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Abstract Estimation in extreme financial risk is often faced with challenges such as

the need for adequate distributional assumptions, considerations for data depen-

dencies, and the lack of tail information. Bootstrapping provides an alternative that

overcomes some of these challenges. It does not assume a distributional form and

asymptotically replicates the empirical density for resampled data. Moreover,

advanced bootstrapping can cater for dependencies and stationarity in the data. In

this paper, we evaluate the use of dependent bootstrapping, both for the original

financial time series and for its GARCH innovations (under the Gaussian and

Student t noise assumptions), in forecasting value-at-risk and expected shortfall. We

also assess the effect of using different window sizes for these procedures. The two

datasets used are daily returns of the S&P500 from NYSE and the ALSI from JSE.
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Introduction

The financial world is marred by levels of uncertainty and there is an ever increasing

need for financial institutions to estimate the risk of various positions. In particular, the

ability to quantify such risk enables risk managers to continuously re-evaluate the

adequacy of their risk capitalization against extreme losses. Value-at-risk (VaR) is a

financial riskmeasure made popular by J. P.Morgan, which is simply a chosen quantile

of the loss distribution. More precisely, Holton (2014) defined VaR to be the threshold

value of return or capital that a company’s or portfolio’s losses would not exceed, given

a specific probability level and time horizon.While VaR is widely used in practice, it is

not a coherent riskmeasure. Artzner et al. (1999) defined a coherentmeasure as one that

is monotonic, translation invariant, homogeneous, and sub-additive. VaR satisfies the

first three properties, but is not always sub-additive. Hence, an alternative risk measure

called expected shortfall (ES), sometimes also referred to as conditional VaR, is

introduced. It is defined as the expected loss of a portfolio or asset return, conditional on

a loss exceeding the corresponding VaR. ES is a coherent risk measure and is more

sensitive to the tail loss distribution.While VaR is still commonly used by practitioners,

ES has also gained more popularity in recent years due to the above finding.

Parametric approaches for estimating VaR and ES typically depend on an

accurate underlying distributional assumption of the financial data. Traditionally,

such risk measures were based on the assumption that asset returns are

independently and identically distributed (IID) according to the Gaussian distribu-

tion. It is well-known in practice that such assumptions are often inappropriate. The

resulting model also needs to capture various stylized facts of the financial time

series, such as volatility clustering, heavy tails, asymmetry, and long-range

dependency. Moreover, such approaches can be hindered by the lack of extreme

observations (which are, trivially, rare). Another common approach for modeling

asset returns is using the generalized autoregressive conditional heteroskedastic

(GARCH) model. While this model caters for the continually changing variance,

assumptions also need to be made regarding its innovations, or residuals. Typically,

the innovations are assumed to be IID and Gaussian. However, these assumptions

are not always suitable (for example, see Byström 2004; and, Huang et al. 2016). For

a comprehensive review on VaR estimation and backtesting, see Abad et al. (2014).

Bootstrapping procedures provide alternatives to overcome the challenges

mentioned above. In general, they do not rely on distributional assumptions of the

data and asymptotically replicate the empirical density for resampled data.

Moreover, block bootstrapping and stationary bootstrapping can also cater for

dependencies and stationarity in the data (Sunesson 2011). In this paper, we examine

the daily rolling one-day-ahead forecasts of VaR and ES using bootstrapping

procedures. More precisely, we apply ordinary, block, and stationary bootstrapping

to both the original financial series and its GARCH innovations (for two different

underlying noise assumptions). At the same time, we also assess the effects of using

different window sizes of historical data for these procedures. The two datasets used

are daily returns of the S&P500 from New York Stock Exchange (NYSE) and the

ALSI from Johannesburg Stock Exchange (JSE).
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The contribution to the literature is threefold. Firstly, the analyses should point

out whether dependent bootstrapping can improve performances, in terms of VaR

and ES estimation. In particular, we also examine whether the various bootstrap

procedures are more effective with or without GARCH implementations. These

are extensions to previous work on historical simulation and filtered historical

simulation, where only ordinary bootstrapping is used (see, for example, Zenti and

Pallotta 2000; Brandolini et al. 2001; Barone-Adesi et al. 2002; Lin et al. 2006;

Hartz et al. 2006; Brandolini and Colucci 2012; Cecarone and Colucci 2016).

Secondly, we test the approaches against different window sizes of historical data

and aim to conclude on the effects of window size selection in bootstrap VaR and

ES estimation. Lastly, we compare the performances of these methods across two

vastly different markets.

Methodology

The procedures implemented in this paper are generalized forms of historical

simulation and filtered historical simulation (Pritsker 2006). In other words, we infer

on a forecast of VaR or ES depending on information provided by past data. Hence,

one needs to decide on which and how much historical data to include. In our

analyses, we use the moving window technique (Richardson et al. 1997) for the re-

calculation of VaR and ES on a daily basis. The window sizes chosen are 250, 500,

and 1000 days, equivalent to approximately 1 year, 2 years, and 4 years of daily

observations. For example, using a window size of 250, we utilize the observations

from day 1 to day 250 to estimate VaR for day 251 and, accordingly, use

observations from day 2 to day 251 to estimate VaR for day 252, etc. This method is

implemented for the following bootstrapping procedures.

Ordinary bootstrapping

Bootstrapping is a resampling procedure first introduced by Efron (1979). Typically,

this involves repeated resampling, with replacement, from a given dataset, say

X1, X2, …, Xn, to produce numerous samples of size n. Then, a statistic of interest

is estimated from each sample, creating a series of estimates which can be used to

approximate the sampling distribution of the statistic. One drawback of the ordinary

bootstrapping procedure is that it assumes IID data while most real-world data are

rarely so rigid. Hence, to cater for dependent data, generalizations of the ordinary

bootstrapping have been proposed.

Block bootstrapping

Block bootstrapping, or moving block bootstrapping, is suited for resampling from a

dependent dataset. The method was introduced by Künsch (1989) and can be used to

replicate the correlation in the dataset by resampling blocks of data. It involves

dividing a dataset of n observations into n - b ? 1 overlapping blocks of fixed

length b. For example, the block beginning with the ith observation is of the form
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Bb
i ¼ Xi;Xiþ1; . . .;Xiþb�1f g:

Subsequently, n/b blocks are randomly selected, with replacement, from the

n - b ? 1 overlapping blocks and concatenated together. The concatenated

observations are then used to estimate the statistic of interest. Again, the process

is repeated several times to produce a series of estimates. In addition, we shall follow

Hall et al. (1995) in using the optimal block length b = n1/4 since we only focus on

the negative side of the returns distribution for our estimation of VaR and ES.

Stationary bootstrapping

A possible problem in using block bootstrapping is that the procedure eliminates

stationarity in the dataset. In other words, if the original dataset was stationary, the

block bootstrapped samples may not be. This can be overcome by allowing the

block length to be random (Politis and Romano 1994). The procedure is as follows.

A value p 2 (0, 1] is predefined, which is optimally1 taken to be c-1n-1/3. When

deciding whether an observation should be included in a block, a number u is

randomly drawn from the UNIFð0; 1Þ distribution. If u is less than 1 - p, we include

the observation into the current block. If u is greater than 1 - p, then a new block

construction is started. This algorithm is continued until all the observations have been

designated into blocks. Hence, the block length is a random variable following a

geometric distribution with parameter p. It also consequently renders the number of

blocks as a random variable. This modification preserves the stationarity property of

any data series.

GARCH

In addition to applying bootstrapping directly on financial returns datasets, we also

explore an alternative approach in bootstrapping the innovations, after the datasets

have been fitted with a GARCH(1,1) model. GARCH(1,1) was first introduced by

Engle (1982) and it has the general assumptions in the form of

Rt ¼ lt þ rtZt;

where Rt is the return at time t, lt is the mean function of the overall series, rt
2 is the

conditional variance, and Zt is the residual or innovation at time t. It is further

defined that

r2t ¼ a0 þ a1e
2
t�1 þ b1r

2
t�1;

where et = rtZt and a0, a1, and b1 are non-negative constants. It is typically

assumed that the innovation series is IID and follows the Gaussian distribution.2

1 The value for c is set to be 3.15 in our analysis, which is obtained by Monte Carlo simulation using a

Gaussian AR(1) process..
2 The process can also be estimated using a quasi-maximum likelihood estimation procedure (McNeil

and Frey 2000). In our case, this yielded almost identical results as the Gaussian assumption. Hence, we

only present the Gaussian results.
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Consequently, the normal quantiles can be back transformed to estimate the VaR or

ES of the original series. The innovations can also be extracted under the

assumption that they follow a Student’s t distribution and the respective quantiles

utilized as above. However, we shall implement the bootstrapping procedures on the

innovations instead and contrast our results against these approaches.

Validation Tests for VaR and ES

Mathematically, VaR can be defined as

VaRa Lð Þ ¼ inffm 2 R : P L�mð Þ� ag

for some probability level a and loss function L. Additionally, ES is defined as

ES ¼ E LjL[VaRa Lð Þf g:

To compare the performances of our VaR and ES estimates, we implement various

backtesting procedures for the two risk measures. In particular, we utilize the Kupiec

likelihood ratio test (Kupiec 1995) and the VaR duration test (Christoffersen and

Pelletier 2004) for the VaR estimates. The backtesting procedure in McNeil and Frey

(2000) is implemented for ES estimates.Generally, a higher p value for each test implies

a better estimate. However, care must be taken when interpreting the results as a whole.

The Kupiec test checks for the correct number of exceedances (i.e., unconditional

coverage) and the VaR duration test checks to see whether the VaR violations are IID.

The second test is strongly sensitive to the number of violations, which is more

problematic for very extreme levels of VaR. Moreover, the ES test is by definition

strongly dependent on the correspondingVaR estimates. As a result, we take theKupiec

test as our primary first check for a suitable model (identifying the highest p value), and

utilize the other two tests as secondary checks for desirable model properties (suitably

high p values).

Empirical results

In this paper, we examine the daily returns obtained from two indices, namely

S&P500 and ALSI, both extracted from McGregor BFA, and are dated from 03/01/

2000 to 11/06/2015 (giving a total of 4029 data points3). For each dataset, we

calculate the daily returns as

Rt ¼ ln
Ct

Ct�1

� �
;

where Ct is the closing stock price on day t. Table 1 presents the excess kurtosis and

skewness for both return series. Both series are leptokurtic and asymmetric, as

commonly observed in financial data. Hence, they deviate from the Gaussian

3 This excludes weekends. However, values for public holidays are taken as replicates of last available

prices by McGregor BFA. This is also in accordance with Cecarone and Colucci (2016)
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distribution. This is also highlighted by the QQ plots in Fig. 1, which indicate both

data series have tails significantly departing from the Gaussian distribution.

The partial autocorrelation function (PACF) plots in Fig. 2 show a number of

lags being marginally significant for both datasets, while the time series plots of the

returns (shown in Fig. 3) also exhibit volatility clustering. These are evidence that,

at least, some weak dependencies exist in the datasets. Hence, it justifies the use of

dependent bootstrapping.

After implementing a GARCH filter (for either case of Gaussian and Student

t noises) for both data series, we extract the corresponding residuals. The skewness

and excess kurtosis of these residual series are presented in Table 2. It is evidenced

that there are significant excess kurtosis (albeit lesser compared to the original data

series) and S&P500 innovations possess higher kurtosis than ALSI. The skewness is

also persistent in the residuals.

Table 1 Excess kurtosis and skewness for S&P500 and ALSI

Index Excess kurtosis Skewness

S&P500 8.5335 -0.1869

ALSI 3.9215 -0.1781

Fig. 1 Normal QQ plots of S&P500 (left) and ALSI (right)

Fig. 2 PACF plots for S&P500 (left) and ALSI (right)
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Figures 4 and 5 present the PACF plots for the GARCH residuals of S&P500 and

ALSI returns, respectively. All plots indicate very slow (if any) decay of autocorre-

lation, indicating long-range dependencies in theGARCH innovations. This is evidence

again that dependent bootstrapping may be required, instead of the usual IID bootstrap.

We now estimate VaR on a daily basis by utilizing the various bootstrapping

methods (without GARCH filters) and using a moving window of 250, 500, or 1000

trading days. VaR is calculated at 0.1, 1, 5, and 10% levels for both S&P500 and

ALSI returns. The resulting series of VaR estimates are presented by Figs. 6, 7, and

8 (using original return series) in Appendix 1. The results are also benchmarked

against corresponding VaR estimates obtained from the Gaussian distribution

(Fig. 9). The formal backtesting results of VaR and ES estimates are displayed in

Tables 5, 6, 7, and 8 in Appendix 1.

We observe that the bootstrap methods do perform better than the Gaussian

distribution, in terms of VaR estimation. This is apparent as the Gaussian VaR

estimates often underestimate the magnitude of risk, generating excess amount of

VaR violations. We also see that the selection of the moving window size plays an

essential role on how quickly the VaR estimates can return to normal levels after a

shock to the market. In particular, a smaller window size tends to accelerate the return

of VaR to normal levels, while a large window size can cause a lag of large VaR

estimates. These large VaR estimates can drastically cause an overestimate of the

actual magnitude of risk. Practically, this corresponds to a financial institute setting

Fig. 3 Time series plots for S&P500 (left) and ALSI (right)

Table 2 Excess kurtosis and skewness for GARCH innovations of S&P500 and ALSI

Noise assumptions S&P500 ALSI

Normal Student t Normal Student t

Skewness -0.3904 -0.4076 -0.2161 -0.2207

Excess kurtosis 1.3775 1.4741 0.7811 0.7836
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aside a larger-than-required risk capital even after a crisis has passed, which could

have been invested elsewhere. However, a small window allows for very little

information for extreme tails of the data. Moreover, as often depicted in the literature

(also evidenced from the figures in Appendix 1), direct bootstrapping on the returns is

in general slow in reacting to changes in the markets (even for the smallest window

size 250), as the model does not react quickly enough to the changing volatility.

Hence, we next look at bootstrapping in a filtered historical simulation procedure.

The return series are now filtered by GARCH processes, with either Gaussian or

Student t noise. The innovations are extracted and bootstrapped by the three

methods as before. Again, the three different window sizes are used and the risk

measures are estimated at the 4 different VaR levels. The backtesting results are

given in Tables 3 and 4, while the plots of VaR estimates from the various models

are given in Appendix 2.

It is clearly evidenced that the added GARCH effect is better at capturing the

changing variance and produced significantly more adequate models, relative to the

earlier results in Appendix 1. In Tables 3 and 4, we have also highlighted (in bold)

situations where dependent bootstrapping has produced equal or better results (for the

Kupiec test) than their IID counterpart. Although the performances between the

different bootstrappingmethods are quite similar, when restricted to a commonwindow

size and noise assumption, there is evidence of possible improvements from the IID

approach.

It may be interesting to note as well that the window size selection do have an

effect on the performance of the different models for the two indices, at various VaR

levels. For 10% VaR, window size of 500 seems to be the best choice. However,

window size 1000 is likely to be more adequate for more extreme VaR levels. In

fact, for ALSI returns, models with window size 1000 and Student t noise are

recorded as the only cases to produce satisfactory results for 0.1% VaR.

Fig. 4 PACF plots for S&P500 innovations (squared) under Gaussian noise (left) and innovations under
Student t noise (right)

Fig. 5 PACF plots for ALSI innovations under Gaussian noise (left) and innovations (squared) under
Student t noise (right)
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The comparisons across the two indices are also peculiar. In general, the models

seem to perform better for ALSI at 10 and 1% VaR levels, but are less effective

(relatively) for 5 and 0.1% VaR levels. This may be attributed to the vastly different

structures of the two different indices and how they react to sudden changes to the

market. It may also be interesting to note that the difference between better

performing models and the less adequate models is much larger for S&P500, as

compared to cases for ALSI. This is largely caused by the choice of window size,

making this factor a vital one for risk prediction in S&P500 returns.

In general, a GARCH filter should be applied and there seems to be some

evidence that dependent bootstrapping can improve VaR and ES estimation.

However, the models in general perform quite similarly, when restricted to similar

conditions. At the same time, window size selection does have an impact on model

performances, and more significantly so for S&P500 returns. The optimal model for

the two indices varies at different VaR levels. Our recommendation, thus far, is to

employ window size 1000 for ALSI returns (possibly for all VaR levels as window

size 500 is only marginally better at 10% VaR level) and window size 500 for

S&P500 at 10% VaR. As for 5, 1, and 0.1% VaR levels of S&P500, the better

choice is window size 1000. We also recommend using both block bootstrapping

and stationary bootstrapping to check which gives a better result. They tend to

produce similar results to ordinary bootstrapping, but one of them can at times give

improved estimates. It may be highly beneficial to explore a model switching

procedure to optimize the performance of these models.

Conclusion

In this paper, we have examined the use of dependent bootstrapping in VaR and ES

estimation for daily returns of S&P500 and ALSI. The bootstrap methods included the

ordinary bootstrap, block bootstrap, and stationary bootstrap. Furthermore, these

approaches were implemented with and without GARCH filters and are also contrasted

against the corresponding parametric approaches. As expected, the bootstrap methods

produced improved VaR results when compared to the parametric counterparts.

Furthermore, GARCH models brought further improved VaR and ES estimates.

Overall, we suggest a GARCH filter to be applied for both VaR and ES estimations.

Window size 1000 seems to be quite satisfactory for ALSI returns. However, for

S&P500, window size 500 can significantly improve the estimates at 10% VaR level

but must be reverted back to window size 1000 for more extreme VaR levels.

We suggest as further work to implement a model switching approach with

varying window size selections to fully capture the changing results across the VaR

levels. At the same time, this model should be able to adjust the bootstrapping

method accordingly to the particular window at hand. This is also left for further

investigation. Another avenue for exploration is to compare our results with other

backtesting procedures. For example, one may consider the new backtesting method

for ES proposed by Acerbi and Szekely (2017).

Dependent bootstrapping for value-at-risk and expected… 313



Appendix 1

Figures 6, 7, 8, and 9.

Fig. 6 Estimated VaR values for S&P500 (left) and ALSI (right) using ordinary bootstrapping, with
moving window sizes 1000, 500, and 250, respectively (top to bottom)

Fig. 7 Estimated VaR values for S&P500 (left) and ALSI (right) using block bootstrapping, with
moving window sizes 1000, 500, and 250, respectively (top to bottom)
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Fig. 8 Estimated VaR values for S&P500 (left) and ALSI (right) using stationary bootstrapping, with
moving window sizes 1000, 500, and 250, respectively (top to bottom)

Fig. 9 Estimated VaR values for S&P500 (left) and ALSI (right) using Gaussian distribution with
moving window sizes 1000, 500, and 250, respectively (top to bottom)
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Tables 5, 6, 7, and 8.

Table 5 Backtesting of daily one-day-ahead VaR estimates for S&P500 without GARCH filter

Win.

size

VaR level

(%)

Exp.

Vio.

Gaussian Ordinary

bootstrapping

Block

bootstrapping

Stationary

bootstrapping

Act.

Vio.

Kupiec Act.

Vio.

Kupiec Act.

Vio.

Kupiec Act.

Vio.

Kupiec

1000 10 302 205 \0.001 248 0.001 248 0.001 248 0.001

5 151 140 0.336 145 0.591 143 0.480 145 0.591

1 30 65 \0.001 43 0.029 43 0.029 43 0.029

0.1 3 40 \0.001 13 \0.001 13 \0.001 13 \0.001

500 10 352 302 0.004 331 0.217 329 0.177 331 0.217

5 176 188 0.375 181 0.723 177 0.963 181 0.723

1 35 79 \0.001 53 0.005 52 0.008 53 0.005

0.1 3 34 \0.001 12 \0.001 8 0.041 12 \0.001

250 10 377 361 0.359 384 0.737 382 0.8200 384 0.737

5 188 219 0.028 200 0.412 199 0.4550 200 0.412

1 37 90 \0.001 59 0.001 54 0.0130 59 0.001

0.1 3 33 \0.001 16 \0.001 16 \0.001 16 \0.001

Win. Size size of the moving windows, Exp. Vio. expected number of VaR violations, Act. Vio. actual

number of VaR violations, Kupiec p value of the Kupiec LR test

Table 6 Backtesting of daily one-day-ahead VaR estimates for ALSI without GARCH filter

Win.

size

VaR level

(%)

Exp.

Vio.

Gaussian Ordinary

bootstrapping

Block

bootstrapping

Stationary

bootstrapping

Act.

Vio.

Kupiec Act.

Vio.

Kupiec Act.

Vio.

Kupiec Act.

Vio.

Kupiec

1000 10 302 237 \0.001 281 0.182 280 0.162 281 0.182

5 151 146 0.651 144 0.534 144 0.534 144 0.534

1 30 60 \0.001 35 0.400 34 0.505 35 0.400

0.1 3 27 \0.001 10 0.002 10 0.002 10 0.002

500 10 352 306 0.007 367 0.428 366 0.461 367 0.428

5 176 170 0.619 181 0.723 180 0.782 181 0.723

1 35 69 \0.001 41 0.345 41 0.345 41 0.345

0.1 3 25 \0.001 11 0.002 7 0.103 11 0.002

250 10 377 336 0.021 396 0.327 391 0.476 396 0.327

5 188 189 0.994 210 0.122 201 0.371 210 0.122

1 37 76 \0.001 55 0.008 49 0.079 55 0.008

0.1 3 36 \0.001 27 \0.001 21 \0.001 27 \0.001

Win. Size size of the moving windows, Exp. Vio. expected number of VaR violations, Act. Vio. actual

number of VaR violations, Kupiec p value of the Kupiec LR test
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Appendix 2

Figures 10, 11, 12, 13, 14, 15, 16, and 17.

Table 7 Backtesting of daily one-day-ahead ES estimates for S&P500 without GARCH filter

Win.

size

VaR level

(%)

Gaussian Ordinary

bootstrapping

Block

bootstrapping

Stationary

bootstrapping

1000 10 0.053 0.013 0.016 0.018

5 0.031 0.038 0.041 0.051

1 0.018 0.022 0.023 0.025

0.1 0.114 0.521 0.546 0.537

500 10 0.023 0.033 0.049 0.050

5 0.041 0.044 0.056 0.053

1 0.043 0.154 0.161 0.155

0.1 0.015 0.233 0.203 0.217

250 10 0.018 0.041 0.045 0.046

5 0.058 0.024 0.037 0.038

1 0.410 0.289 0.135 0.134

0.1 0.004 0.004 0.018 0.002

Table 8 Backtesting of daily one-day-ahead ES estimates for ALSI without GARCH filter

Win.

Size

VaR level

(%)

Gaussian Ordinary

bootstrapping

Block

bootstrapping

Stationary

bootstrapping

1000 10 0.125 0.151 0.161 0.167

5 0.260 0.157 0.172 0.166

1 0.149 0.180 0.162 0.192

0.1 0.229 0.387 0.417 0.417

500 10 0.405 0.528 0.576 0.605

5 0.293 0.347 0.369 0.403

1 0.214 0.285 0.315 0.316

0.1 0.078 0.022 0.031 0.028

250 10 0.111 0.111 0.205 0.303

5 0.158 0.158 0.271 0.238

1 0.015 0.015 0.035 0.002

0.1 \0.001 \0.001 \0.001 \0. 0 01
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Fig. 10 Estimated VaR values for S&P500 (left) and ALSI (right) using GARCH(1,1)-Normal and
ordinary bootstrapping with moving window sizes 1000, 500, and 250, respectively (top to bottom)

Fig. 11 Estimated VaR values for S&P500 (left) and ALSI (right) using GARCH(1,1)-Normal and block
bootstrapping with moving window sizes 1000, 500, and 250, respectively (top to bottom)
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Fig. 12 Estimated VaR values for S&P500 (left) and ALSI (right) using GARCH(1,1)-Normal and
stationary bootstrapping with moving window sizes 1000, 500, and 250, respectively (top to bottom)

Fig. 13 Estimated VaR values for S&P500 (left) and ALSI (right) using GARCH(1,1)-Normal and
Gaussian residuals with moving window sizes 1000, 500, and 250, respectively (top to bottom)
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Fig. 14 Estimated VaR values for S&P500 (left) and ALSI (right) using GARCH(1,1)-t and ordinary
bootstrapping with moving window sizes 1000, 500, and 250, respectively (top to bottom)

Fig. 15 Estimated VaR values for S&P500 (left) and ALSI (right) using GARCH(1,1)-t and block
bootstrapping with moving window sizes 1000, 500, and 250, respectively (top to bottom)
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Fig. 16 Estimated VaR values for S&P500 (left) and ALSI (right) using GARCH(1,1)-t and stationary
bootstrapping with moving window sizes 1000, 500, and 250, respectively (top to bottom)

Fig. 17 Estimated VaR values for S&P500 (left) and ALSI (right) using GARCH(1,1)-t and Student t
residuals with moving window sizes 1000, 500, and 250, respectively (top to bottom)
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