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Abstract
The demand for port services is intricately tied to international trade between pro-
duction centers and the global market. This paper introduces a unique econometric 
forecasting model tailored to predict container port throughput at a transshipment 
hub, leveraging the dynamic and uncertain nature of international trade flows, origi-
nating from three global production centers: China, the USA, and Germany. The 
paper examines how the trade flow dynamics of these centers impact a transship-
ment hub, especially in scenarios where the hub is strategically positioned along 
major shipping routes, serving as the sole container transshipment facility in a 
region. The validation of the model is conducted through empirical testing using 
time series analysis of trade flows from the above three major production centers 
to the South Asian port region. The Port of Colombo (PoC) is used as the regional 
hub port. The model incorporates external shocks to assess their influence on the 
demand for the services of the hub and its resilience to global disruptions. Findings 
indicate the substantial influence of China, with a notable impact on exports to the 
USA from South Asia and imports from Europe and Central Asia to China, estab-
lishing positive and long-term relationships with PoC. Furthermore, the paper offers 
insights into PoC’s resilience during crises such as the Red Sea incident, leveraging 
its strategic location. The findings not only contribute in developing PoC’s strategic 
position, but they also lay the groundwork for future studies on global trade patterns 
and the adaptability of transshipment hubs in the face of dynamic demand.
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1 Introduction

Demand for seaport services depends on the structure of trade between a country 
and the rest of the world (Notteboom et al. 2022). Demand for transshipment ser-
vices, however, depends not only on national demand but also on trade between third 
countries and major production centers. In maritime supply chains (MSC), shipping 
(links) and seaports (nodes) play a vital role in merchandise trade (Jiang et al. 2021). 
General cargo goods are typically transported in containers, and transshipment hubs 
facilitate their efficient handling in a relay network connecting production centers 
with demand points. Haralambides (2017) further mentions that containerships in 
deep-sea liner trades select only a few transshipment ports, which have become the 
foci of international trade in a hub-and-spoke network. The expansion of container 
terminal capacity, including its potential for transshipment, persists without inter-
ruption. This is a customary occurrence and, over time, port capacity aligns with the 
growth of international trade. Consequently, the capacities of transshipment ports 
must align with anticipated shifts in demand, accounting for the dynamic nature 
and volatility of international trade flows originating from major production cent-
ers. Of particular significance are the trade flows from such production centers to 
feeder market regions associated with transshipment ports within a hub-and-spoke 
network. Thus, the adaptability and scalability of transshipment hubs become para-
mount considerations to efficiently accommodate evolving trade patterns and meet 
the demands of global commerce. Figure  1 presents the link between production 
centers and demand points via transshipment hubs.

Figure  1 illustrates a transshipment hub port (THi) connected with shipping 
routes and international trade flows to and from the major production centers (PC1, 
PC2, PC3..Pi), regional markets (FN1, FN2, FN3,…Fi) in the proximity of TH, and 
its hinterland (LH). Demand for THi and its capacity requirements are determined by 
variations in trade flows originating from, and destined for, each production center 
and hinterland markets. Therefore, it is crucial to align the expansion of capacities 
and the number of transshipment hubs in the region with anticipated increases in 
trade volumes to ensure they can accommodate future international demand, which 
typically fluctuates with business cycles of economic growth, recessions, crises, and 
recoveries (UNCTAD 2022). Uncertainty in trade flows arises from both local cir-
cumstances and global developments such as the financial meltdown of 2008–2009 
(Feng et al. 2019), the 2015 financial crisis in the USA (Strandenes & Thanopou-
lou 2020), and COVID-19 (Clarksons, 2023). According to World Trade Organiza-
tion (2023) statistics, China is the leading exporter and importer, followed by the 
USA and Germany, as major world production centers. UNCTAD (2022) further 
mentions that intra-Asia routes, serving intra-regional supply chains, experienced 
the fastest growth from 2015 to 2022, mirroring global manufacturing trends. This 
growth was particularly notable between 2021 and 2022, with China acting as the 
global manufacturing center, supported by adjacent East Asian countries supplying 
various intermediate goods.

Transshipment ports play a critical role as strategic nodes in global supply 
chains. The management and operations of transshipment hubs have become 
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increasingly complex due to growing trade volumes and carrier demands for port 
capacity and higher efficiency. Ports need to carefully plan their development 
and operations according to throughput forecasts. These become more challeng-
ing due to hinterland development and the consequent stochastic nature of the 
demand for port services (Cong et  al. 2020; Munim et  al. 2023; Dragan et  al. 
2021; Notteboom & Haralambides 2020; Du et al. 2019). Furthermore, Haralam-
bides (2019) provides an extensive analysis of the impacts of increasing vessel 
sizes on port infrastructure and global logistics. This work is critical for under-
standing the challenges and opportunities that hub ports face in the context of 
international trade.

In view of the above, the main objective of this paper is to develop an econo-
metric forecasting model for the container throughput of a transshipment hub port 
connected with shipping routes and international trade flows to and from major 
production centers and regional markets in the hub’s vicinity. The model incorpo-
rates the trade dynamics of major production centers and global uncertainty. The 
paper is structured as follows: Sect. 2 presents a review of previous studies. The data 
and methodology are detailed in Sect. 3. Data analysis and their discussion are pre-
sented in Sect. 4, and the study concludes with policy implications along with future 
research directions in Sect. 5.

PC2PC1

PC 3

FN1

FN2 FN3

LH

TH

TH
Transhipment hub location belongs 
to LH (Local Hinterland / small 
nation)

Geographical economic
region 

Production centers 
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Fig. 1  Link between production centers and demand points via transshipment hubs.  Source: The authors
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2  Literature review

Past research focusing on country level context has presented various port 
throughput forecasting models. Chou et al. (2008) developed an adjusted regres-
sion model for forecasting the volumes of import and export containers at ports 
in Taiwan using stepwise regression. Their model included containerized imports 
and exports as dependent variables and explanatory variables such as population, 
industrial production, gross national product (GNP), GNP per capita, wholesale 
price index, gross domestic product (GDP), agriculture GDP, industry GDP, and 
service GDP of Taiwan. The findings indicate that the modified regression model 
has superior predictive accuracy compared to other forecasting methods.

Tsai and Huang (2017) used GDP, exchange rates, economic growth, industry 
production index, per capita gross domestic production, and import and export 
trade value of Japan, Hong Kong, China, Taiwan, South Korea, and Singapore 
to develop artificial neural networks (ANNs) for predicting port throughput. The 
results indicated that prediction errors were relatively small, thus encouraging 
shipping companies to use their model in predictions of container flows.

The Vector Error Correction Model (VECM) developed by Gosasang et  al. 
(2018) forecasted the port throughput of Laem Chabang Port using imported 
(inbound) and exported (outbound) containers, alongside variables such as eco-
nomic growth rate, interest rates, inflation rate, fuel price, exchange rate, popula-
tion, trade value of imports and exports, manufacturing production index (MPI), 
and industrial production index (IPI). The results entailed implications for port 
planning strategies related to capacity improvements in port terminals.

Rashed et  al. (2018) developed an Autoregressive Distributed Lag (ARDL) 
model for ports in the Hamburg–Le Havre range using the volume of exports 
and imports, final household consumption, and total manufacturing output of the 
port’s host country. Their results highlighted a long-term relationship between the 
trade indices of the EU19 and the overall container throughput, indicating a rela-
tively high demand elasticity for port services.

Tang et  al. (2019) presented multiple predictive models, including a grav-
ity model, a triple exponential smoothing one, multiple linear regression, and a 
backpropagation neural network model, using data on total retail sales of con-
sumer goods, GDP of the local city, import and export trade volumes, total out-
put value of the manufacturing industry, and total fixed asset investment, to pre-
dict demand for Lianyungang Port and Shanghai Port. The comparison of model 
results showed that the backpropagation neural network model is more suitable in 
forecasting container throughput.

Cong et al. (2020) examined the impact of port throughput on port city econ-
omy using panel data from 16 ports with a Granger Causality test. Findings 
indicated that port throughput influences significantly Gross Domestic Product 
(GDP), although it has a negative effect on total retail sales of consumer goods 
(TRSCG). Port throughput showed synchronous growth with the added value of 
the secondary sector but exhibited a negative correlation with the primary and 
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tertiary sectors. The causality test confirmed an interactive relationship between 
the economy of port cities and port throughput across the sampled city-port pairs.

Dragan et al. (2021) presented a dynamic factor analysis model—the Autoregres-
sive Integrated Moving Average (ARIMAX) model—principal component regres-
sion, and Monte Carlo simulation, to forecast cargo throughput in the Adriatic sea-
port of Koper. The authors used data on liquid bulk, solid bulk cargo, general cargo, 
total cargo, containers, import, export, purchasing power parity, and GDP per capita. 
Their results indicated that a predictive system, due to its enhanced ability to fore-
cast observed throughputs, can be regarded as a functional decision support system, 
and the proposed models surpass competing predictive models on port performance. 
Apart from using macroeconomic factors in forecasting models found in literature, 
several models exist to predict demand under uncertainty (Table 1).

Table 1 illustrates the array of uncertainties inherent in various predictive meth-
odologies for demand forecasting in maritime contexts. Past research has predomi-
nantly concentrated on constructing predictive frameworks utilizing macroeconomic 
indicators and external perturbations for individual ports or clusters of ports within a 
region. However, previous studies have failed to model container throughput fluctua-
tions, especially those related to connections between major production centers and 
hub ports, as well as inter-port trade dynamics within a port region. This represents 
a notable void in scholarly discourse, as there has been limited attention devoted to 
developing forecasting models tailored specifically for transshipment ports, particu-
larly concerning the intricate trade dynamics associated with global production cent-
ers. This paper addresses this gap by introducing an econometric approach specifi-
cally tailored for transshipment hubs, incorporating trade dynamics stemming from 
the world’s primary production centers.

3  Methods and model development

This section outlines the methodological approach employed in our study to inves-
tigate the shipping and trade dynamics between the major production centers and 
the regional markets. The methodology is structured to identify causality, test for 
stationarity, assess long-term equilibrium, and estimate the vector error correction 
model (VECM). Each stage leverages robust statistical techniques to ensure the reli-
ability and validity of the results.

3.1  Stage 1: identification of causality

The Granger causality test was used to establish the usefulness of a variable in fore-
casting another, applied to identify pairwise causality between variables of time 
series data, of a high possibility for multicollinearity (Granger 1969). We use the 
Toda–Yamamoto (T–Y) approach of the Granger causality test which is superior to 
the traditional Granger causality test (Toda & Yamamoto 1995). T–Y eliminates the 
need for pre-testing for cointegration and it is suitable for any level of integration 
of the employed series and procedure of Granger causality test; it is moreover valid 
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irrespective of whether the series is  I  (0),  I  (1), or  I  (2). If a time series, Yt , can 
anticipate the future of another, Xt, then Yt “Granger-causes”  Xt. These two variables 
were considered with time period T, (t = 1, 2, … T) indicating their results at time 
t. A bivariate AR model can be written as shown in (1) and (2) to model Xt and Yt 
(Granger 1969).

where β0, β1, �i �i, �i , and �i are parameters and  et is the error term. Coefficients were 
estimated by Ordinary Least Squares. The F-statistic was used for the significance 
test. We tested for stationarity (below) and autocorrelation of the residuals  (elt and 
 e2t).

3.2  Stage 2: testing for stationarity

As data on port demand are time series, stationarity is an important condition in 
regression analysis. We thus employed the Augmented Dickey–Fuller (ADF) test 
(Dickey & Fuller 1979) and the Phillips–Perron (P–P) test (Phillips & Perron 1988) 
to test for stationarity and the results are shown in Tables 2 and 3.

Table 2 confirmed that series are not stationary at levels but they are at first dif-
ferences (Table 3). Therefore, the series are I(1) integrated.

3.3  Stage 3: testing variables for long‑term equilibrium

The Engle–Granger two-step procedure and the Vector Error Correction Model 
(VECM) were used (Engle & Granger 1987; Johansen & Juselius 1990). The esti-
mation of the long-run relationships using Ordinary Least Squares (OLS) and the 
subsequent Error Correction Model (ECM) specification are commonly employed 
in cointegration analysis in maritime economics (Enders 2014). Diagnostic tests 
such as the Breusch–Godfrey test for autocorrelation and the Breusch–Pagan test for 
heteroskedasticity are standard procedures for validating ECMs in maritime-related 
research (Brooks 2014).

The long-run equilibrium relationship among the variables is estimated by Ordi-
nary Least Squares (OLS). The regression equation is specified as

where  Yt is the dependent variable; Xt represents the set of explanatory variables, 
and εt denotes the error term. The residuals (εt) from the OLS regression were 
extracted and tested for stationarity using the ADF test. If the residuals are found to 
be stationary, then the variables are cointegrated.

(1)Xt = �0 +

n
∑

i=1

�iYt−i +

n
∑

i=1

�iXt−i + e1t

(2)Yt = �1 +

n
∑

i=1

θiYt−i +

n
∑

i=1

δiXt−i + e2t

(3)Yt = � + �Xt + �t,
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Given the presence of cointegration, the second step involved specifying and 
estimating the Error Correction Model. The ECM captures both short-term dynam-
ics and the long-term equilibrium relationship. The error correction term (ECT) is 
incorporated into the short-term dynamics model. The general form of the ECM is

where Δ denotes first differences; γi are short-term coefficients; δ is the speed of 
adjustment coefficient; ECTt − 1 is the lagged error correction term; and νt is the 
white noise error term. The ECM parameters are estimated using OLS. Diagnostic 
tests, including tests for autocorrelation (Breusch–Godfrey test) and heteroskedastic-
ity (Breusch–Pagan test) are carried out to validate the model. Model Specification 
is therefore given by

(4)ΔYt = �0 +

p
∑

i=1

�iΔXi,t + �ECTt−1 + �t,

Table 2  Results of ADF and PP tests for unit root in levels

Variables ADF Fisher Chi-square PP Fisher Chi-square

Individual 
intercept

Individual 
intercept and 
trend

None Individual 
intercept

Individual 
intercept and 
trend

None

TEU 0.9599 0.5667 0.9993 0.9553 0.5079 0.9973
TMC 0.9995 0.8315 0.9999 0.9994 0.8027 0.9999
TMG 0.8406 0.3589 0.9608 0.8826 0.3934 0.9665
TUSA 0.9625 0.2485 0.9928 0.9984 0.2916 1.0000
SA to CN (M) 0.9023 0.6334 0.0027 0.8959 0.6383 0.8638
SA to CN (X) 0.9369 0.3144 0.9357 0.9369 0.5028 0.9046
SA to GE (M) 0.6181 0.9307 0.7093 0.6127 0.9032 0.6893
SA to GE (X) 0.7483 0.9460 0.9049 0.6059 0.4823 0.7680
SA to USA (M) 0.8173 0.2199 0.8038 0.8610 0.2686 0.8693
SA to USA(X) 0.9423 0.3226 0.9897 0.9672 0.4019 0.9929
CN to AF (M) 0.0319 0.3107 0.0065 0.7421 0.6151 0.659
CN to AF (X) 0.9843 0.5917 0.9939 0.9792 0.5917 0.9875
CN to EU and 

CA (M)
0.9740 0.2979 0.9932 0.9694 0.5285 0.9932

CN to EU and 
CA (X)

0.9717 0.4427 0.9930 0.9792 0.4397 0.9919

CN to ME and 
NA (M)

0.7711 0.1531 0.7123 0.8037 0.5232 0.7240

CN to ME and 
NA (X)

0.9724 0.4694 0.9918 0.9611 0.5763 0.9695

CN to UAE (M) 0.2414 0.5967 0.0345 0.9945 0.7371 0.9885
CN to UAE(X) 0.8928 0.4513 0.9300 0.8775 0.6717 0.8993
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With two dummy variables:

Φ, α, β, δ, γ, Ω are parameters and ζ is error term. X is represented by the respec-
tive variable (Table 7), which has a granger caused with TEU.

(5)
ΔTEUt = �1 +

p
∑

l=1

�l ΔTEUt−l +

n
∑

i=1

p
∑

l=1

�i,l ΔXt−l +

+ �1ECTt−1 + �t

.

(6)
ΔTEUt = �1 +

p
∑

l=1

�lΔTEUt−l +

n
∑

l=1

p
∑

l=1

�i,lΔXt−l

+�1ECTt−1 + �FC + ΩC19 + �t

.

Table 3  Results of ADF and PP tests for unit root in first differences

Variables At 1st difference—ADF-Fisher Chi-
square

At 1st difference—PP-Fisher Chi-square

Individual 
intercept

Individual 
intercept and 
trend

None Individual 
intercept

Individual 
intercept and 
trend

None

TEU 0.0002 0.0061 0.0422 0.0002 0.0016 0.0005
TMC 0.0013 0.0017 0.0014 0.0013 0.0017 0.0014
TMG 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000
TUSA 0.0003 0.0022 0.0002 0.0003 0.0016 0.0003
SA to CN (M) 0.4661 0.9416 0.1632 0.0024 0.0161 0.0002
SA to CN (X) 0.0033 0.0155 0.0004 0.0033 0.0155 0.0004
SA to GE (M) 0.0025 0.0116 0.0001 0.0024 0.0110 0.0001
SA to GE (X) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SA to USA (M) 0.0006 0.0036 0.0001 0.0017 0.0186 0.0001
SA to USA(X) 0.0001 0.0005 0.0001 0.0001 0.0003 0.0001
CN to AF (M) 0.0098 0.0473 0.0006 0.0181 0.0844 0.0009
CN to AF (X) 0.0043 0.0165 0.0018 0.0046 0.0184 0.0019
CN to EU and 

CA (M)
0.0068 0.0153 0.0022 0.0104 0.0454 0.0022

CN to EU and 
CA (X)

0.0003 0.0015 0.0002 0.0003 0.0015 0.0002

CN to ME and 
NA (M)

0.0022 0.0146 0.0006 0.0200 0.1085 0.0011

CN to ME and 
NA (X)

0.0092 0.0388 0.0034 0.0102 0.0426 0.0036

CN to UAE (M) 0.0013 0.0045 0.0002 0.0015 0.0012 0.0002
CN to UAE(X) 0.0057 0.0296 0.0008 0.0074 0.0386 0.0010
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3.4  Stage 4: Collection of data

The model was estimated using annual container throughput data (1991–2023) of 
the Port of Colombo obtained from the Clarksons research network (Clarksons 
2023) and the total merchandise exports of China, Germany, USA, and India and the 
trade flows between production centers and South Asia were obtained from the data 
published by the World Trade Organization and its World Integrated Trade Solu-
tion (WITS) database (WITS 2023; WTO 2023). The model included two dummy 
variables to capture the uncertainty of trade flows. The dummies represented the 
financial crisis in 2008/2009 (IMF 2023) and COVID-19 in 2019 (Xu et al. 2021). 
Table 4 presents the data used.

3.5  Stage 5: model testing

The model was tested using in five scenarios using the container throughput of the 
Port of Colombo as the dependent variable: D(TEU). They are as follows:

Scenario 1: VECM model with China production center merchandise trade flows;
Scenario 2: VECM model with Germany production center merchandise trade 
flows;
Scenario 3: VECM model with USA production center merchandise trade flows;
Scenario 4: VECM model with China, Germany, and USA trade as production 
centers to South Asia; and
Scenario 5: VECM model with China production center trade to main regions 
associated with the PoC.

Fig. 2  Strategic Location of the Port of Colombo.  Source: Based on Notteboom et al. (2024)
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4  Analysis of results

4.1  Descriptive statistics

The Port of Colombo, as a transshipment port, benefits from cargo coming from and 
going to Europe, East and South Asia, the Persian Gulf, and East Africa. Much of 
this traffic transits (transships at) the port (SLPA 2023), due to its strategic location 
along the east–west main trunk routes (Kavirathna et al. 2021).

Figure 2 illustrates the strategic position of the Port of Colombo along key ship-
ping routes linking major production centers. In addition to catering to its own 
region, the port serves as a crucial link between the Persian Gulf and East Africa, 
facilitating seamless maritime connectivity. Notteboom et  al. (2024), citing the 
recent Red Sea crisis, highlight the significance of the Port of Colombo as a trans-
shipment hub located in close proximity to the crisis area. During the crisis, the port 
had to handle a surge in traffic and redirect some small capacity vessels to the Ham-
bantota International Port, situated in the southern part of Sri Lanka along the Belt 
and Road Initiative (BRI). This maneuver not only managed traffic levels but also 
ensured optimal service for cargo vessels. Such actions underscore the pivotal role 
of the Port of Colombo in the broader regional maritime landscape. As mentioned 
by Haralambides and Merk (2020), the main feature of a hub port is its location near 
the main shipping routes, as well as connections to large population and production 
centers. Therefore, the PoC is a best-case study for examining connections to pro-
duction centers.

Figure 3 demonstrates the container throughput of the PoC from 1991 to 2023. 
Throughput has increased over the years, with a slight leveling off in 2019 due to 
COVID-19 and its impact on trade. Table 5 presents the descriptive statistics of the 
dependent and the seventeen independent variables chosen to specify our forecasting 
model.

The average annual container throughput at PoC in the period 1991 to 2023 stood 
at 3.517 million TEU, with a range from a minimum of 0.683 million to a maximum 

Fig. 3  Container Traffic at the Port of Colombo.  Source: Authors, based on data from Clerkson shipping 
Intelligence (Clarksons 2023)
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of 7.249 million. Analyzing production center merchandise export statistics reveals 
China as the world’s biggest exporter, followed by the USA and Germany. Regard-
ing trade with South Asia, data show that the USA imports more than China from 
this region (Table 5). In South Asia, China records the highest import flows, while 
her maximum export flow heads towards the USA. Beyond South Asia, China’s 
imports originate predominantly from Europe and Central Asia followed by trade 
with the Middle East and North America.

4.2  Statistical tests and econometric results

Following tests on stationarity, before modeling for identifying the long-run rela-
tionships among the trade flows, we tested for normality of data series and multicol-
linearity among exogenous variables. Jarque–Bera statistics indicated no significant 
deviations from normal distribution across all series, further supported by skewness 
and kurtosis values ranging between + 3 and − 3 (Table 5). We identified the exist-
ence of multicollinearity among variables, first through the correlation coefficients 
and then through the Granger Causality test. The correlation test results (Table 6) 
showed that there is a strong significant (P = 0.00) linear association between all 
independent variables and the dependent variable (TEU), and there is a strong sig-
nificant correlation (r > 0.8, P = 0.00) among the independent variables and TEU of 
the PoC.

To identify causality of variables with TEU, the Granger causality test was used 
and the results are shown in Table 7.

Based on the results of the Granger Causality test, out of the 17 variables exam-
ined, 10 variables exhibited significant Granger causality towards TEU, nota-
bly China (TMC), Germany (TMG), and the USA (TUSA). Exports from China, 
Germany, and the USA to South Asia also exhibited significant Granger causal-
ity towards TEU. Further analysis revealed that trade flows from China, including 
exports to Africa, the Middle East, North America, and the UAE, as well as Chi-
na’s imports from Europe and Central Asia, displayed significant Granger causality 
towards TEU at the Port of Colombo. These findings underscore the intricate rela-
tionship between international trade dynamics and container throughput at the Port 
of Colombo, highlighting the influence of major production centers and key trade 
routes on port activity.

After filtering variables according to the Granger Causality test, further analysis 
was carried out to identify short- and long-run relationships.

Figure 4 demonstrates a linear association between TEUs and the considered var-
iables, while the total merchandise exports of China have a greater association than 
the other variables.

Based on Fig. 5, exports from South Asia to the USA exhibit a stronger linear 
association with the throughput of Colombo, compared to exports from Germany 
and China.

Further, China’s imports from Europe and Central Asia exhibit a strong linear 
association with TEU of PoC (Fig. 6). Following diagnostic test results, scenarios-
based modeling of trade flows was carried out.
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4.2.1  Scenario 1: VECM model with China as a production center merchandise trade 
flow

The modeling results of China’s merchandise exports to the rest of world demon-
strated a highly significant long-run relationship (the coefficient of ECT is negative 
and statistically significant; P = 0.0064) with the throughput of PoC (Table 8). Fur-
thermore, past variations in TEUs have a persistent influence on current changes 
in throughput (0.5781 with P = 0.0053) with a positive relationship between the 

Table 7  Pairwise Granger 
causality test results (only 
causality towards TEU)

Pairwise Granger causality tests

Lags: 2

Null Hypothesis: the variable does not Granger cause TEU

No of 
observa-
tions

F-statistic Prob

TMC 30 4.40417 0.0230
TMG 30 2.7727 0.0817
TUSA 30 6.0839 0.0070
SA to CN (X) 29 3.9034 0.0341
SA to GE (X) 29 3.3510 0.0521
SA to USA(X) 29 6.6123 0.0052
CN to AF (X) 27 3.7244 0.0404
CN from EU and CA(M) 27 4.5348 0.0224
CN to ME and NA (X) 27 3.4998 0.0479
CN to UAE(X) 27 4.3101 0.0263
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Fig. 4  Scatter Plot of TEUs associated with TMC, TMG, and TUSA
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Fig. 5  Scatter Plot of TEUs with Trade towards SA from CN, GE, and USA
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Fig. 6  Scatter Plot TEU with Trade direction of China

Table 8  Modeling results with 
China’s production flow without 
uncertainty factors

Breusch–Godfrey Serial Correlation LM Test F-Statistic (1.839), 
Prob. F (2, 22) 0.1825
Heteroskedasticity Test: Breusch–Pagan–Godfrey F-Statistic 
(0.9751), Prob. F (4, 24) 0.4395

Variable Coefficient Std. Error t-statistic Prob

D[TEU(-1)] 0.578165 0.188472 3.067640 0.0053
D(TMC) 1.046403 0.255593 4.094025 0.0004
D[TMC(-1)]  − 1.126999 0.363930  − 3.096744 0.0049
ECT (-1)  − 0.255247 0.085471  − 2.986343 0.0064
C 91571.34 62804.30 1.458043 0.1578
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variation in TMC and in TEUs, implying that an increase in China’s merchandise 
exports leads to an increase in PoC throughput (1.0464), and a decrease in China’s 
merchandise exports in the previous period leads to an increase in throughput in 
the current period (− 1.1269). The negative coefficient of Error Correction Term 
(0.255247) suggests that if the system deviates from its long-run equilibrium by one 
unit in the previous period, it will be corrected by approximately 0.255247 units 
in the current period. When the above model is modified to incorporate uncertain-
ties stemming from the COVID-19 pandemic and the financial crisis as external 
shocks, neither of these variables influences significantly the modeling results of 
PoC throughput (Table 9).

The model retains its validity criteria, as evidenced by the coefficient values of 
the uncertainty variables COVID (P: 0.3655 > 0.05) and FC (P: 0.7547 > 0.05). 
The modeling results show a persistent influence of past variations on the current 
changes in TEUs, indicating a strong feedback mechanism within the global trade 
network. The positive relationship between changes in China’s merchandise exports 
and TEUs underscores the symbiotic nature of trade dynamics, whereby an increase 
in China’s exports tends to stimulate demand for shipping services, reflected in the 
rise in TEUs handled at the port. Our findings suggest that while external shocks 

Table 9  Modeling results with 
China’s production flow and 
uncertainty factors

Breusch–Godfrey Serial Correlation LM Test F-Statistic (2.8996), 
Prob. F (2, 20) 0.0784
Heteroskedasticity Test: Breusch–Pagan–Godfrey F-Statistic 
(1.0179), Prob. F (6, 22) 0.4395

Variable Coefficient Std. Error t-statistic Prob

D[TEU(-1)] 0.584339 0.194480 3.004621 0.0065
D(TMC) 0.991980 0.272100 3.645646 0.0014
D[TMC(-1)]  − 1.084265 0.385760  − 2.810727 0.0102
ECT(-1)  − 0.184290 0.115999  − 1.588723 0.1264
COVID-19  − 190505.7 206174.9  − 0.924001 0.3655
FC 43436.49 137311.0 0.316337 0.7547
C 97506.46 66220.05 1.472461 0.1551

Table 10  Modeling results with 
Germany’s production flows 
without uncertainty factors

Breusch–Godfrey Serial Correlation LM Test F-Statistic (0.1956), 
Prob. F (2, 22) 0.8237
Heteroskedasticity Test: Breusch–Pagan–Godfrey F-Statistic 
(0.8056), Prob. F (4, 24) 0.5337

Variable Coefficient Std. Error t-statistic Prob

D[TEU(-1)] 0.314530 0.188108 1.672074 0.1075
D(TMG) 1.292031 0.376412 3.432492 0.0022
D[TMG(-1)]  − 0.789281 0.449048  − 1.757678 0.0916
ECT (-1)  − 0.078982 0.067549  − 1.169256 0.2538
C 129,889.5 58,719.27 2.212043 0.0367
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may temporarily disrupt trade flows, the underlying relationship between China’s 
merchandise exports and global trade remains robust. The ability of the model to 
accommodate uncertainty variables underscores its adaptability in capturing the 
evolving dynamics of international trade and their influence on the hub port.

4.2.2  Scenario 2: VECM model with Germany’s merchandise trade flow

The modeling results of Germany’s exports to the rest of the world demonstrated an 
insignificant long-run relationship (the coefficient of ECT is negative and but statis-
tically insignificant; P = 0.25) port throughput (Table 10). Therefore, modeling was 
carried out to identify any short-run relationships (Table 11).

The TEU coefficient suggests that, ceteris paribus, a one-unit increase in the 
lagged value of TEU leads to a 1.03018 unit increase in the current period’s TEUs. 
This indicates a positive autocorrelation effect, meaning that the past year val-
ues of TEU have a persistent influence on the current volumes of TEU. However, 
longer period demonstrates insignificant relationship. The coefficient of TMG indi-
cates that a one-unit increase in the current period’s total merchandise exports of 
Germany results in a 1.2447 unit increase in TEUs, ceteris paribus. This suggests 
a positive relationship between variations in Germany’s merchandise exports and 
PoC throughput, implying that an increase in Germany’s exports tends to lead to an 
increase in TEUs. Instead, a one-unit increase in the lagged value of TMG leads to 
a − 0.9537 unit decrease in the current period’s TEU, holding other variables con-
stant. This indicates an inverse relationship between variations in Germany’s mer-
chandise exports from the previous period and current PoC throughput. This sug-
gests that a decrease in Germany’s exports in the previous period tends to lead to 
an increase in PoC TEUs in the current period. Holding the model validly criteria 
the same, the inclusion of COVID-19 and the 2008–9 financial crisis in the model 
showed insignificant results. The modeling results only demonstrated short-run rela-
tionship between changes in Germany’s merchandise exports (TMG) and the PoC 
TEUs, highlighting both direct and inverse relationships. A one-unit increase in cur-
rent TMG results in a substantial increase in TEUs, reflecting the interconnectedness 
between Germany’s export activities and global trade flows. Conversely, a decrease 
in Germany’s exports of the previous period correlates with an increase in TEUs 

Table 11  Modeling results of 
Germany’s product flows (short-
run model)

Breusch–Godfrey Serial Correlation LM Test F-Statistic (1.8432), 
Prob. F (2, 22) 0.1819
Heteroskedasticity Test: Breusch–Pagan–Godfrey F-Statistic 
(1.8263), Prob. F (4, 24) 0.1567

Variable Coefficient Std. Error t-statistic Prob

TEU(-1) 1.030187 0.185284 5.560048 0.0000
TEU(-2) − 0.061276 0.176953  − 0.346285 0.7321
TMG 1.244729 0.372775 3.339088 0.0027
TMG(-1)  − 0.953758 0.410298  − 2.324546 0.0289
C  − 25504.36 126507.4  − 0.201604 0.8419
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in the current period. This suggests a compensatory effect whereby fluctuations in 
German exports cause shifts in shipping demand. Within the scope of the analyzed 
data, these external shocks do not exert any discernible impact on the relationship 
between TEUs and Germany’s merchandise exports.

4.2.3  Scenario 3: VECM model with USA’s merchandise trade flows

The coefficient of 0.559990 underscores a compelling observation whereby a mere 
one-unit rise in the previous period’s D(TEU) leads to a 0.59990 unit increase in 
the current period’s D(TEU). This suggests a lingering impact of historical shifts on 
present TEU dynamics (Table 12). Additionally, the coefficient of 1.5333 highlights 
an intriguing correlation whereby each unit increase in USA’s total merchandise 
exports triggers a robust 1.5333 units surge in D(TEU), signifying a positive asso-
ciation between TUSA and TEUs. Conversely, the coefficient of − 1.7719 unveils a 
noteworthy contrast whereby a one-unit escalation in the lagged TUSA results in a 
significant − 1.7719 unit decline in the current D(TEUs), indicating an inverse rela-
tionship between TUSA and TEUs. Moreover, the Error Correction Term (ECT) 
coefficient of − 0.15716 sheds light on the model’s adaptive prowess that a one-unit 

Table 12  Modeling results 
with USA’s trade flows without 
uncertainty

Breusch–Godfrey Serial Correlation LM Test F-Statistic (0.2189), 
Prob. F (2, 22) 0.8051
Heteroskedasticity Test: Breusch–Pagan–Godfrey F-Statistic 
(1.2345), Prob. F (4, 24) 0.3228

Variable Coefficient Std. Error t-statistic Prob

D[TEU(-1)] 0.599080 0.166952 3.588337 0.0015
D(TUSA) 1.533302 0.309158 4.959609 0.0000
D[TUSA(-1)]  − 1.771995 0.474173  − 3.737020 0.0010
ECT(-1)  − 0.157162 0.059160  − 2.656573 0.0138
C 85965.82 48201.81 1.783456 0.0872

Table 13  Modeling results 
with USA’s trade flows with 
uncertainty

Breusch–Godfrey Serial Correlation LM Test F-Statistic (0.1839), 
Prob. F (2, 20) 0.8334
Heteroskedasticity Test: Breusch–Pagan–Godfrey F-Statistic 
(0.9428), Prob. F (6, 22) 0.4850

Variable Coefficient Std. Error t-statistic Prob

D[TEU(-1)] 0.590139 0.179898 3.280403 0.0034
D(TUSA) 1.488183 0.389433 3.821409 0.0009
D[TUSA(-1)]  − 1.707193 0.504095  − 3.386651 0.0027
ECT(-1)  − 0.125974 0.083607  − 1.506728 0.1461
COVID-19  − 66614.43 197041.7 -0.338073 0.7385
FC 56804.15 121122.9 0.468979 0.6437
C 85465.51 54163.98 1.577903 0.1289



 R. Mudunkotuwa et al.

deviation from equilibrium in the prior period is rectified by approximately 0.15716 
units in the current period, showcasing the VECM’s resilience in maintaining 
equilibrium.

Despite the model’s robustness, incorporating critical variables such as those per-
taining to COVID-19 and 2008–9 financial crisis (Table 13) lacks statistical signifi-
cance (coefficient 66,614 for COVID-19; P = 0.7385 and 56,804 for FC; P = 0.6437). 
This suggests the absence of control effects from external shocks on the relationship 
between TUSA and TEUs, underscoring the model’s independence from extraneous 
influences.

The coefficients pertaining to the USA’s Total Merchandise Export (TUSA) 
unveil intriguing correlations. A unit increase in TUSA triggers a robust surge in 
D(TEU), emphasizing the positive association between US export activities and 
global shipping demand. However, the model also reveals a noteworthy contrast, 
with a one-unit escalation in lagged TUSA resulting in a significant decline in the 
current D(TEU), indicating an inverse relationship between TUSA and TEU. This 
suggests a complex interplay of factors influencing US export and import dynamics 
and their impact on global trade flows. This showcases the model’s robustness in 
accurately depicting the long-term relationship between TUSA and PoC throughput. 
The model is independent from extraneous influences and capable of discerning the 
underlying drivers of global trade dynamics.

4.2.4  Scenario 4: VECM model with China, Germany, and USA trade flows to South 
Asia

The coefficient of 0.273355 for D[TEU(-1)] is not statistically significant, suggest-
ing that the lagged value of D(TEU) does not exert a significant influence on the 
current period’s D(TEU) (Table 13). Conversely, D(South Asia to China (Export)) 
exhibits a highly significant coefficient of 58.78331, indicating a strong positive 
relationship between changes in South Asia’s exports to China and changes in TEUs. 
However, D(South Asia to Germany (Export)) and D(South Asia to USA (Export)) 
both have coefficients of 40.94570 and − 28.66709, respectively, which are not sta-
tistically significant, suggesting that changes in South Asia’s exports to Germany 

Table 14  Modeling results with 
China, Germany, and USA trade 
flows to South Asia without 
uncertainty

Breusch–Godfrey Serial Correlation LM Test F-Statistic (0.03399), 
Prob. F (2, 21) 0.9666
Heteroskedasticity Test: Breusch–Pagan–Godfrey F-Statistic 
(0.5461), Prob. F (5, 23) 0.7395

Variable Coefficient Std. Error t-statistic Prob

D[TEU(-1)] 0.273355 0.188935 1.446818 0.1614
D(SA to CN (X) 58.78331 26.38320 2.228059 0.0359
D(SA to GE (X) 40.94570 43.82660 0.934266 0.3599
D(SA to USA(X)  − 28.66709 20.53375  − 1.396096 0.1760
ECT(-1)  − 0.353164 0.124024  − 2.847545 0.0091
C 170655.8 64283.89 2.654721 0.0142
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and to the USA do not significantly impact TEUs. The Error Correction Term (ECT) 
coefficient of − 0.3531 is statistically significant, indicating the presence of a cor-
rection mechanism towards equilibrium. This implies that deviations from the long-
run equilibrium in the previous period are corrected by approximately 0.3531 units 
in the current period. Overall, while South Asia’s exports to China play a signifi-
cant role in influencing the volume of TEUs, exports to Germany and the USA do 
not demonstrate statistically significant effects, and the model exhibits a corrective 
mechanism to maintain equilibrium over time (Table 14).

Despite the model’s robustness, incorporating critical variables such as those per-
taining to COVID-19 and the financial crisis (Table 15) lacks statistical significance 
their coefficients (− 210,332 for COVID-19, P = 0.2881; − 2187for FC, P = 0.1423). 
This suggests the absence of control effects from external shocks on the relation-
ship between South Asian exports to China, Germany, and USA and the volume of 
TEUs, underscoring the model’s independence from extraneous influences.

Table 15  Modeling results with 
China, Germany, and USA 
trade flows to South Asia with 
uncertainty

Breusch–Godfrey Serial Correlation LM Test F-Statistic (1.5391), 
Prob. F (2, 19) 0.2401
Heteroskedasticity Test: Breusch–Pagan–Godfrey F-Statistic 
(0.5871), Prob. F (7, 21) 0.7589

Variable Coefficient Std. error t-statistic Prob

D[TEU(-1)] 0.409528 0.198380 2.064361 0.0516
D(SA_CN_X) 60.92626 25.61593 2.378452 0.0270
D(SA_GE_X) 37.37200 43.33593 0.862379 0.3982
D(SA_USA_X)  − 26.89571 20.32775  − 1.323103 0.2000
ECT(-1)  − 0.400463 0.137761  − 2.906931 0.0084
COVID-19  − 210332.1 192971.8  − 1.089963 0.2881
FC  − 218785.1 143525.9  − 1.524360 0.1423
C 182605.4 62561.14 2.918831 0.0082

Table 16  Modeling results with China’s Trade flows to main shipping region associated with the PoC 
without uncertainty

Breusch–Godfrey Serial Correlation LM Test F-Statistic (1.4379), Prob. F (2, 20) 0.2609
Heteroskedasticity Test: Breusch–Pagan–Godfrey F-Statistic (0.3976), Prob. F (6, 22) 0.8725

Variable Coefficient Std. Error t-statistic Prob

D[TEU(-1)] 0.248114 0.157775 1.572581 0.1301
D(CN_AF_X) 21.07910 18.60279 1.133115 0.2694
D(CN_EU_CA_M) 9.914325 3.699118 2.680186 0.0137
D(CN_ME_NA_X)  − 12.96240 4.219934  − 3.071705 0.0056
D(CN_UAE_X)  − 64.52154 30.53834  − 2.112805 0.0462
ECT (-1)  − 0.338365 0.111284  − 3.040548 0.0060
C 111793.5 60273.91 1.854757 0.0771
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The results highlight the significant role of South Asia’s exports to China in 
influencing global shipping demand, while exports to Germany and the USA show 
less pronounced effects. The model’s corrective mechanism ensures equilibrium in 
trade dynamics over time, enhancing its reliability in forecasting long-term trends. 
Additionally, the model’s independence from external shocks underscores its robust-
ness in capturing the underlying drivers of global trade dynamics, providing valu-
able insights for policymakers and stakeholders in navigating the complexities of the 
global economic landscape.

4.2.5  Scenario 5: VECM model with China’s trade flows to main shipping region 
associated with the PoC

The coefficient of 0.24811 for D(TEU(-1)) is not statistically significant, indicating 
that the lagged value of D(TEU) does not exert a significant influence on the current 
period’s D(TEU) (Table  16). Conversely, significant coefficients are observed for 
various trade flows: D(China to Africa (Export)) exhibits a highly significant coef-
ficient of 58.78331, suggesting a substantial impact of China’s exports to Africa on 
the volume of TEUs. Similarly, D(China from Europe and Central Asia (Import)) 
and D(China to Middle East and North America (Export)) both display signifi-
cant coefficients of 9.9143 and − 12.9624, respectively, indicating notable effects 
of trade flows from these regions on TEU. Moreover, D(China to UAE (Export)) 
shows a significant coefficient of − 64.5215, implying a considerable influence of 
China’s exports to the UAE on TEU. The Error Correction Term (ECT) coefficient 
of − 0.3383 is also statistically significant, suggesting the presence of a correction 
mechanism towards equilibrium. This implies that deviations from the long-run 
equilibrium in the previous period are corrected by approximately 0.3383 units in 
the current period. Additionally, after incorporating dummy variables for COVID-
19 and the financial crisis, the model’s validity remains intact. Notably, the dummy 
variable for the financial crisis (FC) is significant in the long-run model, highlight-
ing its substantial impact on the relationship between the trade variables (Table 17).

Table 17  Modeling results with China’s trade flows to main shipping region associated with the PoC 
with uncertainty

Variable Coefficient Std. Error t-statistic Prob

D[TEU(-1)] 0.171564 0.157652 1.088241 0.2894
D(CN_AF_X) 33.50574 18.24616 1.836317 0.0812
D(CN_EU_CA_M) 7.077250 3.753682 1.885415 0.0740
D(CN_ME_NA_X)  − 8.534194 4.441889  − 1.921298 0.0691
D(CN_UAE_X)  − 109.2734 34.51407  − 3.166054 0.0049
ECT (-1)  − 0.295134 0.116603  − 2.531098 0.0199
COVID-19  − 100017.1 168234.0  − 0.594512 0.5588
FC 296851.7 141207.6 2.102235 0.0484
C 127285.8 57329.07 2.220267 0.0381
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China’s exports to Africa, Europe and Central Asia, the Middle East, North 
America, and the UAE demonstrate notable effects on TEU levels, highlighting the 
importance of these trade relationships in shaping global shipping demand. These 
findings underscore the interconnectedness of trade flows and seaborne transport, 
where shifts in trade patterns have tangible implications for shipping activities. 
The financial crisis also significantly impacted the variation of TEUs at the Port 
of Colombo (PoC) in this model. The significant Granger causality relationship 
with TEUs shows the importance of global trade patterns in shaping port activity. 
Additionally, the findings highlight the significance of exports from these produc-
tion centers to South Asia, indicating the region’s role as a vital market for goods 
transported through the PoC. Delving deeper into specific trade flows, our results 
show that exports from China to Africa, the Middle East, North America, and the 
UAE, alongside China’s imports from Europe and Central Asia, exert a significant 
influence on TEUs at the PoC. This emphasizes the interconnectedness of trade 
routes and the port’s function as a transshipment hub facilitating trade across mul-
tiple regions. The financial crisis notably influenced this category, as the model 
deals with trade flows involving some countries affected by the financial crisis of 
2008/2009.

5  Discussion and policy implications

The efficient movement of goods from production centers to demand points relies 
heavily on maritime transportation. Transshipment ports play a crucial role in mar-
itime supply chains (MSC), being crucial nodes that connect these links, particu-
larly in relay networks which interconnect regions in container trade flows. A port’s 
capacity is essential for maintaining a competitive edge and expanding market share. 
Investing in new port capacity should be justified by increasing demand for port ser-
vices; yet, demand forecasting in such a competitive environment is challenging due 
to its unpredictability and fluctuations. Port capacity planning requires sophisticated 
analytical approaches to match cargo flow projections and future demand estima-
tions with the development and acquisition of suitable infrastructure (Parola et al. 
2021). Forecasting models are subject to epistemic uncertainty due to model and 
parameter uncertainties (Eskafi et al. 2021). External shocks, such as the COVID-
19 outbreak, exemplify volatile conditions, creating uncertainty in cargo flows and 
thus complicating decision-making for port development projects (Notteboom and 
Haralambides 2020). Therefore, forecasting models provide valuable insights into 
port services demand, and soft computing models have gained attention for captur-
ing both linear and nonlinear relationships between input data and port throughput 
(Munim and Schramm 2021).

Our study finds that transshipment demand is influenced not only by trade flows 
from production centers but also by the global trade passing through the port. Any 
disruption at a transshipment port can impact significantly the entire MSC, high-
lighting the need for stable port operations. Deciding on transshipment capacity 
involves the use of forecasting techniques to align with fluctuating demand. The lit-
erature suggests that China, the USA, and Germany are dominant production centers 
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globally (WTO 2023; UNCTAD 2022). The econometric model developed in this 
paper, using data from a case transshipment hub port and other influential varia-
bles, demonstrates that variability in throughput can be explained by merchandise 
exported globally by these production centers. International trade flows from these 
centers to South Asia, leveraging the strategic location of the Port of Colombo (PoC) 
as a transshipment hub, show a significant association with TEUs at PoC. Cointegra-
tion tests and VECM models reveal a long-term association between China’s mer-
chandise exports and PoC throughput, suggesting that PoC can expect higher TEU 
volumes with China’s economic growth. Thus, expanding PoC’s containerized cargo 
capacity helps enhance its competitive position in the region.

The PoC serves several submarkets as a transshipment hub. Given India’s sta-
tus as a major exporter in South Asia and its exclusion from the Belt and Road 
Initiative (BRI), PoC plays a critical role in connecting Indian subcontinent ports 
to global shipping networks. Upgrading PoC to a global hub is therefore highly 
advantageous for the region. The modeling results indicate that external shocks, 
such as economic crises and the COVID-19 pandemic, did not significantly influ-
ence PoC’s international trade flows, except for the financial crisis of 2008–9.

According to the five-scenario analysis, the PoC’s throughput demonstrates a 
long-term econometric relationship with China’s global merchandise flows and 
South Asian exports to China. Furthermore, the volume of TEUs at the PoC has 
a long-run relationship with China’s imports to Europe and Central Asia and 
exports to the Middle East, North America, and the UAE. These relationships 
remain strong despite the financial crisis and the COVID-19 pandemic. This anal-
ysis demonstrates the PoC’s strength in building international trade links between 
port regions and China, a major production center. Upgrading the PoC by enhanc-
ing its capacity to handle increased volumes can further solidify its position as a 
key player in Indian Sub-continent and global trade, thereby supporting regional 
economic growth.

The paper contributes to the strategic planning of transshipment ports by provid-
ing a robust forecasting technique. Understanding future container throughputs is 
crucial for port authorities and stakeholders in making informed decisions related to 
infrastructure development, resource allocation, and capacity planning. By integrat-
ing international trade flows from global production centers, the paper acknowledges 
the interconnectedness of global trade networks (Dragan et al. 2021). This approach 
recognizes that container throughputs at transshipment ports are influenced by the 
dynamics of international trade, and a forecasting model that considers these fac-
tors provides a more accurate representation of future port activities. Furthermore, 
accurate forecasting enables transshipment ports to optimize their operational effi-
ciency. With a better understanding of future container throughputs, ports can plan 
their operations more effectively, reduce congestion, optimize resource allocation, 
and enhance overall performance (Gosasang et al. 2018; Chen et al. 2023a, b).

Finally, the paper adds to the body of knowledge in port management, logis-
tics, and international trade forecasting. The findings of this research have practical 
implications for the efficient and resilient management of transshipment ports amid 
dynamic global trade scenarios, particularly for a single transshipment hub serving 
an entire port region. These insights inform strategic investments, foster robust trade 
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partnerships, and support the continuous adaptation necessary for maintaining a 
competitive edge in the global maritime network.

The paper presents several significant implications for transshipment hubs, par-
ticularly those strategically located along major maritime routes serving both 
regional and international markets. Our study suggests that port managers can esti-
mate the demand for the services of a transshipment hub by analyzing trade flows 
from global production centers and the international maritime network, considering 
the port’s pivotal role within relay and hub-and-spoke networks. The use of Granger 
causality is invaluable for identifying causal relationships between variables. This 
acts as a variable reduction method, isolating variables that are causally related to 
the dependent variable. The process facilitates the application of the Engle–Granger 
two-step procedure, which incorporates different lag terms as part of a machine 
learning approach to develop the optimal model. This methodology aims to reduce 
forecasting errors, maintain validity, and enhance the precision of demand forecasts. 
Ultimately, it informs strategic decisions on infrastructure development and capacity 
planning, ensuring that ports remain competitive and responsive to dynamic global 
trade conditions.

6  Conclusions

The demand for transshipment hub-port capacity is intricately linked to the trade 
dynamics of global production centers. Understanding and adapting to the changing 
dynamics of such centers is crucial for effective port management and for ensur-
ing the resilience of maritime supply chains. The paper presents the results of an 
econometric forecasting model for a transshipment port, considering international 
trade flows from global production centers and explicitly addressing the uncertain-
ties inherent in the world trade environment. China exerts a profound and enduring 
influence on the Port of Colombo, particularly in facilitating outbound trade flows, 
notably as a key transshipment hub within the Indian subcontinent. The port’s trade 
dynamics are intertwined with Chinese production networks, serving as a crucial 
channel for goods destined for global markets. Notably, the port’s reliance on Chi-
nese manufacturing surpasses that of other major production centers, such as the 
USA and Germany. It is worth emphasizing that despite India’s substantial size and 
its role as a feeder market for the Port of Colombo, its impact on the port’s through-
put growth remains relatively modest. Additionally, the relationship between pro-
duction flows from the production center and the transshipment port traffic is more 
sensitive to financial crises.

The paper contributes to the existing body of knowledge in port demand mode-
ling in several ways. First, the study re-emphasizes the critical role of transshipment 
ports as strategic nodes in global supply chains in the existing literature and brings 
about a novel perspective in research, focusing on transshipment ports and the 
impact of global trade dynamism, influenced by major production centers. Second, 
unlike previous studies, our research incorporates a comprehensive demand fore-
casting methodology that considers international trade dynamics between produc-
tion centers and foreland nations, providing a more thorough perspective on demand 
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prediction for transshipment hubs. Third, in its modeling design, we employ the 
Granger causality test to identify 17 trade directions that have a causal impact on the 
selected transshipment hub. This systematic approach to causality provides a robust 
foundation for predicting demand. Next, we develop a demand forecasting model of 
a transshipment hub, related to merchandise exports from global production centers, 
using the Engle–Granger causality test. This model incorporates trade flows between 
the hub’s region, major production centers, and other countries along major shipping 
routes. Fifth, the model developed with two key economic disruptions explains the 
impact of exogenous shocks to port traffic, adding a layer of realism and adaptabil-
ity to forecasting. Sixth, the model utilizes advanced time series analysis techniques 
to capture the uncertainties and dynamics of trade flows while incorporating multi-
ple variables, including merchandise exports, regional trade, and trade flows along 
major shipping routes, ensuring a multifaceted analysis that aligns with real-world 
complexities. Lastly, the empirical validation and practical relevance of the model 
offer practical insights for port authorities and stakeholders to make informed deci-
sions regarding port planning, development, and operations based on robust demand 
forecasts.

Our work can be extended by exploring additional variables that can medi-
ate trade flows, such as trading agreements, transport costs, and shipping industry 
dynamics, including port choice selection parameters, to improve the accuracy of 
predictions in the context of transshipment ports and global trade flows. Further-
more, research focused on transforming a transshipment port into a global hub, par-
ticularly in strategic locations that play a crucial role in maritime supply chains, by 
connecting with the world’s major production centers, is essential for further study. 
This would enhance understanding of the port’s strategic importance and its poten-
tial to bolster global trade connectivity.
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