government, the firm’s value
in the period t of the transition equals the value function in the
period t+ 1 of the transition.

In a similar vein, the fossil firm’s value function in the pre-
policy steady-state equals:

Vf ðkf Þ ¼ max
kf 0 ;f

pf kf � ξf � ifþ 1
1þr

� �
½ρTf

1ðkf
0 Þ þ ð1� ρÞVf ðkf 0 Þ�

on

s:t: kf
0 ¼ ð1� δÞkf þ if

ð5Þ
where pfkf denotes the total revenue from production, ξf implies
the expenses on fossil fuel, if represents the investment ρ is the
probability of uncertainty due to government introduction of
climate policy, r indicates the exogenous interest rate, and δ
denotes the depreciation rate.

Likewise, the fossil firm’s value function in period t of the
transition equals:

Tt
f ðkf Þ ¼ max

kf 0 ;f
pf kf � ξf � ifþ 1

1þr

� �
Tf
tþ1ðkf

0 Þ
on

s:t: kf
0 ¼ ð1� δÞkf þ if

ð6Þ

Therefore, by constructing the Lagrange equation, we solve
that:

Kc ¼ r
r þ δ

� � 1
1�γ�θ r þ δ

r þ δ þ ξ þ ρ

� � θ
1�γ�θ θ

r

� � θ
1�γ�θ ð7Þ

Kf ¼ r
r þ δ

� � 1
1�γ�θ r þ δ

r þ δ þ ξ þ ρ

� � 1�r
1�γ�θ θ

r

� � 1�r
1�γ�θ ð8Þ

Dividing Eq. (7) by Eq. (8), we finally obtain the following
relationship between ρ and the ratio of fossil capital to clean
capital:

Kf

Kc ¼
r þ δ

r þ δ þ ξ þ ρ

� �
θ

r

� �
ð9Þ

Specifically, the ratio of fossil capital to clean capital decreases
when climate policy uncertainty increases (ρ increase). Moreover,
since the equilibrium use of fossil fuels is equal to the level of
fossil capital, a lower ratio of fossil to clean capital further reduces
carbon emissions from firm production.

Methodology. To investigate the influence of CCPU on carbon
emissions, we employ the novel DARDL simulation method to
uncover this effect. Unlike the conventional ARDL model, the
novel DARDL approach proposed by Jordan and Philips (2019)
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can forecast and automatically plot one predictive shift on the
dependent variable. Moreover, the DARDL model maintains the
stability of the other independent variables when analyzing the
effects of short- and long-term estimations. Besides that, the
DARDL approach also has higher robustness in small sample
cases, which is in line with the current dataset. Another advantage
of DARDL estimation is that the co-integration test can be per-
formed as long as they are not I (2), which is much different from
the traditional method.

Jordan and Philips (2019) state that the DARDL error
correction form in the current study is as follows:

ΔðlnCO2Þt ¼ α0 þ θ0ðlnCO2Þt�1 þ β1ΔlnCCPUt þ θ1lnCCPUt�1

þβ2ΔlnECt þ θ2lnECt�1 þ β3ΔlnGDPt þ θ3lnGDPt�1 þ εt

ð10Þ
where CO2 denotes the carbon dioxide emission, the explained
variable in the current study. CCPU is the climate policy
uncertainty in China, the main explanatory variable. EC implies
energy consumption and GDP shows the gross domestic product,
which are the control variables in this paper. εt is the error term.

Furthermore, the FDC introduced by Breitung and Candelon
(2006) is used in this article to support the robustness of the
DARDL model. Compared with the traditional Granger causality
test, the FDC analysis method used in this study helps to predict
the response between variables within a specific time frequency.
The FDC equation is expressed as follows:

xt ¼ α1xt�1 þ α2xt�2 þ � � � þ αpxt�p þ β1yt�1 þ β2yt�2 þ � � � þ βpyt�p þ εt

ð11Þ
where εt is the error term and α and β are the estimated
parameters in time (t), and lag (p), respectively. Figure 1 reveals
the framework of the methodology in the study.

Data collection. The primary goal of this article is to investigate
the impact of CCPU on carbon emissions in six distinct areas of
China. To this end, we have followed the methods of Baker et
al. (2016) and Huang and Luk (2020) to construct a novel
CCPU index1. The datasets of CO2 emissions in the current
paper have been collected from the China Energy Statistics
Yearbook (Table 1).

In addition, to rule out the influence of other underlying
factors on CO2 emissions, we used the principles given by
Shahbaz et al. (2018), Adams et al. (2020), Adedoyin and
Zakari (2020), Shahbaz et al. (2020), Abbasi et al. (2021), and
Syed et al. (2022), controlling the effect of economic growth
and energy use on carbon emissions. Specifically, we have
selected the total energy consumption (EC) and the gross
domestic product (GDP) of each region as proxy variables.
The corresponding data were collected from the Wind
Economic Database and the National Bureau of Statistics of
China. Considering the availability of the data, the datasets in
the current study span from 2005 to 2021. In addition, we use
a logarithmic form for each data point. Table 2 reports the
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Fig. 1 Methodological framework in the current study.

Table 1 Regional divisions.

Region Provinces

North China Beijing, Tianjin, Hebei, Shanxi
Northeast China Liaoning, Jilin, Heilongjiang, Inner Mongolia
Eastern China Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi,

Shandong
Southcentral China Henan, Hubei, Hunan, Guangdong, Guangxi,

Hainan
Southwest China Sichuan, Guizhou, Yunnan, Chongqing
Northwest China Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang
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statistical characteristics of the CO2 emissions, CCPU, EC,
and GDP in different regions of China.

The descriptive statistics show that these series are clearly
heterogeneous. To begin with, there are significant differences in
the logarithmic pattern of the CO2 emission series for each
region. Second, we have also noticed that the averages of CO2

emissions are much larger than those of the other variables for
each region. Third, the standard deviation indicates that the GDP
value is the largest, followed by the CCPU, suggesting that there
have been more changes in climate policies during the sample
period, and each region also witnessed a great fluctuation in
economic growth. In addition, the normal distribution trend of
each series has been statistically verified by the Jarque-Bera test,
as each series cannot reject the null hypothesis.

Empirical result
Unit root test. Table 3 shows the unit root test results for each
concerned variable. The Augmented-Dickey-Fuller (ADF) test,
Phillips-Perron (PP) test, and Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test are jointly utilized to examine the stationarity
of these series. Based on the outcomes of the ADF test, PP test,
and KPSS test, we find that CCPU and CO2 emissions for North
China and Northwest China series are I(1) processes, whereas the
remaining variables are I(0) processes. Overall, the evidence of
the unit root test reveals that none of the series is stationary at
I(2), which meets the requirements of the dynamic ARDL model
simulation.

ARDL bounds test analysis. Since not all series are I(1) pro-
cesses, it becomes critical to test the validity of the co-integration
relationship. This paper uses the ARDL bound technique to
detect whether there is a long-term link between the variables.

Table 4 displays the outcomes of the ARDL bound test for dif-
ferent regions in China. The t-statistic value is discovered to be
larger than the upper limit value at the 10% level of significance,
except for Northeast China. Moreover, the F-statistic is also uti-
lized for the evaluation of co-integration and we note that the F-
statistic value is higher than the upper bound value at the 1% level
of significance for each region. Combining the above two statis-
tical results, we conclude that there is co-integration between the
series.

Dynamic ARDL estimation results. The outcomes of the
dynamic ARDL estimation for six regions of China are shown
in Table 5. First, the adjustment speed from short-term dis-
equilibrium to a new long-term equilibrium is assessed by the
error correction term (ECT). We notice that the coefficient of
ECT for each scenario is significantly negative, which suggests
that 35.8% to 88.8% of the disequilibrium is corrected in the
long term. The results are consistent with Abbasi and Adedoyin
(2021) and Abbasi et al. (2022), who report that the value of
ECT is negative indicating that the adjustment speed is
significant.

Specifically, from the short-term perspective, the coefficient of
CCPU is negative and significant in Eastern (–0.020) and
Southcentral China (–0.051). These outcomes show that a 1%
increase in CCPU would decrease carbon emissions by 0.020%
and 0.051% in both regions (Liu and Zhang, 2022). In other
words, the CCPU has a beneficial effect on environmental
improvement. These results are supported by Pirgaip and
Dinçergök (2020), Gavriilidis (2021), and Liu and Zhang
(2022). However, the coefficient of CCPU is significantly positive
in North China (0.093), suggesting that the positive shock of
CCPU has a positive influence on environmental deterioration.
North China is rich in coal resources, and the coal resources in

Table 2 Descriptive statistics.

Variable Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera Probability

North China
CO2 14.420 14.513 14.740 13.973 0.223 –0.600 2.392 1.131 0.568
CCPU 7.035 7.042 7.562 6.282 0.373 –0.742 3.101 1.383 0.501
EC 11.233 11.311 11.455 10.856 0.174 –0.832 2.610 1.826 0.401
GDP 11.178 11.354 11.685 10.276 0.465 –0.688 2.116 1.670 0.434

Northeast China
CO2 13.660 13.750 13.831 13.273 0.168 –1.083 2.939 2.933 0.231
CCPU 7.035 7.042 7.562 6.282 0.373 –0.742 3.101 1.383 0.501
EC 10.560 10.629 10.730 10.203 0.155 –1.174 3.170 3.463 0.177
GDP 10.573 10.771 10.965 9.752 0.410 –0.839 2.269 2.095 0.351

Eastern China
CO2 14.759 14.840 14.992 14.372 0.184 –0.766 2.491 1.628 0.443
CCPU 7.035 7.042 7.562 6.282 0.373 –0.742 3.101 1.383 0.501
EC 11.665 11.736 11.886 11.271 0.189 –0.778 2.423 1.723 0.423
GDP 12.151 12.249 12.836 11.233 0.509 –0.384 1.945 1.065 0.587

Southcentral China
CO2 14.352 14.436 14.509 13.965 0.166 –1.098 3.013 3.013 0.222
CCPU 7.035 7.042 7.562 6.282 0.373 –0.742 3.101 1.383 0.501
EC 11.368 11.456 11.545 10.969 0.182 –0.996 2.703 2.536 0.281
GDP 11.797 11.898 12.521 10.844 0.528 –0.375 1.957 1.030 0.597

Southwest China
CO2 13.599 13.701 13.751 13.181 0.186 –1.100 2.788 3.054 0.217
CCPU 7.035 7.042 7.562 6.282 0.373 –0.742 3.101 1.383 0.501
EC 10.671 10.760 10.864 10.255 0.201 –0.875 2.366 2.165 0.339
GDP 10.749 10.868 11.610 9.700 0.611 –0.288 1.855 1.026 0.599

Northwest China
CO2 13.507 13.648 13.981 12.846 0.379 –0.465 1.768 1.491 0.475
CCPU 7.035 7.042 7.562 6.282 0.373 –0.742 3.101 1.383 0.501
EC 10.444 10.533 10.853 9.886 0.326 –0.337 1.684 1.366 0.505
GDP 10.200 10.369 10.912 9.172 0.563 –0.487 1.923 1.318 0.517
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this region are most concentrated in Shanxi Province. Therefore,
industries in this region rely heavily on carbon-intensive
production methods. These industries might increase production
ahead of future climate policy implementation, leading to
increased carbon emissions. This finding backs with previous
research (Adams et al., 2020; Anser et al., 2021).

In the long-term perspective, we observe a significant and
negative coefficient of CCPU for most regions, indicating that
higher levels of policy uncertainty have a dampening effect on
CO2 emissions. This finding suggests that when faced with
uncertain climate policies, economic agents tend to err on the side
of caution and adopt measures that lead to a reduction in energy
consumption and thus lower carbon emissions (Gavriilidis, 2021).
This economic behavior can be attributed to the risk-averse
nature of firms and individuals, who are uncertain about the
future regulatory environment and therefore choose more
conservative energy use strategies to make long-term investment
decisions aimed at reducing their carbon footprint.

However, the estimated result for Southwest China presents a
contrasting picture. We find that a 1% positive shock in CCPU
leads to an increase in CO2 emissions by 0.121%. This implies
that in Southwest China, higher levels of policy uncertainty can
have a stimulating effect on carbon emissions. The outcomes are
in line with Atsu and Adams (2021) and Xue et al. (2022). One
economic explanation for this phenomenon is that the region is
characterized by industries that heavily rely on carbon-intensive
production methods. In the face of uncertain climate policies,
these industries may perceive a temporary window of opportunity
to increase production before potential future policies are
implemented, which increases emissions.

In addition, the estimated short-term and long-term coeffi-
cients of EC are significant and show positive signs in each
scenario, indicating that EC has a positive influence on CO2

emissions. This outcome is similar to Lin and Xu (2020) and
Abbasi and Adedoyin (2021). This finding can be attributed to
the fundamental relationship between energy consumption and

Table 3 Unit root examinations.

ADF (level) ADF (first difference) PP (level) PP (first difference) KPSS (level) KPSS (first difference) Remark

North China
CO2 –1.883 –2.342 –1.883 –2.342 0.574** 0.223 I (1)
CCPU –2.338 –2.791* –2.350 –2.791* 0.165 0.314 I (1)
EC –3.306** –2.237 –2.969* –2.216 0.571** 0.376* I (0)
GDP –4.941*** –0.976 –6.719*** –1.447 0.579** 0.503** I (0)

Northeast China
CO2 –1.503 –2.234 –4.696*** –2.234 0.529** 0.405* I (0)
CCPU –2.338 –2.791* –2.350 –2.791* 0.165 0.314 I (1)
EC –3.899** –2.061 –3.690** –1.998 0.442* 0.409* I (0)
GDP –3.523** –0.481 –3.052* –1.781 0.508** 0.464** I (0)

Eastern China
CO2 –2.142 –2.139 –3.899** -2.158 0.585** 0.395* I (0)
CCPU –2.338 –2.791* –2.350 –2.791* 0.165 0.314 I (1)
EC –5.410*** –2.054 –9.605*** -2.051 0.583** 0.469** I (0)
GDP –4.735*** –1.771 –13.893*** -1.469 0.603** 0.504** I (0)

Southcentral China
CO2 –2.363 –2.487 –7.835*** –2.542 0.528** 0.409* I (0)
CCPU –2.338 –2.791* –2.350 –2.791* 0.165 0.314 I (1)
EC –4.188*** –2.297 -6.731 –2.246 0.550** 0.440* I (0)
GDP –4.094*** –1.976 -11.536*** –1.826 0.605** 0.479** I (0)

Southwest China
CO2 –5.037*** –1.926 –4.445*** –1.925 0.503** 0.484** I (0)
CCPU –2.338 –2.791* –2.350 –2.791* 0.165 0.314 I (1)
EC –3.212** –2.656 –4.982*** –2.656 0.549** 0.479** I (0)
GDP –2.716* –1.986 –3.453** –1.895 0.605** 0.435* I (0)

Northwest China
CO2 –1.571 –2.195 –2.153 –1.529 0.588** 0.311 I (1)
CCPU –2.338 –2.791* –2.350 –2.791* 0.165 0.314 I (1)
EC –1.440 –1.484 –2.992* –1.528 0.597** 0.363 I (0)
GDP –3.519** –1.978 –3.642** –1.904 0.595** 0.435* I (0)

Note: (***, **, *) denotes 1%, 5%, and 10% significance levels, respectively.

Table 4 Bounds test results.

North China Northeast China Eastern China Southcentral China Southwest China Northwest China

CO2= f (CCPU, EC, GDP)
F-statistics 9.612*** 10.668*** 10.274*** 15.868*** 12.396*** 8.342***

t-statistics −4.246*** −1.487 −4.125** −7.389*** −6.406*** −2.728*

Critical values (CV) F-statistics CV (k= 3) t-statistics CV (k= 3)
H0: no co-integration 10% 5% 1% 10% 5% 1%
H0: no co-integration 3.550 4.653 7.888 −2.636 −3.098 −4.156

Note: (***, **, *) denote 1%, 5%, and 10% significance levels, respectively.
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economic activity. As economic growth and industrial production
increase, the energy demand also increases, leading to higher
levels of energy consumption and subsequent carbon emissions.
Our findings suggest that the growing energy consumption
without a proper replenishment mechanism will further accel-
erate environmental degradation and hinder its achievement of
carbon neutrality goals.

In addition, the empirical outcomes show that 1% GDP growth
will lead to a short-term increase in CO2 emissions ranging from
0.116% to 0.935%, and a long-term increase ranging from 0.103%
to 0.564%, respectively. The significant and positive coefficients of
GDP in the short- and long-term analyses indicate a positive
relationship between GDP and CO2 emissions. This finding is
related to the fact that economic growth drives an increase in
consumer demand and the expansion of businesses, which leads
to a large amount of energy use and a subsequent increase in
carbon emissions. These results are supported by Chen et al.
(2019), Wang et al. (2019), Adams et al. (2020), Abbasi and
Adedoyin (2021), and Syed et al. (2022).

In order to validate the appropriate model, several statistics
and diagnostics are utilized at the bottom of Table 5. The
outcomes reveal that the null hypothesis of serial correlation LM
tests and heteroscedasticity tests are not refuted in each scenario.
Therefore, serial correlation and heteroskedasticity do not exist in
the estimation model. Moreover, the null hypothesis is also not
rejected by the Ramsey RESET tests and normal tests, implying
that the model is correctly measured and the residuals are
normally distributed. In addition, this study also uses the
CUSUM to measure the stability of the coefficients in both the
long- and short-term specifications, and the results indicate that
the short- and long-term parameters are stable.

Dynamic ARDL simulation forecasts. While keeping the values
of other variables constant, the dynamic ARDL simulation fore-
casts illustrate predictions of the actual regressor shift and its
effect on the explained variable. In particular, a 10% positive or
negative shock in the main explanatory variable (CCPU) is

predicted in the current study, which could be used to measure its
impact on CO2 emissions in different areas of China. Specifically,
the impulse response results are shown in Fig. 2a–f. The yellow
broken line indicates predicted mean values, and the light blue
area to dark blue area denotes 70%, 90%, and 95% confidence
intervals.

Figure 2a represents the influence of a 10% positive and
negative shock in the CCPU on CO2 emissions in North China.
The impulse response graph reveals that a 10% increase in CCPU
reduces carbon emissions, which improves environmental
deterioration. In comparison, a 10% decline in CCPU increases
CO2 emissions; that is, it has a positive effect on environmental
deterioration. Figure 2b shows the impulse response of the
influence of CCPU on carbon emissions in Northeast China. The
graph reveals that a 10% increase in CCPU has a significantly
negative impact on environmental degradation. However, a 10%
reduction in CCPU has a beneficial effect on environmental
degradation. As discussed above, CCPU plays a key role in
whether there is a detrimental or favorable impact on carbon
emissions.

In the same vein, Fig. 2c shows the impulse response graph in
Eastern China, which indicates the impact of CCPU on carbon
emissions. A 10% positive change in CCPU hurts CO2 emissions,
which improves environmental deterioration. In contrast, a 10%
negative change in CCPU has a positive influence on environ-
mental aggravation. In addition, Fig. 2d depicts the forecast for
examining the influence of CCPU on CO2 emissions in South-
central China. A 10% increase in CCPU has a beneficial effect on
environmental improvement. However, a 10% negative change in
CCPU has a positive influence on CO2 emissions, suggesting that
CCPU could play a key role in the environmental deterioration in
Southcentral China.

Different from the above findings, the impulse response plot in
Fig. 2e illustrates that a 10% positive change in CCPU positively
affects carbon emissions in Southwest China. In comparison, a
10% negative change in CCPU harms CO2 emissions. This
outcome is consistent with the dynamic ARDL estimation result.

Table 5 Dynamic ARDL simulation results.

Determinants North China Northeast China Eastern China Southcentral China Southwest China Northwest China

Constant 2.907*** (0.436) 0.076*** 3.374*** 2.860*** 4.203*** 5.844***

(0.024) (0.475) (0.215) (0.486) (0.812)
ECTt-1 –0.859*** –0.358** –0.811*** –0.888*** –0.550*** –0.459***

(0.203) (0.141) (0.197) (0.130) (0.086) (0.096)
ΔlnCCPUt 0.093*** –0.049 –0.020* –0.051** –0.028 –0.013

(0.035) (0.027) (0.011) (0.016) (0.018) (0.011)
ΔlnECt 2.544*** 0.615*** 0.728** 1.280*** 0.267** 0.395**

(0.443) (0.181) (0.349) (0.182) (0.132) (0.161)
ΔlnGDPt 0.935*** 0.116*** 0.011 0.370** 0.001 0.460***

(0.276) (0.029) (0.102) (0.185) (0.030) (0.075)
lnCCPUt-1 –0.039** –0.138** –0.002 –0.057*** 0.121*** –0.078**

(0.018) (0.057) (0.029) (0.019) (0.036) (0.036)
lnECt-1 2.862*** 1.719*** 0.897** 1.441*** 0.486** 1.282**

(0.342) (0.195) (0.365) (0.030) (0.210) (0.592)
lnGDPt-1 0.564*** 0.325* 0.103* 0.143*** 0.002 1.441***

(0.124) (0.184) (0.062) (0.024) (0.054) (0.350)
Statistics and diagnostics
Adj.R2 0.726 0.823 0.741 0.820 0.647 0.781
Serial Correlation LM test [0.307] [0.772] [0.291] [0.139] [0.386] [0.182]
Heteroscedasticity test [0.253] [0.373] [0.434] [0.592] [0.417] [0.273]
Ramsey RESET test [0.787] [0.458] [0.436] [0.206] [0.255] [0.883]
Normally test [0.899] [0.816] [0.634] [0.607] [0.568] [0.219]
CUSUM Stable Stable Stable Stable Stable Stable

Note: Standard errors are in parentheses. P-values in brackets. (***, **, *) denote 1%, 5%, and 10% significance levels, respectively. ECT refers to the error correction term.
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Besides that, Fig. 2f shows the connection between CCPU and
carbon emissions in Northwest China. The impulse response
reflects that a 10% positive change in CCPU has a beneficial
influence on environmental improvement, while a 10% decline in
CCPU suggests that it has a positive influence on environmental
deterioration.

Sensitivity analysis results. To further validate the robustness of
the DARDL estimation results, the FDC model and the fully
modified least squares (FMOLS) are employed as a sensitivity
check. The corresponding outcomes are shown in Tables 6 and 7,
which suggest that CCPU has the expected influence on CO2

emissions in different areas of China. Therefore, the robustness
test indicates that the empirical outcomes of the current study are
valid and dependable. Our outcomes are supported by Gavriilidis
(2021), suggesting that high levels of uncertainty about climate
policy could hinder energy consumption and, thus lead to lower
CO2 emissions.

Moreover, the statistical shreds of evidence of EC show that EC
is the key determinant of carbon emissions in China. The
outcomes are similar to those (Hussain et al., 2020; Kwakwa et al.,
2020; Abbasi et al., 2021). Besides that, with the exception of
Southwest China, GDP has the same influence on CO2 emissions
in the long- and short-term. This outcome is reinforced by
Sunday et al. (2017) and Adedoyin and Zakari (2020), indicating
that economic expansion has a major influence on CO2 emissions
and the environment.

Conclusion and policy implications
The purpose of the paper is to detect whether CCPU affects the
achievement of the carbon neutrality target of China and to
investigate the influence of CCPU on CO2 emissions. To this end,
we constructed a novel CCPU index that is based on the methods
of Baker et al. (2016). Then, we applied the newly developed
DARDL model to detect the potential relationships with Chinese
data from 2005 to 2021. Considering the heterogeneity of China’s
CO2 emissions across regions, this study investigates the influence
of CCPU on carbon emissions from a regional perspective.

After controlling for the effect of economic growth and energy
use on carbon emissions, our outcomes suggest that a rise in
CCPU reduces carbon emissions in North, Northeast, South-
central, and Northwest China, which improves environmental
deterioration. In comparison, the positive change in CCPU
increases CO2 emissions in Southwest China; that is, it has a
positive effect on environmental aggravation. This finding implies
that the information originating from the CCPU can provide
useful information to predict CO2 emissions in China. In addi-
tion, the impact of energy consumption on carbon emissions is
also affirmed to be positive in each scenario. In this case,
authorities should consider other alternative renewable energy
uses to deal with the negative impact of these emissions. More-
over, economic development has shown a significant positive
influence on carbon emissions. Therefore, while promoting eco-
nomic growth, the negative impact on the environment cannot be
ignored.

These results provide the following important policy recom-
mendations. First, the CCPU effectively affects the movement of
carbon emissions in different regions of China. As a result, taking
this into consideration, policymakers should pay close attention
to the changes experienced in climate policies, to avoid excessive
CO2 emissions. Moreover, since regional carbon emissions show
heterogeneous reactions to the CCPU, local governments should
note the characteristics of the CCPU and treat the impact of the
CCPU differently to control regional carbon emissions more
effectively. Second, since non-renewable energy use increases CO2

(a) The effect of a 10% CCPU shock on carbon emissions in North China 

(b) The effect of a 10% CCPU shock on carbon emissions in Northeast China 

(c) The effect of a 10% CCPU shock on carbon emissions in Eastern China 
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(d) The effect of a 10% CCPU shock on carbon emissions in Southcentral China 

(e) The effect of a 10% CCPU shock on carbon emissions in Southwest China 

(f) The effect of a 10% CCPU shock on carbon emissions in Northwest China 
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Fig. 2 The impulse response for a 10% positive or negative shock in the
CCPU and its effect on carbon emissions in six regions of China. a The
effect of a 10% CCPU shock on carbon emissions in North China.
b The effect of a 10% CCPU shock on carbon emissions in Northeast China.
c The effect of a 10% CCPU shock on carbon emissions in Eastern China.
d The effect of a 10% CCPU shock on carbon emissions in Southcentral
China. e The effect of a 10% CCPU shock on carbon emissions in
Southwest China. f The effect of a 10% CCPU shock on carbon emissions in
Northwest China. The yellow broken line indicates predicted mean values
and the light blue area to dark blue area denotes 70%, 90%, and 95%
confidence intervals.

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-02102-1

8 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2023) 10:689 | https://doi.org/10.1057/s41599-023-02102-1



emissions, the government should spend more on renewable
energy projects and encourage innovation in environmentally
friendly energy use to increase green energy production. In
addition, the government should support the development of
renewable energy technologies and provide appropriate subsidy
policies, which will aid in the reduction of carbon emissions.
Third, the outcomes of this study show that economic expansion
has a positive influence on carbon emissions. Therefore, the
government should balance economic development with envir-
onmental governance. Economic development should not come
at the expense of the environment. In addition, further improving
the quality of economic development is critical to achieving
carbon neutrality.

Although we have explored the impact of climate policy
uncertainty on CO2 emissions from a dynamic perspective, there
are still some limitations. Firstly, although we have constructed a
novel CCPU index in the current study, it is not a large enough
sample size. Therefore, additional research should be conducted
with richer data that can predict the influences of CCPU more
accurately. Secondly, future research should explore the potential
relationships between CCPU and CO2 emissions across countries,
which could shed light on the impact of CCPU on CO2 from a
worldwide perspective.

Data availability
We collected the data from the China Energy Statistics Yearbook,
the National Bureau of Statistics of China, and the Wind Eco-
nomic Database. The datasets analyzed during the current study
are available from the corresponding author upon reasonable
request.
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