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Abstract
Corporate financial distress (FD) prediction models are of great importance to all 
stakeholders, including regulators and banks, who rely on acceptable estimates of 
default risk, for both individual borrowers and bank loan portfolios. Whilst this sub-
ject has been covered extensively in finance research, its application to international 
shipping companies has been limited while the focus has mainly been on the appli-
cation of traditional linear modelling, using sparse, cross-sectional financial state-
ment data. Insufficient attention has been paid to the noisy and incomplete nature 
of shipping company financial statement information. This study contributes to the 
literature through the design, development and testing of a novel holistic machine 
learning methodology which integrates predictor evaluation and missing data analy-
sis into the distress prediction process. The model was validated using a longitudinal 
dataset of over 5000 company year-end financial statements combined with macro-
economic and market predictors. We applied this methodology first for individual 
company level distress prediction before testing the models’ ability to provide accu-
rate confidence intervals by backtesting conditional value-at-risk estimations of the 
distress rates for bank portfolios. We conclude that, by adopting a holistic approach, 
our methodology can enhance financial monitoring of company loans and bank loan 
portfolios thereby providing a practical “early warning system” for financial distress.
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1 Introduction

The banking system failure, integral to the financial crisis of 2009, had serious nega-
tive impacts on the shipping sector and indeed led to the withdrawal of the com-
mercial banking sector from all major risk intensive private capital investments. 
One important regulatory consequence was the imposition of increasingly stringent 
capital adequacy rules by the Basel Framework (BIS 2019), which forced banks to 
offload the more risky assets from their balance sheets whilst also placing further 
restrictions on new investments. Furthermore, the crisis highlighted the financial 
system’s weakness in financial risk management and distress prediction. This led 
directly to the adoption of the Basel Internal Rating System for risk management 
which demanded the development of effective probability of default models geared 
to the specific characteristics of companies, taking at the same time due account of 
the macroeconomic environment.

Consequently, it is becoming increasingly important to model the probabil-
ity of distress of shipping companies more accurately than before. Our research 
approaches this challenge through the development of a new methodology consist-
ing of three core elements: (i) the application of modern machine learning (ML) 
classification algorithms; (ii) supplementing financial statement data with macro-
economic and market predictors and (iii) the application of modern multiple imputa-
tion techniques for the analysis and treatment of missing accounting information. 
Each of these elements has been previously addressed in various fields of endeavour 
including, to a limited degree, the shipping sector. However, to the authors knowl-
edge, none has adopted a holistic methodology combining all three. The rationale 
behind this approach is to examine if, by simultaneously accounting for the non-
linear relationship between default risk and the independent variables; exogenous 
macro effects; and the effects of incomplete data, our model can improve on the 
predictive power of traditional corporate distress modelling.

We first evaluate the performance of ML classification models in the prediction 
of financial distress (FD) which may eliminate the need for unobservable tempo-
ral effects. We appraise the relatively recently established models random forests 
(RF) and extreme gradient boosting (XGB), alongside an extended linear classifier, 
i.e., the generalised additive model (GAM). The objective is not simply to compare 
model performance (e.g. accuracy) but assess their individual confidence intervals 
(CI) thereby measuring a model’s true capacity to generalise on out of sample data. 
A rapidly increasing focus in the literature is the application of ML modelling (com-
plex models exhibiting non-linear dependency structures between the covariates and 
the resulting outcome) in corporate failure prediction (Christoffersen et  al. 2018; 
Jones et al. 2015a; Hernandez Tinoco and Wilson 2013). Much of the earlier work 
has focused on benchmarking the performance of ML models on generalised linear 
models such as logistic regression (LR). However, it is now widely accepted that 
generalised linear models result in significantly narrow confidence intervals (CI)1 

1 Too narrow confidence intervals indicate (i) the existence of a downward bias risk estimation and (ii) 
that the assumption of conditional independence in the covariates is not satisfied.
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of aggregated FD predictions owing to their underlying assumption of conditional 
independence.

The fact that none of the models fully capture correlation in FD, solely through 
the application of accounting data, suggests the existence of unobserved macro 
effects creating correlation in distress. Shipping, being a high-risk sector, will 
always be highly sensitive to global macroeconomic shifts and stochastic market 
events. As such, a clearer understanding of those events, which accurately represent 
the risk profile of shipping companies, is essential. We develop distress prediction 
models employing not only firm level data but also macroeconomic and market indi-
cators to detect early stages of distress.

A major aspect of our methodology is the tackling of the problem of missing 
accounting data. The global nature of the shipping industry, and diverse national 
accounting practices and laws, render the identification and collection of complete 
and consistent financial statements one of the major challenges. Therefore, the prob-
lem of missing accounting values and how to treat them is a major focus of this 
research. Our methodology is trained and tested by applying a test case comprising 
raw data compiled from detailed financial statements covering the period 2000–2018 
of worldwide dry bulk carrier owners/operator companies, both listed and non-
listed. Financial institutions and ultimate owner (parent) companies are not included 
due to the bias potential introduced through group level accounting practices.

Finally, the early detection of FD provides investors with ways of avoiding some 
of the costs associated with a bankruptcy filing and recovery. However, models must 
be transparent2 and open to scrutiny by all stakeholders, investors and particularly 
regulatory bodies if they are to be accepted as practical tools.

The rest of the paper is structured as follows. In Sect. 2 we review the relevant lit-
erature; Sect. 3 details data issues; Sect. 4 describes the methodologies and models 
used and the results are presented and discussed in Sect. 5. Section 6 presents the 
conclusions and recommendation for further research.

2  Literature review

This literature review comprises five threads. The definition of FD is first addressed 
as its clear and accepted definition is core to this research. The second thread 
reviews research efforts into shipping company FD prediction followed by a review 
of the literature surrounding the application of machine learning tools in corporate 
FD prediction. The section also covers a review of the literature relating to incom-
plete financial accounting data and the selection of core independent variables.

2 A common problem with many ML models is their lack of interpretability and so they are often 
described as being black box algorithms.
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2.1  Definition of financial distress

Much of the literature defines FD as being centred upon the final legal consequence 
of an organisation’s liquidation or bankruptcy. This legal event is represented by a 
dependent variable in a binary classification model variable (Balcaen and Ooghe 
2006). This definition, however, only represents the worse-case scenario of FD and 
therefore presents challenges for FD prediction. The process of insolvency is, in 
many cases, significantly lagged (Hernandez Tinoco and Wilson 2013). The litera-
ture estimates a time gap of up to 3 years or more between the point at which a com-
pany experiences FD and the date of a legal declaration of insolvency (Theodossiou 
1993; Hernandez Tinoco and Wilson 2013). For example, U.S. Chapter 11 legisla-
tion has brought about changes in the way organisations can be given time to reor-
ganise their business, assets and debts in the event of impending insolvency. There 
are a number of stages a company can encounter before closure, for example (Wruck 
1990) cites FD, insolvency, filing of bankruptcy and administrative receivership.

Prior to, the triggering of the terminal state, the literature generally follows two 
approaches. The first is an accounting features approach, utilising cross-sectional 
annual data, and is widely covered in the default prediction literature (Altman 1968; 
Ohlson 1980). This utilises historical financial statements which are benchmarked 
against historical default rates and generally modelled to produce a probability of 
bankruptcy.

The second approach is a mixed accounting/market approach which estimates a 
company’s probability of default founded on its distance to default (DD;Black and 
Scholes 1973; Merton 1974). The DD model utilises both the expected return on 
assets and the volatility of those returns to assess the probability of asset values 
declining below the value of the company’s debt (as a factor of the time to maturity 
of a company’s outstanding debt). Accepting this as a foundation,3 we also include 
DD as a feature in our modelling.

2.2  Shipping company financial distress prediction

Research into shipping FD prediction has been relatively limited to date. Earlier 
works have focused largely on financial performance predictor/feature selection, 
relying on, the more conventional, binary logistic regression techniques (Antoniou 
et  al. 1998; Grammenos et  al. 2008; Kavussanos and Tsouknidis 2016; Mitroussi 
et al. 2016; Lozinskaia et al. 2017). Moreover, research interest was either on ship-
ping bond markets or bank shipping debt.

The financing of the shipping industry has, traditionally, relied heavily on bank 
loans. A critical priority for bank credit risk departments concerns the provision of 
an optimal framework for assessing the credit rating of borrowers’ as well as of loan 
quality. This includes defining specific quantitative and qualitative criteria mirror-
ing the borrowers’ ability to comply with the loan contract terms. Traditionally, this 

3 Moody’s Analytics for example.
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has been founded on the five core Cs of credit: the borrower’s ‘character’, ‘capacity’ 
and ‘capital’, ‘collateral’ and ‘conditions’ (Antoniou et al. 1998; Grammenos 2010) 
applied to shipping credit scenarios. Credit risk assessment work has often been 
performed following the construction of ‘standardized’ models, as noted by Dimi-
tras et al. (2003). These authors contended that models which combine criteria and 
provide relative weighting to assist the decision-making process of a bank’s Credit 
Committee, are limited. Their paper presents work on the application of the mono-
tone regression method, UTADIS, and was aimed at the analysis of both credit allo-
cations and the evaluation of the criteria used for the selection of loan applications 
in the shipping industry. Gavalas and Syriopoulos (2016) proposed an integrated 
credit rating model founded on a series of critical qualitative and quantitative crite-
ria for bank loan portfolios. The model was applied to, and tested on, bank financing 
decisions in the shipping sector as a case study. Again, the authors used a UTADIS 
approach to assess the relative impact of the selected risk factors on efficient credit 
rating scoring and loan quality assessment.

Finally, all these studies demonstrated limited access to longitudinal financial 
data which would allow for a more thorough assessment of predictive capabilities 
of the available tools. Moreover, their reliance on linear methodologies limits many 
earlier models in their capacity to accurately predict FD in out of sample data.

2.3  Machine learning application to financial distress prediction

Since the works of Altman (1968) and Ohlson (1980), research relating to the mod-
elling of corporate FD and bankruptcy has been extensive (Altman 1977; Shumway 
2001; Duffie and Singleton 2003; Hensher and Jones 2007). However, until recently, 
much of this work relied heavily on more traditional classifiers e.g. logit, probit or 
linear discriminant analysis models, which are commonly referred to as generalised 
linear models (GLM). The financial crisis of 2009, however, demonstrated that more 
research effort was required to develop models with enhanced predictive accuracy, 
not only for predicting ultimate failure events, but models which also detect the early 
stages of FD. Post crisis, research has highlighted failures in conventional corpo-
rate FD prediction models (Duffie et al. 2009; Barboza et al. 2017; Christoffersen 
et al. 2018). The academic consensus is that conventional statistical techniques have 
certain restrictive assumptions including linearity, normal distribution, multicol-
linearity, autocorrelation, sensitivity to outliers and homoscedasticity, which do not 
sufficiently capture the complex relationships between covariates and FD. These 
limitations, coupled with the need to account for frailty and unobserved heterogene-
ity, have resulted in a switch of focus by industry and academics alike to the appli-
cation of more complex methods (Lessmann et  al. 2015; Zhang et  al. 2017). ML 
methods applied to FD prediction are now well established in the literature (Jones 
et al. 2015b; Ziȩba et al. 2016; Xia et al. 2017; Barboza et al. 2017) and the general 
conclusion is that ‘new age’ classifiers outperform transitional GLMs in out of sam-
ple generalisation.

The application of ML modelling (complex models exhibiting non-linear depend-
ency structures between the covariates and the resulting outcomes) in corporate 
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failure prediction is increasingly prevalent in the literature (Hernandez Tinoco and 
Wilson 2013; Jones et al. 2015b; Moraes Barboza et al. 2015; Christoffersen et al. 
2018). Much of the previous work has attempted to benchmark the performance of 
ML models on GLMs. However, despite research demonstrating the enhanced gen-
eralisation performance of ML classifiers compared with GLMs, care must be taken 
as transparency is paramount in finance (as is demanded by investors and regula-
tors) and, as the literature notes, ML models involve issues of transparency4.Missing 
accounting values.

The problem of missing data is predominant in financial modelling (Kofman 
2003; Burger et al. 2018) and is a common feature of shipping company accounts 
(Sharife 2010; Merk 2020). This is also true of the raw panel dataset compiled for 
the study case used in this research. This issue has, to date, not been addressed in 
the shipping finance literature. There are various reasons for incomplete financial 
accounts and here we cite two examples which are a common feature in shipping 
company accounts. Firstly, open registries or “flags of convenience” (FOC) concede 
favourable tax environments to shipping companies (Merk 2020), and hence have 
become a part of shipping company tax planning. Shipping companies often exploit 
variations in domestic tax law and international taxation standards (Kim and Kim 
2018; Merk 2020). This provides them with opportunities to eliminate or signifi-
cantly reduce taxation and therefore, many multinational corporations use base ero-
sion and profit shifting (BEPS) to reduce the corporate tax base (OECD 2013).

A second reason might be the application of international accounting stand-
ards. The period 2000–2019 saw the gradual global uptake of International Finan-
cial Reporting Standards (IFRS) for both public and SME companies. This gradual 
uptake, coupled with multiple changes to the IFRS by the International Accounting 
Standards Board (IASB), have contributed to inconsistencies which have resulted 
in certain accounting information either being incomplete or simply not reported. 
One prime example of this is the reporting of leased assets on company balance 
sheets prior to the coming into effect of IFRS16 (IFRS Foundation 2016). This was 
a result of a finding in 2005, by the US Securities and Exchange Commission (SEC), 
which alleged that US public companies had approximately US$1.25 trillion of off-
balance sheet leases. Thus, the IASB deemed that an entity (lessee) which leases 
vessels should recognise and report assets and liabilities arising from those leases. 
According to Tahtah and Roelofsen (2016), a result of IFRS16 is that there would be 
a median debt increase of 24% and a 20% median increase in EBITDA for the trans-
port and infrastructure industry.

There are three accepted approaches to the problem of missing data in statistical 
analysis. The first method is referred to as the “complete case” (Nguyen et al. 2017) 
or list-wise deletion approach which discards incomplete individual observations 
(company accounting years) and results in a residual dataset containing complete, 
observed data. The second method is referred to as the “omitted variable” approach 
which involves simply removing those covariates with missing values from the 

4 The literature particularly singles out that neural networks and “deep learning”, algorithms as lacking 
transparency.
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dataset (Honaker and King 2010). The third method is data imputation and is part of 
a growing field of research to address the challenge of missing values in data. In this 
research we focus on the multivariate imputation (MI) methodology (Rubin 1987). 
MI has become one of the most widely used methods for handling missing data and 
is receiving increasing attention in financial research (DiCesare 2006; Amel-zadeh 
et al. 2020).

Finally, the primary objective of this research is the accuracy of predictions rather 
than making valid subject related or sector informed inferences.5

2.4  Predictor selection

Much of the earlier work on FD prediction has relied solely on publicly available 
historical accounting data or on securities market information. However, more 
recent research has recognised that accounting data alone are not enough to explain 
the relationship between the covariates and FD prediction. According to Balcaen 
and Ooghe (2006), if too much emphasis is placed on financial ratios for failure 
prediction then it is implicitly assumed that all FD indicators are contained within 
financial statements. There are many examples in the literature which examine com-
bined approaches using accounting, macroeconomic/market, and qualitative data, 
in order to provide an enhanced model of FD prediction (Das et  al. 2007; Duffie 
et al. 2009; Koopman et al. 2011). Furthermore, Bonfim (2009) postulates that when 
macroeconomic indicators are considered, this leads to an improvement in model 
results. The consensus in the literature is that macroeconomic dynamics represent 
an independent contribution in FD prediction. As regards shipping, this is an issue 
recognised by Lyridis et al. (2014) for example. Furthermore, recent literature has 
highlighted the failure of such traditional approaches to encapsulate spatial (annual) 
fluctuations in FD. Numerous publications (Duffie et al. 2009; Nickerson and Grif-
fin 2017; Kwon and Lee 2018; Azizpour et al. 2018) suggest that simply modelling 
relationships between observable covariates and FD does not adequately account 
for latency (unobserved variables) and so the authors advocate approaches which 
include frailty6 or the inclusion of time-varying effects.

3  Methodological background

This section briefly outlines the analytical framework encompassing the main prin-
ciples applied in our methodology, namely missing value treatment, data pre-pro-
cessing, feature selection, classification algorithms and model evaluation metrics (a 
more detailed discussion can be found in “Appendix 1”).

5 The goal is not the regeneration of missing values but to maintain the characteristics of the data distri-
bution and the relationships between features, thereby maintaining the model’s overall ability to general-
ise on out of sample data.
6 Frailty can be considered a random effect model implemented for “time to event” data. The aim is to 
account for heterogeneity induced by unobserved features.
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With respect to the treatment of missing values, we provide both a complete case 
and a multivariate imputation analysis of the raw data. For the complete case data 
set, we simply select those records from the raw data which contain non-null val-
ues for all independent variables. For data imputation, we begin by assuming that 
our missing accounting information is missing at random (MAR). This approach 
assumes that the reasons for missing data in any sample can be explained by the 
observed data, i.e., the probability of missing values is dependent upon observed 
data as opposed to the values of missing data.

Once the issue of missing data has been addressed, we then examine and pre-pro-
cess our resulting dataset for skewness, kurtosis and outliers (Barnes 1987). Pre-pro-
cessing is performed using a variation of the Box–Cox (Box and Cox 1964) trans-
formation (Yeo and Johnson 2000), and outlier treatment is applied through spatial 
sign (Serneels et al. 2006). As company default is a relatively rare event (Kim et al. 
2015), the dataset is imbalanced with the “distressed” class being in the (signifi-
cant) minority class. In order to account for this, we tested several sampling meth-
ods, with down sampling (reducing the instances of the majority class) producing 
the most effective results (out of sample generalisation) on our test dataset. Once 
transformed and sampled, the task of feature analysis and selection is undertaken. At 
this stage, the data are examined for multicollinearity and an assessment of the level 
of contribution to the dependent variable of independent variables. Random forest 
modelling (Breiman 2001) was selected for this task (Zhou et al. 2016; Lakshmipad-
maja and Vishnuvardhan 2018).

The final dataset is partitioned into training and test sets on a ratio of 70:30 before 
applying classification modelling on the training data. As the literature suggests, 
there are many examples of research into the effectiveness of many machine learn-
ing algorithms in the financial and economics domain. The general consensus (Jones 
et  al. 2015a; Son et  al. 2019) is that tree-based algorithms consistently outper-
form models such as artificial neural network (ANNs) or support vector machines 
(SVMs). Our research corroborates their conclusions, however, in this paper we 
only report our results from the best performing tree-based classifier, extreme gradi-
ent boosting (XGB). As a benchmark, we also report the results generated from the 
implementation of one of the best performing linear based classifiers, GAM. The 
inclusion of an extended generalised linear model is to provide a balanced compari-
son with the complex model. Their inclusion is performed in the name of model 
transparency: Following the Ockham’s Razor principle, if two models demonstrate 
similar predictive power then the more transparent model which is preferable.

Finally, the results are compared using a variety of metrics necessary for the 
accurate assessment of classification performance. Specifically, receiver operating 
characteristics (ROC), H Measure7 (Hand 2009) and log loss (Bickel 2007) metrics 
are used with a focus on the ability of the models to accurately predict the minority 
“distressed” class (“Appendix 1”).

7 The H measure is a robustness check on the ROC results. This metric addresses the main problem 
associated with the ROC, that of the handling of misclassification costs across different classifiers.
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4  Data: bulk shipping case study

The bulk carrier fleet is an essential part of the global economy. An Equasis report 
(2019) notes that, as of 2018, the world fleet totalled 116,857 ships (1,361,920 GT), 
with dry bulk carrier vessels totalling 11,929 vessels (457,648 GT), accounting for 
33.6% of the global fleet in GT terms. Furthermore, UNCTAD (2019) report that in 
2018 the bulk fleet took delivery of 26.7% of the total of newly built GT, more than 
any other vessel type, followed by oil tankers (25%), containerships (23.5%) and 
gas carriers (13%). The dry bulk market is very diversified and volatile with bulk 
shipping comprising three major sectors: iron ore, coal and grain as well as other 
minor commodities, e.g. steel, forest products and minerals. According to UNCTAD 
(2019), the major dry bulk commodities represented more than 40% of total dry 
cargo tons shipped in 2018, with containerized cargo contributing 24%, minor bulks 
with 25.8% (the remaining volumes consisted of dry cargo including break-bulk).

Dry bulk shipping market is characterised by the large number of small-scale 
shipowners, few market barriers and transparent transactions (Wu et al. 2018). Fur-
thermore, dry bulk freight rates are determined predominantly by market dynam-
ics with no individual shipowner or charterer having a significant effect on rates. 
In short, the dry bulk market can be viewed as a perfectly competitive market (Yin 
et al. 2019) and, therefore, a viable test case for this study.

4.1  Empirical context

The study develops four main ex-ante models for estimating FD likelihood, to 
test the predictive power of three sets of independent variables (Table 1): finan-
cial statement ratios; macroeconomic indicators; and bulk shipping market 
predictors. In Model 1, the independent variable selection is made solely from 
financial statement ratios. Model 2 adds macroeconomic indicators to company 
level financial data. Model 3 comprises financials and market related covariates. 
Finally, Model 4 comprises all three sets of covariates.. Missing company level 
financial data are subjected to both case wise deletion and data imputation to 
examine corresponding model performance.

4.2  Data sampling

The raw dataset used for company level financials is sourced from unconsolidated 
statements of the Orbis company database (Bureau-Van-Dijk 2019) and consists 
of over 5000 global dry bulk shipping company yearly statements for the period 
2000–2018. The shipping specifics are primarily drawn from Clarkson’s Shipping 
Intelligence Network (Clarksons 2019), whilst macroeconomic data are drawn from 
two data sources, the OECD (2019) and the World Bank (2019). At company level 
we apply filters to our raw data to exclude financial companies; such entities differ 
from other corporates particularly as regards their asset base, accounting standards 
and regulatory status. Furthermore, in order to avoid modelling distortions, holding 
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companies are also filtered where they do not demonstrate that their holding entities’ 
prime business drivers are bulk shipping. There is no filtering on company size as 

Table 1  Predictive features for the FD model

a Features DBM08-11 are World Seaborne Trade figures—Clarksons (2019)

Category Feature Description

Company ROE Return on equity (ROE)
ROA Return on assets (ROA)
ProfitM Profit margin
GrossM Gross margin
EBITDAM EBITDA margin
EBITM EBITM
NetAssetT Net asset turnover
Current R Current ratio
LiquidityR Liquidity ratio
SolvencyR Solvency ratio
Gearing Gearing (debt/equity)

Dry bulk market 1YTC 1-year TC
3YTC 3-year TC
OrderBook Order book/total fleet
NBPdex New build price index
SHPdex Second-hand price index
LaidUp Inactive tonnage/total fleet
Scrap Scrapping rate
HFOSpot HFO (spot)
MDOSpot MDO (spot)
WSTOrea WSTOre (iron)
WSTCc WSTCc (coking coal)
WSTSc WSTSc (steaming coal)
WSTGr WSTGrain
WSTMinor WSTMinor (minor bulk)
BDI BDI (price)

Macroeconomic (core) GDP Real GDP/real GDP growth
LTI Interest rate (short term)
STI Interest rate (long term)
Inflation Inflation
debtToGDP Public debt/GDP
Unemployment Unemployment
Insolvency Company bankruptcy rates
Copper Copper (COMEX)
SteelDex DJUSST (Dow Jones 

historical iron and steel 
price)
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we see the need to account for interactions between size and other variables in the 
models, thereby allowing for the modelling of companies of different sizes.

4.3  Dependent variable: outcome and hypotheses

The dependent variable is a binary variable, FD, representing the state (distressed 
or not distressed) of the company in any discrete accounting period. Our definition 
of FD in companies follows Pindado et al. (2008) and we outline the following pri-
mary conditions to be fulfilled in predicting company financial distress. The hypoth-
esis follows that a company is distressed when any of the following events occurs 
(i) the company’s EBITDA to expenses ratio is short of its expenses for two con-
secutive years; (ii) the company suffers from negative growth for two consecutive 
years; (iii) when a formal default event has been triggered (Hernandez Tinoco and 
Wilson 2013); (iv) failed to publish accounts for the following year (Christoffersen 
et al. 2018). This definition also implies that companies experiencing FD in a single 
period can recover; we therefore implicitly model recurrent events.

4.4  Independent variable selection

The independent variable selection in this study was primarily driven by the specific 
nature of the dry bulk shipping sub-sector. The information was quantified through 
the inclusion of company level features as well as market and macroeconomic indi-
cators (Table 1). The sector’s risk framework is largely described by financial fea-
tures relating to the capital intensity and cash flow dependent nature of the industry, 
and through market and macroeconomic features which reflect a highly cyclical sub-
sector with a high sensitivity to global and regional economic growth; fuel prices; 
and the balance of supply and demand.

5  Results and discussion

In this section, we present and discuss the results from the application of our meth-
odology to the bulk shipping case study. We first present the results from the missing 
value analysis and treatments, followed by the results produced through the applica-
tion of our two classifiers, GAM and XGB, to the four data models.

5.1  Missing values

5.1.1  Missingness analysis

The first objective was to analyse the financial statement data to ascertain the extent 
of the missingness. Table 2 shows that, of the 5368 company financial statements 
collected, only 1483 were complete, with approximately 72% of them being par-
tially complete. However, at the individual financial ratio level, the missingness 
level is 17.6% with 10,405 out of 59,048 accounting ratio values not recorded in the 
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dataset. A breakdown of the missing values on an individual ratio level can be found 
(Table 3).

The results demonstrated a relatively high level of observed accounting val-
ues, 82.4%. This indicated that, if the MAR assumption is applied, there is suf-
ficient information present in the observed values for multivariate imputation to 
yield beneficial results (in terms of reduced bias and efficiency), when compared 
with complete case treatment. A complete case treatment option would result 
in only 27% of the financial statement observation being available for analysis. 
This would result in a loss of 32,300 observed financial ratio values which are 

Table 2  Missing financial statement value analysis

Company financial statements (annual) 5368

Financial ratios 11
Company accounts
 Complete financial statements 1483 Containing 16,313 Observed 

financial 
ratio 
values

 Incomplete financial statements 3885 Containing 32,330 Observed 
financial 
ratio 
values

 % Complete observations 27.6
 % Incomplete observations 72.4

Financial ratio values
 Total ratio values 59,048
 Missing ratio values 10,405
 Observed ratio values 48,643
 Fraction missingness 17.6%

Table 3  Missing value level per 
accounting ratio

Accounting ratio Missing values % Missing

ProfitM 2839 53
GrossM 1617 30
EBITM 1586 30
Gearing 1241 23
EBITDAM 862 16
ROA 806 15
NetAssetT 676 13
ROE 481 9
SolvencyR 128 2
LiquidityR 104 2
CurrentR 65 1
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Fig. 1  Matrix plot of missing accounting data

Fig. 2  Raw accounting data—observed v missing (NA) correlation coefficients
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present in the 3885 incomplete financial statements; these contain significant 
levels of potentially exploitable information. A matrix plot of the missing data 
distribution is represented in Fig. 1, with grey denoting missing data.

A plot of the pairwise correlation point-biserial correlation coefficients, 
between covariate pairs, is shown in Fig.  2. Variables are assigned TRUE or 
FALSE depending on their missing data status and these Boolean vectors are 
correlated to the native variables.

5.1.2  Post imputation evaluation

The RF algorithm was evaluated on its ability to obtain statistically valid infer-
ences from the incomplete financial data set and the results indicate a limited 
loss of information from the imputed data (see “Appendix 2”).

A distribution histogram overlay of imputed and observed values is found in 
Fig. 3, depicting the distributions of original and imputed accounting ratio val-
ues. Although the goal is to have the two similar distributions, differences do 
not necessarily signal problematic imputation. The empirical density plots act 
as flags for potential problems with the imputed estimates. At this stage, no data 
pre-processing was performed on the pre-imputation dataset, as any bias would 
have been “locked into” the data prior to training and validation.

Figure  4 shows a plot of the bootstrapped correlation coefficients from the 
original and imputed data sets. This was generated through applying 20 itera-
tions in the diagnostics function to obtain bootstrapped correlation coefficients 
with 95% confidence intervals. The correlation coefficients are represented by 
the dots and the red line. The blue line (intercept 0, slope 1) and the red correla-
tion line should be aligned.

The final stage of missing value analysis was to examine the out of sample 
classification results when modelling using both the imputed and complete case 
datasets. The results of imputation (see “Appendix  2”) indicate that, as dis-
cussed previously, the removal of circa 72% of records (containing incomplete 
data) involved the introduction of bias. Indeed, further examination employing 
RF feature set analysis (Fig. 5), highlights the differences in contribution to the 
dependent variable, provided by the independent variables (depending upon the 
constitution of the individual data sets) see Table 4.

For example, in this case we observe a greater contribution by the current, 
gearing and solvency ratios in the RF MI dataset than in the complete case 
(CC) data, where profitability plays a greater role in establishing the distressed 
state. The RF importance analysis shows that the CC data set results in an over-
weighted importance given to financial ratios which are not generally accepted 
as the most suitable in forecasting corporate financial health e.g. see Son et al. 
(2019). Furthermore, it is also noted that the removal of so much data, in order 
to distil the CC dataset, involves a significant diminution of over 50%, of the 
minority class (distressed), which further increases the risk of bias.
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Fig. 3  Overlaid histograms of imputed and original values
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Fig. 4  Correlation coefficient scatter plot

Fig. 5  Missing value treatment—data set feature importance comparison

Table 4  Missing value treatments—RF classification

Missing value treatment Accuracy κ Sensitivity Specificity Log loss AUC 

RF imputation 0.764 0.449 0.776 0.761 0.486 0.849
Complete case 0.810 0.497 0.830 0.806 0.516 0.869
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Fig. 6  Accounting feature distributions

Fig. 7  Feature correlation matrices
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5.2  Prediction model evaluations

We evaluated the prediction power of the four data models utilising the GAM and 
XGB classification algorithms. We first examined variable correlations and cross 
reference the data models8 with an analysis of feature importance, based on the 
permutation results from an RF feature evaluation of the dataset. The accounting 
feature distributions shown in Fig. 6 confirm the non-normal, skewed and kurtosis 
nature of the dataset, consistent with corporate company panel data. This suggested 
that the use of a non-parametric correlation test (Spearman 1904) was most suitable 
to assess correlations between the features. The correlation matrices produced from 
the Spearman tests on each of the four datasets can be seen in Fig. 7.

The results show correlations in both accounting (e.g. solvency and gearing 
ratios) and bulk market (e.g. freight and time charter rates) feature sets, with some 
significant enough to warrant closer examinations of the data. This was performed 
using the RF feature importance methodology: given the bias in mean decreased 
impurity measurement, when predictor variables are highly correlated (Strobl et al. 
2008), we used both unconditional and conditional permutational analysis. The 
results shown in Fig. 8 were then used to identify the best performing variable per-
mutations for our models. This information was used to inform feature selection 
testing for each of the three feature sets.

The classification performance results presented in Table 5, show that, in Model 1 
(the accounting ratio set), both GAM and XGB classifiers detect contributions from 
the full feature set; as indicated by sensitivity, type II error, log loss and H Meas-
ure results. This is in contrast to the unconditional RF feature importance results 
(Fig. 8), which show strong contributions from asset turnover, liquidity, current and 
solvency ratios, as well as gearing ratios, indicating that the remaining ratios have 
limited predictive contributions. Furthermore, according to the unconditional per-
mutation analysis, only identified profit margin as providing strong input to the dis-
tress rate.

For Model 2, the results following the introduction of bulk market indicators to 
company financials concur with the feature importance analysis in that the addi-
tion of freight rate information as the only market predictor produces slightly better 
results for sensitivity, type II error and log loss for GAM. However, the figures for 
XGB indicate that this algorithm can perform optimally when the complete market 
feature set is combined with the accounting information. The feature set analysis 
indicates that for Model 3, the long-term interest rates and inflation play strong roles 
in the predictive power of the model. This is borne out in the results for both GAM 
and XGB for Model 3 with the strongest metrics produced when limiting the mac-
roeconomic indicators to these features. Finally, combining all the feature sets into 
Model 4 appears to demonstrate that both GAM and XGB perform most optimally 

8 Following the results of the missing value analysis, the RF MI data set was used as the accounting base 
for this analysis. However, the methodology was designed with the assumption that this decision will be 
for a corporate “risk department”.
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when the company financials are combined with freight rate and interest rate infor-
mation. This is consistent with results produced from Model 2 and 3 tests.

The results shown in Table 5 also indicate that the FD prediction power of XGB 
is improved over that of the GAM classifier, albeit only marginally. However, as 

Fig. 8  Unconditional and conditional permutation tables for each feature set
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reported in Christoffersen et al. (2018), the differences between the results achieved 
through complex model compared with the GAM model is not as pronounced as 
in previous studies e.g. Jones et al. (2015a). A comparison of the example overall 
classifier performance with optimal H Measure cost settings for Model 4 (complete 
dataset) is shown in Fig. 9. Again, with this methodology, the discussion of the opti-
mal cost setting for the H Measure would be a decision for the Credit Committee.

Fig. 9  Classifier performance overview—Model 4

Fig. 10  Aggregated distress predictions—Model 4
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Finally, we illustrate the use of the methodology to predict the number of com-
panies entering into distress through Fig. 10. This compares the realized percent-
age of firms in distress to the model predicted values from both classifiers. The 
models are estimated on an expanding window of data with a 2-year lag (t-2) to 
the forecasted data set e.g. the forecast for 2010 distress rates are estimated using 
2003–2008 data.

5.3  Portfolio application

In the previous section we illustrated how our methodology can be used to pre-
dict individual company distress. Here we expand the use of the methodology by 
examining its capacity to assist with the assessment of shipping portfolio risks. 
A comparison is made of the models’ 95% Value-At-Risk (VaR) values with the 
realised portfolio distress rates. This can help banks with their estimated shortfall 
(ES) assessments.9 The individual company banking information provided a foun-
dation for the construction of bank portfolio related data for this study. Five banks 
where selected on the diversification of their bulk fleet exposure over the period 
2005–2015 (11 portfolio data sets). The GAM and XGB algorithms were used to 
estimate the 95% VaR of the FD rates for each portfolio. The results are summa-
rised in Fig. 11. The solid vertical lines represent the VaR estimates where the line 
reaches or exceeds the realised figures (dot) and the broken line represents those that 
fall below the realised VaR. The results show that GAM had 37 VaR violations and 

Fig. 11  VaR—model estimations vs actuals

9 A limitation of the VaR is that it does not quantify the size of the loss once the loss is greater than the 
confidence threshold. It only informs on the minimum expected loss. Hence conditional VaR (CVaR) or 
Expected shortfall are used to estimate the value of the loss when the loss exceeds the VaR threshold.
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XGB producing 34, with neither performing optimally over the 2008–2010 period 
covering the financial crisis.

6  Conclusions

This study has introduced a novel methodology for the prediction of financial dis-
tress in dry bulk shipping focusing on the noisy and incomplete nature of shipping 
financial statement information. The methodology comprises a unique combination 
of features starting with a flexible definition of FD for shipping company distress. In 
addition, our methodology includes tools for the analysis and treatment of missing 
accounting information and incorporates modern machine learning tools.

The main conclusions of the study are, firstly, that multivariate imputation can 
help shed light on the nature and structure of missing accounting data as well as 
providing ML tools for its effective treatment. Secondly, we determined that the ML 
classification technique, XGB, showed an improvement over the use of GAM mod-
elling for FD prediction. However, our results indicate that the GAM algorithm, has 
a predictive power comparable to that of more complex ML algorithms. Further-
more, the transparent nature of the GAM algorithm, over more complex “black-box” 
algorithms, could help facilitate the acceptance of this methodology by regulators.

The bulk shipping market case study also demonstrated that the introduction 
of non-corporate level, macroeconomic and market predictors do not perceptibly 
improve the predictive power of modern ML tools. The methodology revealed that 
whilst macro and market predictors do contribute to FD predictive modelling power, 
XGB can generalise as effectively by simply utilising a parsimonious accounting 
feature set. The results indicate that if sufficiently extensive longitudinal account-
ing data are available, then adequate macroeconomic and market information is cap-
tured therein, thus enabling advanced ML algorithms to generalise effectively on out 
of sample data (without the inclusion of additional non company level features).

The results, however, have indicated some limitations of the methodology 
which require further investigation. Given the noisy and incomplete nature of the 
available data, even complex models do not achieve an accuracy level, at present, 
to be relied upon to be used in anything other than an early ‘warning system’ 
for FD. Furthermore, its predictive power was compromised through the financial 
crisis of 2008, in that the model failed completely to handle systemic shock at 
both company and portfolio levels. In short, further research is required to exam-
ine techniques for addressing the problem of tail end events and to improve upon 
the treatment of missing accounting information.

In summary, this study demonstrated how the methodology could be used by 
banking credit risk departments to detect early signs of distress at both individual 
company and investment portfolio levels, providing for the dynamic monitoring 
of individual shipping company loans as well as portfolio risk.

Acknowledgements We wish to thank the Editor-in-Chief and the two anonymous reviewers for their 
excellent contributions to, and time spent on, this paper. We believe that the comments made have con-
tributed greatly to the revised version’s clarity and content.
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Appendix 1: Methodology

This Appendix is intended to provide further details on the methodological reason-
ing supporting this study.

Missing value treatment: complete case and multivariate imputation

Under the MAR assumption, we can use information in the training set to estimate 
the values of other predictors. The now widely accepted random forest multiple 
imputation (MI) model was selected for the MAR data in our test case (Stekhoven 
and Bühlmann 2012; Shah et  al. 2014; Van Buuren 2018). This method utilizes 
bootstrapped aggregation of multiple regression trees to combine predictions to 
both reduce overfitting and improve accuracy of predictions. Furthermore, Shah 
et al. (2014) conclude that this method is more efficient and produces narrower CIs 
compared to other MI models. We compare an RF imputation with the results from 
applying the “complete case” approach.

Pre‑processing

Some advanced ML algorithms (e.g. tree-based models) have demonstrated robust-
ness to skewness, kurtosis and outliers in contrast with generalised linear models, 
which are particularly sensitive to such issues. We used two pre-processing transfor-
mations to address these issues. Firstly, we used a variation of Box and Cox (1964) 
transformation, developed by Yeo and Johnson (2000), as Box–Cox requires input 
variables to be strictly positive. Secondly, the treatment of outliers, through the use 
of spatial sign transformation, from Serneels et  al. (2006), was used as financial 
ratios values can exhibit heavily skewed distributions due to the presence of outliers.

Finally, classification algorithms are generally trained under the assumption that 
class ratios in the training data are balanced. However, in real world datasets this 
assumption is frequently violated. This was found to be the case with our dataset, 
with the “distressed” case being the minority case (consistent with World Bank and 
OECD figures reflecting global long-term average commercial company default 
rates of around 4 to 6%). Our preliminary pre-processing indicated that down sam-
pling produced the most optimal results following benchmark testing against “up” 
and SMOTE (Chawla et al. 2002) sampling.

Feature selection

The role of feature analysis and selection is essential for the identification of inde-
pendent variables which contribute most to the dependent variable. In our methodol-
ogy we implement RF (Breiman 2001) which are increasingly implemented for this 
task across many fields of research (Zhou et al. 2016; Lakshmipadmaja and Vishnu-
vardhan 2018). Each node in an RF decision tree represents a condition on a feature 
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which is designed to dissect the data so that similar response values are contained 
in a common set. We use conditional permutation as a feature importance metric to 
account for collinearity amongst variables.

Classification models: theoretical background

Generalized additive models (GAM)

One of the main assumptions of linear regression models is that they require the 
covariates to be linearly related to the probability of FD (or logit thereof). However, 
GAMs relax this assumption by accounting for the fact that some of the predictors 
exhibit a continuous, non-linear relationship with FD (Hastie and Tibshirani 1987). 
Furthermore, non-linear relationships are observed both below and above specific 
thresholds with respect to the adjusted financial ratios of shipping companies. This 
necessitates due account being taken of these non-linear relationships. Compared 
with other linear classifiers, GAMs demonstrate superior regularisation thus ena-
bling them to more adequately address problems of overfitting. They also have an 
advantage over more complex models, by being more interpretable and as such, 
GAMs represent an acceptable solution between the interpretable, yet biased, linear 
models, and more complex, “black box” learning algorithms.

Our implementation of company FD prediction, utilising GAMs follows Berg 
(2007), Lohmann and Ohliger (2017) and Christoffersen et al. (2018).

Classification model evaluation

The classification performance of each model/classification combination is carried 
out using their respective area under the curve (AUC) of the receiver operating char-
acteristics (ROC). The ROC originated in the 1940s for use in radar signal analysis 
and one of its first recorded uses in ML was Spackman (1989).

However, the ROC/AUC method has its limitations and as such H Measures 
(Hand 2009) are also employed in the evaluation of models. The H Measure is a 
robustness check on the AUC results. This metric addresses the main problem asso-
ciated with the AUC, that of the handling of misclassification costs across different 
classifiers. The AUC does not apply the same misclassification cost distributions to 
individual classifiers, i.e., it utilises different metrics when evaluating different clas-
sification rules. As such, its use should be limited to the broad comparison of indi-
vidual classifiers, as an AUC may rank the individual models adequately but per-
form inadequately in terms of the level of the predicted probabilities.

The log loss function is also used to compare the calibrated probabilities. The 
log loss function measures the accuracy of a classification model by penalising false 
classifications. The basic premise is in minimising the log loss to maximise the 
accuracy of the classifier. In order to calculate log loss, the classifier assigns a prob-
ability to each class in place of assigning the most likely class.

Mathematically log loss is defined as:
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where Hjt is the model’s log score (loss) of model j in year t; yi is a dummy equal 
to 1 if company i financially distressed ;p̂ is the predicted probability of distress of 
firm i by model j; R is the sample of active companies and n is the number of com-
panies inR . A perfect score is zero. The log loss metric considers the probabilities 
underlying models, and not only the final output of the classification. The stronger 

(1)Hj = −
1

n

∑

i∈R

(yi log (p̂) + (1 − yi) log (1 − p̂)),

Table 6  Imputation evaluation metrics

Ratio Mean original SD original Mean imputed SD imputed Welch t test P KS test D

ROE 2.127E+00 1.520E+01  − 2.692E +00 2.112E+01 1.607E − 06 2.285E−01
ROA 4.876E+00 2.361E+01  − 6.922E+00 2.836E+01 1.852E−24 2.752E−01
ProfitM 3.585E+01 3.365E+01 3.423E+01 2.244E+01 7.524E−02 1.164E−01
GrossM 1.701E+01 2.594E+01 1.433E+01 2.238E+01 6.130E−04 8.708E−02
EBITDAM 7.488E+00 2.291E+01 1.223E+00 2.018E+01 5.186E−14 1.931E−01
EBITM 1.172E+01 2.425E+01 9.787E + 00 2.311E+01 1.390E −02 6.456E−02
NetAssetT 8.528E+00 4.466E+01 2.377E+01 4.208E+01 4.496E−16 3.454E−01
CurrentR 2.722E+00 6.568E+00 9.535E+00 1.369E+01 4.980E−09 4.873E−01
LiquidityR 2.523E+00 6.221E+00 9.620E+00 1.477E+01 5.515E−10 4.359E−01
SolvencyR 3.698E+01 3.161E+01  − 2.905E+00 4.365E+01 2.186E−21 5.279E−01
Gearing 1.414E+02 1.777E+02 3.200E+02 2.443E+02 1.685E−90 4.319E−01

Fig. 12  Original and imputed variable clusters—pre and post imputation
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probabilities correspond to a lower log loss. As log loss is a measure of entropy or 
uncertainty, a low log loss means a low entropy. The measure is similar to the Accu-
racy value derived from the confusion matrix, but it will favour models that most 
clearly distinguish classes. Furthermore, log loss is useful for comparing not only 
model output but also on their individual probabilistic outcome.

Appendix 2: Post imputation evaluation results

The effect of imputation on each individual financial covariate was examined first. 
The basic testing assumption was the null hypothesis, which states that, the two dis-
tributions, observed and imputed, are drawn from the same data sample. As such, 
the performance metrics utilised were the Welch t-test P and the KS D values. For 
example, a 95% significance level indicates that when imputed covariates show a 
p < 0.05, the null hypothesis should be rejected. Also, KS D values should be close 
to 0.

To summarise, the Welch’s t-test and the KS-D test were used to evaluate if the 
imputed data were statistically close enough to the observed data. The p-values of 
the Welch’s t-test showed that RF consistently imputed values across the covariates 
such that the null hypothesis of equal means could not be rejected, e.g. for a p-value 
for a covariate above 0.05, indicating that the null hypothesis cannot be rejected at 
the 5% level. The KS D values for the imputed data set indicate a close approxima-
tion to the validation data than dissimilarity, since all values in Table 6 are closer to 
0 than 1. This can be interpreted as an indicator of limited loss of information from 
the imputed data from the models.

A visualisation of the hierarchical clustering of the missing data is provided in 
Fig. 12. The bifurcations approaching a length of 0 (to the left of the plots) represent 
closer relationships in terms of missing data—i.e. those variables in one group are 
more likely to be missing together compared to the rest.

The results summarised in Table 4, show that the complete case (CC) data set 
shows increased sensitivity and AUC results than that produced using RF MI data. 
This indicates improved out of sample generalisation performance using CC data. 
However, the log loss values signal a greater misclassification error with the CC 
data. This is an indication that, as discussed previously, the removal of circa 72% 
of records (containing incomplete data) involved the possibility of introducing bias.
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