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Abstract
In this paper, we study the risk management implications of different assumptions 
about the stationarity of freight rates. Specifically, we compare freight rate volatility 
estimations derived from two different two-factor models; a stationary and a non-
stationary one. Based on these volatility estimations, we provide a simple method 
for estimating the value at risk, VaR, for a single route. The results indicate that 
when using the non-stationary model, risk managers may overestimate risk, since 
VaR estimations grow monotonically over time, whereas when using the stationary 
model, they may underestimate the risk, because VaR estimations are bounded. We 
also provide estimations of the freight rates option prices based on these two mod-
els. Option prices tend to be higher when using the non-stationary model. Finally, 
we provide a Monte-Carlo simulation method for jointly estimating the VaRs for two 
routes based on a two-factor model with a common long-term trend, which allows 
risk managers to take advantage of the benefits of diversification.

Keywords Freight rates · Time charter equivalent · Volatility · VaR · Risk 
management · Option pricing

1 Introduction

Recent events have shown that risk management, which is key to avoiding financial 
distress, is not as effective as many people believed. The main reason for the failure 
of risk management during the 2008 financial crisis was that risk was not properly 
measured, since many calculations were carried out using an incorrect model for 
price dynamics. In fact, the Basel III agreement recognized that after the 2008 finan-
cial crisis it was necessary to make some changes in the calculation of regulatory 
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capital for market risk, introducing what has been known as “stressed VaR” (see for 
example Hull 2015).1

In recent times, freight markets have shown great development in terms of spot 
and derivatives contracts, and the risks associated with those markets have substan-
tially increased. This increase in the level of risk calls for a more detailed investiga-
tion into suitable risk management models.

Comprehensive reviews on risk measurement and management in the shipping 
sector can be found in Poblacion (2015), (2017) and Poblacion and Serna (2018). A 
crucial choice in terms of risk management models is that between the use of a sta-
tionary or a non-stationary data generating process. In order not to repeat previous 
findings, here we quote only those related to the topic of our paper.

Based on pre-existing unit root test analyses (Alizadeh and Kavussanos 2002; 
Tvedt 2003) and on his own analysis, Poblacion (2017) confirms that, in most cases, 
a non-stationary model outperforms a stationary one in terms of the in-sample fit to 
the observed futures rates. The analysis in Poblacion (2017) is based on stochastic 
factor models jointly accounting for spot and future prices, as in Schwartz and Smith 
(2000) and Dempster et al. (2008).

In Poblacion and Serna (2018), the empirical evidence that was previously pre-
sented is extended by showing that freight rates are cointegrated, and furthermore 
they exhibit common long-term dynamics, which implies that their differences 
reflect only short-term effects. In doing so, they use different factor models to jointly 
explain the dynamics of freight rates, as in Mirantes et al. (2012a). They find that the 
most suitable model in terms of its simplicity and fit is the one that assumes a com-
mon long-term trend for freight rates.

Concerning VaR estimations in freight markets, Kavussanos and Visvikis (2006) 
provide an overview of freight rate derivatives and their use in risk management, as 
well as an introduction to VaR estimations in freight markets. Angelidis and Skiado-
poulos (2008) test several parametric and non-parametric VaR methods in various 
freight markets. They find that the simplest non-parametric method should be used. 
Kavussanos and Dimitrakopoulos (2011) find that parametric methods are more 
suitable in the tanker sector. Abouarghoub et al. (2014) employ a regime switching 
conditional variance model to improve VaR forecasts for tanker freight returns.

More recently, Argyropoulos and Panopoulou (2018) investigate the performance 
of several methods (parametric, non-parametric, hybrid and a variety of combined 
methods) to estimate the VaR of the most important Baltic Exchange indices. They 
find that combined methods are superior to individual ones.

A key factor in parametric VaR estimation is the assumption of a correctly speci-
fied model for the price dynamics. Therefore, in this paper, we address the prob-
lem of VaR estimation in freight markets using a theoretical model of the stochas-
tic behaviour of freight rates that is able to properly capture the main dynamics of 
freight rates and to avoid the problems of model misspecification, which lead to 

1 There have also been many papers showing that the standard VaR measures needed to be improved 
to properly capture market risk after the 2008 financial crisis (see for example Halbleid and Pohlmeier 
2012).
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wrong VaR estimations. Specifically, we will see that a non-stationary model is 
more suitable for risk measuring in freight rate markets, because with a stationary 
model we incorporate the risk of underestimating the risks that a company is fac-
ing, which can have serious consequences, as occurred in the past financial crisis. 
In fact, according to Poblacion (2017), there is significant evidence that freight rates 
are non-stationary. Therefore, choosing a mis-specified stationary model comes at 
the cost of underestimating risk.

To this end, the most suitable models for the stochastic behaviour of freight rates 
are the stationary and non-stationary models for freight rates that were described 
above (see Poblacion 2017, and Poblacion and Serna 2018). These factor models 
account for the main characteristics of freight rates. Long-term factors account for 
the long-term dynamics of freight rates, which are assumed to follow a random walk 
(Poblacion 2017), whereas short-term factors account for the mean-reverting com-
ponents in freight rates (Tvedt 2003). Moreover, the seasonal factor accounts for 
the seasonal effect commonly observed in freight rates (Alizadeh and Kavussanos 
2002).

Specifically, we investigate the differences arising in measuring risk according 
to the different models presented in Poblacion (2017) and in Poblacion and Serna 
(2018), i.e., a stationary and a non-stationary model for freight rates for a single 
route, and a model with a common long-term trend for pairs of routes, as well as 
their implications in terms of risk management.

Our results indicate that with the non-stationary model, risk managers may over-
estimate risk, given that VaR estimations grow monotonically with time, whereas 
with the stationary model, they may underestimate risk because VaR estimations are 
bounded. Specifically, with the stationary model we obtain VaR estimates with a 
confidence level of 99% and a time horizon of 1 month between 18 and 35% lower 
than those obtained with the non-stationary model (between 20 and 41% with a con-
fidence level of 95%).

Estimations of freight rates option values based on these two models are also pro-
vided, and the results show that the non-stationary model tends to produce higher 
option prices. However, since the non-stationary model is more suitable in many 
cases for modelling the stochastic behaviour of freight rates (Poblacion 2017), with 
the stationary model, we take the risk of underestimating the risks that the company 
is facing, which can have serious consequences. Finally, we conduct an extensive 
Monte-Carlo simulation exercise for estimating the VaRs of two routes jointly, based 
on a two-factor model with a common long-term trend, which allows risk manag-
ers to take advantage of the benefits of diversification. This Monte Carlo simulation 
exercise for estimating the VaR of two routes jointly constitutes the main contribu-
tion of the paper. It is important to note that in the case of two routes, no analytic 
formula is available because, based on model assumptions, we are able to specify 
the distribution of the price of a single route, which is log-normal. However, the 
price of a portfolio consisting of positions in different routes is a linear combination 
of log-normal distributions that does not have a closed formula. Therefore, one must 
rely on Monte Carlo simulations to estimate the future portfolio value.

The remainder of the paper is organized as follows. The next section presents the 
data. In Sect. 3 we measure the risk for a single route. Section 4 discusses the joint 
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risk measurement for a couple of routes and some risk management implications 
of the proposed models. Finally, we offer some conclusions and direction of future 
work.

2  Data

The data set used in this paper is the same as in Poblacion (2015) and (2017), Pobla-
cion and Serna (2018) and Mirantes et  al. (forthcoming), and consists of weekly 
observations of voyage charter contracts. Specifically, we have data for the spot 
and forward rates of the TCE (Time Charter Equivalent) during the period from 
05/06/2010 to 02/25/2014 (200 weekly observations2) for two routes that are defined 
by the Baltic Exchange (www.balti cexch ange.com): TC2 and TC6.

As is well known, the Time Charter Equivalent, TCE, is the daily revenue per-
formance of a vessel. The TCE is calculated by taking voyage revenues, subtracting 
voyage expenses, and then dividing the entire total by the round-trip voyage duration 
in days; therefore, this revenue is measured in $/day.

For these routes, we have the spot and forward prices with maturities from the cur-
rent month up to 5 months ahead (FCM, F1, F2, F3, F4 and F5, where FCM is the cur-
rent month, F1 is the forward contract for the first month after the closest maturity, F2 
is the contract for the second month, and so on) and from three to five quarters (Q3, Q4 
and Q5). Table 1 in Poblacion (2015) contains the details, such as loading and unload-
ing ports and type of ship for these routes. The main descriptive statistics, including the 

Table 1  Descriptive statistics

The table shows the mean and volatility of spot and forward prices 
of TCE (Time Charter Equivalent) for routes TC2 and TC6 dur-
ing the period 05/06/2010 to 02/25/2014 (obtained from Poblacion 
2015)

TC2 TC6

Mean Volatility (%) Mean Volatility (%)

Spot 8536 297 9408 292
FCM 8716 259 9646 238
F1 9023 147 10,447 134
F2 9055 84 10,633 89
F3 9133 59 10,710 71
F4 9137 60 10,593 64
F5 9017 55 10,419 62
Q3 8874 62 9814 48
Q4 9057 47 10,164 46
Q5 9432 44 10,455 47

2 There are five missing data for the spot prices in both series, TC2 and TC6. Linear interpolation has 
been used to replace the missing values.

http://www.balticexchange.com
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mean and volatility, of these variables are presented in Table 1 (obtained from Pobla-
cion 2015).

3  The risk of a single route

The VaR estimations that we present are based on two different factor models of freight 
rates. The first model is the stationary model of Dempster et al. (2008), and the second 
is an adaptation of the non-stationary model of Schwartz and Smith (2000).

Using the reformulation in Poblacion (2017), the model by Dempster et al. (2008) 
can be expressed as follows. It is assumed that the log-spot price (Xt) is the sum of two 
short-term stochastic factors (χt1 and χt2) plus a deterministic seasonal component (αt), 
as in Sorensen (2002). Thus, Xt is the log freight spot price, which evolves according to 
the following equation:

The stochastic differential equations (SDEs) for factors, under the risk-neutral meas-
ure, are stated as follows:

In model (2), μ represents the trend; κ1 and κ2 and σχ1 and σχ2 are the speeds of 
adjustment and volatility, respectively, of the factors; and λχ1 and λχ2 represent the 
market prices of the risks that are associated with the factors. dWχ1t and dWχ2t are 
standard Brownian motions than can be correlated (dWχ1tdWχ2t = ρχ1χ2dt). αt

* is the 
other seasonal factor that complements αt and φ is the seasonal period.

In the Schwartz and Smith (2000) model, the log-spot price (Xt) is assumed to be the 
sum of two stochastic factors: a short-term deviation (χt) and a long-term equilibrium 
price level (ξt), plus a deterministic seasonal component (αt).Thus, if Xt is the log-spot 
price, then we obtain the following:

The stochastic differential equations (SDEs) for these factors, under the risk-neutral 
measure, are stated as follows:

In model (4), μξ and σξ represent the trend and volatility, respectively, of the long-
term factor, and κ and σχ are the speeds of adjustment and volatility, respectively, 
of the short-term factor. λχ and λξ represent the market prices of the risks that are 

(1)Xt = �1t + �2t + �t

(2)

⎧⎪⎨⎪⎩

d�1t =
�
� − ��1

− �1�1t

�
dt + ��1

dW�1t

d�2t =
�
−��2

− �2�2t

�
dt + �2�dW�2t

d�t = 2���∗
t
dt

d�∗
t
= −2���tdt

(3)Xt = �t + �t + �t

(4)

⎧⎪⎨⎪⎩

d�t = (�� − ��)dt + ��dW�t

d�t = (−�� − ��t)�tdt + ��dW� t

d�t = 2���∗
t
dt

d�∗
t
= −2���tdt
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associated with the short- and long-term factors. As before, dWξt and dWχt are stand-
ard Brownian motions that can be correlated (dWξtdWχt = ρξχdt), αt

* is the other sea-
sonal factor that complements αt and φ is the seasonal period.

It is worth noting that in the Dempster et al. (2008) model, both stochastic fac-
tors, χt1 and χt2, are mean-reverting. On the other hand, in the Schwartz and Smith 
(2000) model, χt is a mean-reverting factor, and ξt is a random walk. Therefore, the 
Dempster et  al. (2008) model is stationary and the Schwartz and Smith (2000) is 
non-stationary.

The estimation results of these models are presented in Table 2 (obtained from 
Poblacion 2017, Tables 2 and 3). Based on these results, it is interesting to investi-
gate the way in which the theoretical variance of futures prices3 varies with time, as 
well as its implications in terms of risk management, option valuation and hedging.

Using the databases described above, Poblacion (2017) found that, in many cases, 
the stationary model by Dempster et al. (2008) does not adequately model changes 
in freight rates, thus suggesting that a non-stationary long-term factor is needed to 
accurately model freight rates. However, in some routes, the Dempster et al. (2008) 
model is a suitable model for freight rates.4

Based on these results, Fig. 1 shows the time evolution of futures price volatili-
ties that are obtained with both the Schwartz and Smith (2000) and Dempster et al. 
(2008) models, for the TCEs of routes TC2 and TC6.5 The theoretical volatilities of 
futures prices obtained with both models depend on the model’s parameters as well 
as on the futures’ time to maturity. Logically, as time to maturity increases, volatility 
also increases. In Fig. 1 we have computed the theoretical futures price volatility for 
maturities up to 50 years. As expected, the volatility that is forecasted from the non-
stationary model, i.e., the Schwartz and Smith (2000) model, monotonically grows 
with time, whereas the volatility that is derived from the stationary model, i.e., the 
Dempster et al. (2008) model, is bounded.

Therefore, the two models have very different implications in terms of risk man-
agement and also in terms of derivative valuation and hedging. Specifically, as we 
will see in the following sub-sections, the bounded-variance model produces lower 
estimates of the risk, associated with the futures contracts in the long run, resulting 
in lower option prices compared to those that are obtained with the non-bounded 
variance model.

3 Under the assumptions of the models by Schwartz and Smith (2000) and Dempster et al. (2008), it can 
be proved that the log-price of a futures contract traded at time t with maturity at time T + t is normally 
distributed. Schwartz and Smith (2000) and Dempster et al. (2008) provide formulas for the theoretical 
variance of futures prices (see Appendix).
4 Poblacion (2017) analyses the stationarity of several freight rate series (five routes for the World Scale, 
WS, and four routes for the TCE). He found that, except for the route WS TD16, in all cases a likelihood 
ratio test shows that it is not possible to reject the null hypothesis that the true model is the non-station-
ary model by Schwartz and Smith (2000).
5 These theoretical volatilities are calculated using the analytic formulae that were given in Schwartz and 
Smith (2000) and Dempster et al. (2008) for the variance of futures contracts (see Appendix). It is worth 
noting that the models’ parameters in these formulae have been estimated in sample. As a consequence, 
we are implicitly assuming that the factors’ volatilities are constant over time.
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Table 2  Estimation results 
(Dempster et al. 2008; Schwartz 
and Smith 2000)

Contracts TCE-TC2 TCE-TC6
FCM, F1, F2, F3, 
F4, F5, Q3, Q4, Q5

Spot, FCM, F1, F2, 
F3, F4, F5, Q3, Q4, 
Q5

Number of Obser. 200 200

Dempster et al. (2008)
 μ 0.9989

(0.8102)
0.7954
(0.6229)

 κ1 0.2175**

(0.0428)
0.1768***

(0.0000)
 κ2 0.8597***

(0.0806)
3.8483***
(0.0000)

 φ 0.8580***
(0.0995)

1.0661***
(0.0000)

 σχ1 1.2846***
(0.1408)

1.3313***
(0.0785)

 σχ2 0.6291***
(0.0969)

2.9153***
(0.0000)

 ρχ1χ2 0.1478
(0.1991)

− 0.4541***
(0.0000)

 λχ1 0.1418
(0.6317)

− 0.0146
(0.6056)

 λχ2 − 0.3684
(0.3993)

0.4092
(0.2593)

 ση 0.4289***
(0.0081)

0.3234***
(0.0000)

 Log-likelihood 597.92 1377.73
 AIC 577.92 1357.73
 SIC 544.94 1324.75

Schwartz and Smith (2000)
 μξ − 0.4896

(0.7807)
0.1860
(0.3215)

 κ 4.1464***
(0.3669)

3.9950***
(0.3212)

 – – –
 φ 0.8838***

(0.0253)
1.0431***
(0.0058)

 σξ 1.4563***
(0.0722)

1.1454***
(0.0000)

 σχ 0.2784***
(0.2350)

3.0018***
(0.1599)

 ρξχ 0.3033
(0.7549)

− 0.8205***
(0.0284)

 λξ 2.5767***
(0.3317)

0.9702**
(0.0000)

 λχ 0.9415
(1.2921)

1.4265
(1.1855)
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3.1  Measuring the risk: value at risk (VaR)

In this sub-section, based on the concept of the “value at risk” (VaR), we present the 
results of the risk measurements for a single route. Recall that  VaRq is defined as the 
1 − q quantile of the asset price distribution, i.e.,Pr (X ≤ X∗) = 1 − q , where X is the 
asset price and  VaRq = E[X] – X*.

In both models, Schwartz and Smith (2000) and Dempster et  al. (2008), it is 
assumed that the future log-spot price, ln(St), is normally distributed with mean μ 
and standard deviation σ, were σ has been calculated using the analytic formulae in 
Schwartz and Smith (2000) and Dempster et al. (2008) (Fig. 1). Therefore, the future 
spot price, St, is log-normally distributed with mean exp

(
� + �2∕2

)
 . This is to say, 

E[St] = exp
(
� + �2∕2

)
 , and so � = ln

(
E[St]

)
− �2

/
2 . In the last expression, E[St] 

can be easily computed as E[St] = S0 ⋅ exp(rt) , where r is the risk-free interest rate. 
Thus, once we have obtained the estimations for the parameters μ and σ, the critical 
value X* can be estimated as the inverse of the log-normal distribution with param-
eters μ and σ at the point 1 − q. Finally, the  VaRq can be computed as E[St] − X*.

The results of the estimation of the VaR with probability levels 99% and 95%, 
i.e., 1 − q = 1% and 5%, for the TCEs of routes TC2 and TC6, are shown in Table 3. 
In all cases, the results are shown for different time horizons from the current date 
(the final date in the historical data set employed in the estimation of the models 
is February 25, 2014). In order to check the robustness of our findings, we have 
performed an empirical analysis assuming that log-prices follow a non-standard Stu-
dent’s t distribution with mean μ and standard deviation σ, were σ has been empiri-
cally calculated using the values reported in Table  1, and μ is defined so that, as 

The table presents the results for the Dempster et al. (2008) and the 
Schwartz and Smith (2000) two-factor models with deterministic 
seasonality applied to the freight prices under study: TCE for routes 
TC2 and TC6. Standard errors are in parentheses. The estimated val-
ues are reported with * denoting significance at 10%, ** denoting 
significance at 5%, and ***denoting significance at 1% (obtained 
from Poblacion, 2017). AIC and SIC stand for the Akaike and 
Schwarz information criteria, respectively

Table 2  (continued) Contracts TCE-TC2 TCE-TC6
FCM, F1, F2, F3, 
F4, F5, Q3, Q4, Q5

Spot, FCM, F1, F2, 
F3, F4, F5, Q3, Q4, 
Q5

Number of Obser. 200 200

 ση 0.3477
(0.0098)

0.2357***
(0.0071)

 Log-likelihood 880.39 1557.54
 AIC 862.39 1539.54
 SIC 832.70 1509.86



299Measuring bulk shipping prices risk  

Ta
bl

e 
3 

 V
aR

 e
sti

m
at

io
ns

 fo
r s

in
gl

e 
ro

ut
es

Th
e 

Ta
bl

e 
sh

ow
s 

th
e 

Va
R

 e
sti

m
at

io
ns

 fo
r a

 s
in

gl
e 

ro
ut

e,
 T

C
E 

TC
2 

an
d 

TC
6.

 X
*  is

 th
e 

cr
iti

ca
l v

al
ue

, i
.e

., 
th

e 
m

in
im

um
 s

po
t p

ric
e 

th
at

 is
 e

xp
ec

te
d 

at
 th

e 
pr

ob
ab

ili
ty

 le
ve

l 
q =

 99
%

 o
r 9

5%
 a

nd
  V

aR
q =

 E
[S

t] 
−

 X
* , w

he
re

 S
t i

s t
he

 a
ss

et
 p

ric
e 

th
at

 is
 m

ea
su

re
d 

in
 $

/d
ay

Ti
m

e 
(y

ea
rs

)
TC

2
TC

6

X
*

E[
S t

] −
  X

*
X

*
E[

S t
] −

  X
*

Sc
hw

ar
tz

-
Sm

ith
D

em
ps

te
r 

et
 a

l.
St

ud
en

t’s
 t

Sc
hw

ar
tz

-
Sm

ith
D

em
ps

te
r 

et
 a

l.
St

ud
en

t’s
 t

Sc
hw

ar
tz

-
Sm

ith
D

em
ps

te
r 

et
 a

l.
St

ud
en

t’s
 t

Sc
hw

ar
tz

-
Sm

ith
D

em
ps

te
r 

et
 a

l.
St

ud
en

t’s
 t

Pa
ne

l A
: 

99
%

 V
aR

 1
/1

2
21

29
.2

4
28

35
.2

2
18

78
.9

2
40

14
.6

2
33

08
.6

4
42

64
.9

4
22

00
.7

7
59

58
.2

9
77

22
.4

3
10

,8
22

.8
3

70
65

.3
2

86
21

.2
2

 0
.5

30
6.

67
79

5.
42

25
4.

75
59

66
.5

3
54

77
.7

8
60

18
.4

5
17

48
.0

8
17

31
.8

8
76

2.
31

11
,5

49
.7

0
11

,5
65

.9
0

12
,5

35
.5

1
 1

69
.4

6
34

5.
14

55
.4

7
63

62
.5

5
60

86
.8

6
63

76
.5

4
74

3.
44

78
0.

14
17

7.
52

12
,8

90
.9

8
12

,8
54

.2
8

13
,4

56
.9

3
 1

.5
19

.7
9

19
3.

33
12

.3
6

65
75

.0
4

64
01

.5
0

65
82

.4
8

29
5.

27
44

4.
74

59
.3

0
13

,6
84

.3
0

13
,5

34
.8

3
13

,9
20

.3
0

 2
6.

34
12

5.
83

3.
68

67
55

.4
5

66
35

.9
5

67
58

.1
1

12
7.

87
29

0.
33

18
.6

3
14

,2
05

.5
9

14
,0

43
.1

3
14

,3
14

.8
4

 2
.5

2.
19

90
.8

2
1.

05
69

30
.7

7
68

42
.1

4
69

31
.9

1
59

.2
6

20
8.

08
7.

38
14

,6
37

.0
6

14
,4

88
.2

4
14

,6
88

.9
1

 3
0.

80
70

.7
4

0.
34

71
07

.6
7

70
37

.7
3

71
08

.1
2

28
.8

3
15

9.
83

2.
66

15
,0

39
.5

3
14

,9
08

.5
2

15
,0

65
.9

3
Pa

ne
l B

: 9
5%

 V
aR

 1
/1

2
28

30
.9

4
35

05
.9

0
24

29
.2

7
33

12
.9

2
26

37
.9

6
37

14
.5

9
34

70
.2

9
73

84
.2

0
56

78
.2

4
95

53
.3

1
56

39
.4

1
73

45
.4

4
 0

.5
63

0.
34

13
37

.6
2

46
9.

87
56

42
.8

6
49

35
.5

8
58

03
.3

3
29

16
.3

1
28

95
.2

4
13

06
.9

7
10

,3
81

.4
7

10
,4

02
.5

4
11

,9
90

.8
6

 1
19

0.
11

69
6.

17
11

6.
97

62
41

.9
0

57
35

.8
4

63
15

.0
3

14
94

.6
7

15
53

.1
3

40
3.

16
12

,1
39

.7
4

12
,0

81
.2

8
13

,2
31

.3
9

 1
.5

67
.5

1
43

9.
52

37
.1

5
65

27
.3

2
61

55
.3

1
65

57
.6

9
71

4.
52

99
5.

18
15

7.
11

13
,2

65
.0

5
12

,9
84

.3
9

13
,8

22
.5

8
 2

26
.0

3
31

1.
81

13
.1

7
67

35
.7

5
64

49
.9

7
67

48
.6

1
36

2.
08

70
8.

12
62

.1
8

13
,9

71
.3

9
13

,6
25

.3
5

14
,2

71
.2

8
 2

.5
10

.5
8

24
0.

07
4.

82
69

22
.3

8
66

92
.8

9
69

28
.1

4
19

2.
42

54
2.

27
26

.6
1

14
,5

03
.9

0
14

,1
54

.0
4

14
,6

69
.7

0
 3

4.
47

19
6.

45
2.

05
71

04
.0

0
69

12
.0

2
71

06
.4

2
10

5.
82

43
8.

86
10

.3
5

14
,9

62
.5

4
14

,6
29

.4
9

15
,0

58
.0

1



300 J. Población, G. Serna 

before, E[St] = S0 ⋅ exp(rt) , and 192 and 18 degrees of freedom for routes TC2 and 
TC6, respectively.6

As expected, given that the Schwartz and Smith (2000) model produces unbounded 
estimates of the volatility (Fig.  1), the critical values (X*), i.e., the minimum spot 
price expected with the probability level q = 99% or 95%, are lower in the case of the 
Schwartz and Smith (2000) model, and therefore the maximum expected loss is always 
higher with the Schwartz and Smith (2000) model than with the Dempster et al. (2008) 
model. In fact, with the Schwartz and Smith (2000) model, the value of X* converges 
quickly towards zero. It is interesting to observe how the reported values calculated 
assuming a Student’s t distribution are closer to the values obtained assuming the 
Schwartz and Smith (2000) model than to the values obtained assuming the Dempster 
et al. (2008) model, suggesting that the Schwartz and Smith (2000) model provides bet-
ter estimations of the observed volatility than the Dempster et al. (2008) model. These 
results confirm that with the non-stationary model, risk managers may overestimate the 
risk, given that the maximum estimated losses are much higher than with the stationary 
model, whereas with the stationary model, they may underestimate the risk.

Fig. 1  Time evolution of volatility. The figure shows the time evolution of the futures volatilities that are 
obtained with both the Schwartz and Smith (2000) and Dempster et al. (2008) models for the TCEs of 
routes TC2 and TC6

6 The degrees of freedom have been estimated by maximum likelihood. The most important charac-
teristic of the freight rate series under study, however, is not their leptokurtosis (heavy tails), but their 
extremely high volatility, as can be seen in Table 1.
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In order to quantify the difference in the VaR estimations obtained with both models, 
Table 4 shows the percentage of undervaluation of the Dempster et al. (2008) model 
with respect to the Schwartz and Smith (2000) model. The largest differences between 
both models are found for short time horizons (shorter than 1 year). With the station-
ary model we obtain VaR estimates with a confidence level of 99% and a time horizon 
of one month between 18 and 35% lower than those obtained with the non-stationary 
model (between 20 and 41% with a confidence level of 95%). The differences decrease 
as the time horizon increases because the value of X* converges towards zero as we 
move forward in time, and therefore E[St] − X* converges to E[St].

However, as stated in Poblacion (2017), given that the non-stationary model is more 
suitable in many cases for modelling the stochastic behaviour of freight rates, with the 
stationary model, we incorporate the risk of underestimating the risks that the company 
is facing, which can have drastic consequences, as occurred in the past financial crisis.

3.2  Option valuation

In this subsection, we value a set of European call and put options on the TCEs of 
TC2 and TC6 with several maturities, ranging from one month up to 10 years. As in 
the previous subsection, the current date is assumed to be the last day in the histori-
cal data base, i.e., February 20th, 2014. On that date, the spot TCE of TC2 was 6118 
(dollars per day) and the TCE of TC6 was 12,969. Therefore, several strike prices 

Table 4  Percentage of 
undervaluation of the Dempster 
et al. (2008) model wrt the 
Schwartz and Smith (2000) 
model

The table shows the percentage of undervaluation of the Dempster 
et al. (2008) model with respect to the Schwartz and Smith (2000) 
model, calculated from Table 3 as ((VaRSchwartz-Smith − VaRDempster)/
VaRSchwartz-Smith) × 100

Time (years) TC2 (%) TC6 (%)

99% VaR
 1/12 17.58 34.71
 0.5 8.19 − 0.14
 1 4.33 0.28
 1.5 2.63 1.09
 2 1.76 1.14
 2.5 1.27 1.01
 3 0.98 0.87

95% VaR
 1/12 20.37 40.97
 0.5 12.53 − 0.20
 1 8.11 0.48
 1.5 5.70 2.12
 2 4.24 2.48
 2.5 3.32 2.41
 3 2.70 2.23
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have been considered around the current spot price. In the case of the TCE of TC2, 
the strikes are 5000, 5500, 6000 and 6500. In the case of the TCE of TC6, the strikes 
are 8000, 10,000, 12,000 and 14,000.

Given that we are dealing with European options, theoretical values can be 
computed by means of the well-known Black–Scholes formula. The estimations 
of the volatility that are needed in the Black–Scholes formula are calculated using 
the analytic formulae given in Schwartz and Smith (2000) and Dempster et  al. 
(2008) for the variance of futures contracts (see Fig. 1). The results are shown in 
Tables 5 and 6 for the TCE of TC2 and the TCE of TC6, respectively. The results 
show relatively high values for the options, taking into account that the initial 
spot price is 6118 (dollars per day) in the case of the TCE of TC2 and 12,969 in 
the case of the TCE of TC6. This result is due to the relatively high values that 

Table 5  Theoretical European option prices on single routes TCE of TC2

The Table shows theoretical European call and put option values on the TCE of TC2 with several maturi-
ties. The current date is assumed to be the last day in the historical data base, i.e., February 20th, 2014. 
The theoretical option values have been computed by means of the Black–Scholes formula using the 
volatility estimations that are calculated using the analytic formulae in Schwartz and Smith (2000) and 
Dempster et al. (2008) for the variance of futures contracts (see Fig. 1)

Time (years) Schwartz-Smith Dempster et al.

Strike Strike

5000 5500 6000 6500 5000 5500 6000 6500

Panel A: call options
 1/12 1595.41 1313.29 1074.18 874.17 1399.58 1082.73 822.32 614.64
 0.5 2881.89 2706.56 2546.67 2400.43 2321.87 2106.60 1914.03 1741.66
 1 3651.82 3521.52 3400.80 3288.52 2877.35 2698.71 2535.78 2386.77
 1.5 4168.95 4067.03 3971.91 3882.79 3233.51 3075.87 2930.85 2797.01
 2 4549.45 4467.89 4391.45 4319.51 3485.49 3341.95 3209.24 3086.12
 2.5 4841.20 4775.05 4712.86 4654.16 3673.31 3539.92 3416.20 3301.01
 3 5070.35 5016.20 4965.19 4916.94 3818.33 3692.57 3575.63 3466.51
 5 5619.62 5593.99 5569.71 5546.63 4170.02 4061.66 3960.34 3865.26
 7 5871.83 5859.18 5847.18 5835.74 4360.08 4260.08 4166.28 4077.99
 10 6028.06 6023.44 6019.04 6014.84 4546.89 4454.19 4366.92 4284.49

Panel B: put options
 1/12 456.30 672.10 930.92 1228.82 260.48 441.55 679.06 969.30
 0.5 1640.12 1952.45 2280.22 2621.63 1080.11 1352.49 1647.58 1962.86
 1 2289.65 2634.97 2989.86 3353.20 1515.18 1812.15 2124.84 2451.44
 1.5 2689.35 3051.30 3420.06 3794.81 1753.91 2060.14 2379.00 2709.02
 2 2955.32 3326.18 3702.16 4082.63 1891.36 2200.24 2519.95 2849.25
 2.5 3135.37 3510.46 3889.52 4272.07 1967.48 2275.34 2592.86 2918.93
 3 3255.58 3631.78 4011.12 4393.22 2003.56 2308.15 2621.57 2942.79
 5 3395.31 3759.08 4124.20 4490.52 1945.71 2226.74 2514.83 2809.15
 7 3276.95 3616.65 3956.99 4297.90 1765.21 2017.55 2276.09 2540.14
 10 2942.40 3241.04 3539.91 3838.97 1461.23 1671.80 1887.79 2108.62
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are calculated for the volatility estimations in the case of freight rates (see Fig. 1). 
Moreover, as expected, in all cases, option values are higher with the non-sta-
tionary model of Schwartz and Smith (2000) than with the stationary model of 
Dempster et al. (2008). The difference is due to the higher estimates of the vol-
atility that are produced by the non-stationary model relative to the stationary 
model (see again Fig. 1). Furthermore, the difference is higher (in relative terms) 
for long-term options because the difference between the volatility estimates with 
both models tends to be higher whenever the time to maturity increases.

These results show again the importance of appropriately modelling the sto-
chastic behaviour of the underlying asset (freight rates in this case) to accurately 
estimate option values. As stated above, given that the non-stationary model is 

Table 6  Theoretical European option prices on single routes TCE of TC6

The Table shows theoretical European call and put option values of the TCE of TC6 with several maturi-
ties. The current date is assumed to be the last day in the historical database, i.e., February 20th, 2014. 
The theoretical option values are computed by means of the Black–Scholes formula using the volatility 
estimations calculated using the analytic formulae in Schwartz and Smith (2000) and Dempster et  al. 
(2008) for the variance of futures contracts (see Fig. 1)

Time (years) Schwartz-Smith Dempster et al.

Strike Strike

5000 5500 6000 6500 5000 5500 6000 6500

Panel A: call options
 1/12 2087.48 1858.00 1655.17 1476.05 1405.30 1089.74 830.10 622.63
 0.5 2299.17 2082.06 1888.06 1714.61 2304.99 2088.37 1894.75 1721.59
 1 2868.61 2689.37 2525.94 2376.50 2842.00 2660.98 2496.04 2345.34
 1.5 3389.80 3242.09 3105.80 2979.61 3193.03 3032.81 2885.54 2749.74
 2 3796.66 3672.22 3556.62 3448.82 3447.01 3301.07 3166.23 3041.23
 2.5 4121.75 4015.38 3916.11 3823.12 3640.49 3505.07 3379.52 3262.71
 3 4388.30 4296.49 4210.53 4129.75 3792.96 3665.63 3547.28 3436.87
 5 5098.23 5044.50 4993.83 4945.85 4176.39 4068.43 3967.49 3872.75
 7 5494.77 5462.01 5431.01 5401.56 4389.31 4291.26 4199.26 4112.64
 10 5806.58 5790.23 5774.71 5759.91 4591.67 4502.17 4417.89 4338.25

Panel B: put options
 1/12 948.37 1216.81 1511.90 1830.70 266.20 448.56 686.84 977.29
 0.5 1057.40 1327.95 1621.60 1935.81 1063.22 1334.26 1628.30 1942.79
 1 1506.44 1802.82 2115.00 2441.18 1479.83 1774.43 2085.10 2410.02

1.5 1910.20 2226.36 2553.95 2891.63 1713.44 2017.08 2333.69 2661.76
 2 2202.53 2530.51 2867.33 3211.95 1852.88 2159.36 2476.94 2804.36
 2.5 2415.92 2750.80 3092.78 3441.04 1934.66 2240.49 2556.19 2880.62
 3 2573.52 2912.06 3256.47 3606.04 1978.19 2281.21 2593.21 2913.16
 5 2873.92 3209.59 3548.32 3889.74 1952.08 2233.52 2521.98 2816.64
 7 2899.89 3219.48 3540.83 3863.71 1794.44 2048.73 2309.07 2574.79
 10 2720.92 3007.83 3295.58 3584.05 1506.01 1719.77 1938.75 2162.38
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more suitable in the case of freight rates (Poblacion 2017), with the stationary 
model, we run the risk of underestimating option prices.

4  The risk of more than one route

In the previous section, we have analysed the risk of one particular route with appli-
cations to risk measurement (VaR) and to option valuation. In this section, we will 
analyse the risk that is associated with the dynamics of two routes jointly. To char-
acterize the stochastic behaviour of two routes jointly, we will rely on the models 
discussed in Poblacion and Serna (2018).

Poblacion and Serna (2018) present different factor models to characterize freight 
rate dynamics, based on the models proposed by Cortazar et al. (2008) and Mirantes 
et  al. (2012b), with or without assuming a common long-term trend for pairs of 
freight rates. They find that the freight rate series that are considered exhibit a com-
mon long-term dynamics and conclude that the most suitable model in terms of sim-
plicity and fit is the one that assumes a common long-term trend for pairs of freight 
rates.

The model with a common long-term trend for pairs of freight rates considered 
in Poblacion and Serna (2018) is the non-stationary model by Schwartz and Smith 
(2000) with three stochastic factors. In this model, the log-spot price (Xit) is assumed 
to be the sum of two stochastic factors, a short-term deviation (χit), which is dif-
ferent for each freight rate, a common long-term equilibrium price level (ξt), and 
a deterministic seasonal component, αt. Therefore, the log-spot price (Xit) will be 
Xit = �t + �it + �t , i = 1, 2. The (risk-neutral) SDEs of the factors for this joint model 
with a common long-term trend are:

As before, dWξt and dWχit are standard Brownian motions that can show any correla-
tion structures resulting in 3 correlation parameters.

It is important to note that in the case of two routes, we cannot apply the analytic 
method that is employed above to calculate the VaR for a single route because, based 
on the model assumptions, we are able to specify the distribution of the price of a 
single route, which is log-normal. However, the price of a portfolio consisting of 
positions in different routes is a linear combination of log-normal distributions that 
does not have a closed formula. Therefore, we must rely on Monte Carlo simulations 
to estimate the future portfolio value. As stated in the Introduction, this Monte Carlo 
simulation method for estimating the VaR of two routes jointly constitutes the main 
contribution of the paper.

Let us consider a portfolio consisting of a long position in the TCE of TC2 and 
a short position in the TCE of TC6 (equal weights). Once we have jointly estimated 
the common long-term trend model for these two routes (Poblacion and Serna, 

(5)

d�t = (�� − ��)dt + ��dW�t

d�it = (−�i�it − �� i)dt + �� idW� it, i = 1, 2

d�t = 2���∗
t
dt

d�∗
t
= −2���tdt
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2018, Table  2), we can simulate 10,000 values for the portfolio at the end of the 
next year, assuming that the current date is the final date in our historical dataset, 
i.e., February 20th, 2014. To do so, we need to generate three correlated series of 
10,000 values for the three stochastic factors in the model (the common long-term 
factor and the two route-specific short-term factors). Using the estimated parameters 
from the common long-term trend model for the TCEs of the TC2 and TC6 freight 
rate series (Poblacion and Serna 2018, Table 2), and the three simulated series for 
the three stochastic factors,7 we can simulate two series of 10,000 values for each 
freight rate. Finally, we can obtain a series of 10,000 simulated values for the port-
folio at the end of the next year by subtracting the simulated series for TC6 from the 
simulated series for TC2. Finally, the VaR can be derived from the distribution of 
the simulated portfolio value at the end of the next year. Specifically, the VaR for the 
portfolio under study with probability q is calculated as the expected portfolio value 
at the end of the next year (the mean of the simulated distribution) minus the (1 − q)
th percentile of the simulated distribution.

The simulated distribution for the value of the portfolio at the end of the next year 
is depicted in Fig. 2. As in the previous section, in order to check the robustness of 
our findings, we have performed an empirical analysis assuming that log-prices fol-
low a non-standard Student’s t distribution with mean μ and standard deviation σ, 
were σ has been empirically calculated using the values reported in Table 1, and μ is 
defined so that, as before, E[St] = S0 ⋅ exp(rt) . The simulated distribution obtained 
with this empirical exercise is depicted in Fig. 3. As expected, the simulated distri-
bution assuming a Student’s t distribution shows greater dispersion than the distribu-
tion obtained assuming Gaussian shocks (Fig. 2).
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Fig. 2  Simulated distribution for the portfolio value at the end of the next year. The figure shows the 
simulated distribution for the value of a portfolio consisting of a long position in the TCE of TC2 and 
a short position in the TCE of TC6 at the end of the next year. The simulation is based on the common 
joint long-term trend model for these two routes (Poblacion and Serna 2018, Table 2), assuming that the 
current date is February 20th, 2014

7 As shown in model (5), these three stochastic factors are assumed to be Gaussian.
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Table  7 shows the results of the VaR estimations (E[St] − X*) with different 
time horizons. We report the results assuming the common long-term trend model 
and also assuming a non-standard Student’s t distribution for log-spot prices. As 
expected, the VaR estimations monotonically grow as we move forward in time. 
However, it is interesting to observe how the Student’s t distribution, in spite of 
allowing for higher dispersion, does not seem to capture properly the trends in the 
freight rate series, given that the VaR estimations obtained with the Student’s t 
assumption do not increase with time as those obtained with the common long-term 
trend assumption. It is not surprising because the common long-term trend model is 
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Fig. 3  Simulated distribution for the portfolio value at the end of the next year assuming a non-standard 
Student’s t distribution. The figure shows the simulated distribution for the value of a portfolio consisting 
of a long position in the TCE of TC2 and a short position in the TCE of TC6 at the end of the next year. 
The simulation is based on the assumption that log-prices follow a non-standard Student’s t distribution 
with mean μ and standard deviation σ, were σ has been empirically calculated using the values reported 
in Table 1, and μ is defined so that E[S

t
] = S0 ⋅ exp(rt)

Table 7  VaR estimations for a portfolio of routes TCE TC2 and TC6

The table shows the results of VaR estimations (E[St] − X*) with different time horizons for the value of 
a portfolio consisting of a long position in the TCE of TC2 and a short position in the TCE of TC6. The 
“Model” VaR estimations are based on the common joint long-term trend model for these two routes 
(Poblacion and Serna 2018, Table 2). The “Student’s t” VaR estimations are based on the assumption 
that log-prices follow a non-standard Student’s t distribution with mean μ and standard deviation σ, 
where σ has been empirically calculated using the values reported in Table 1, and μ is defined so that 
E[S

t
] = S0 ⋅ exp(rt) . In both cases we assume that the current date is February 20th, 2014

Years ahead Probability levels

99% 95% 90%

Model Student’s t Model Student’s t Model Student’s t

1/12 14,816.41 6658.18 9106.57 5497.98 6858.42 4638.47
1 32,811.48 23,639.56 29,428.90 18,979,96 29,218.00 15,262.37
2 481,685.60 40,423.60 477,934.13 31,416.27 477,858.15 24,861.87
3 3,645,993.70 58,377.77 3,642,824.63 44,961.60 3,642,804.06 34,661.84
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a theoretical model that is aimed to capture the joint dynamics of the data. However, 
the empirical exercise based on the Student’s t distribution simulates paths for the 
future evolution of the freight rates based on the current situation, without estimat-
ing the trend in the freight rate series. We must keep in mind that in the case of 
a single route analyzed in the previous section, the lowest possible value is zero, 
given that we had long positions. However, in the case of the portfolio of two routes 
analyzed in this section, we have a short position and therefore, the lowest possible 
value for the portfolio is minus infinity.8

Therefore, we have presented a relatively simple way of estimating the VaR of 
a portfolio of routes based on a common long-term trend model for these routes, 
which is the most suitable model in terms of simplicity and fit for pairs of freight 
rates (Poblacion and Serna 2018). Furthermore, this procedure is quite flexible, as it 
can easily accommodate different portfolio weights, including short positions.

5  Risk management implications

As stated in the introduction, one of the main reasons why risk management failed 
during the past financial crisis is that many calculations were carried out using 
incorrect models for the price dynamics. For this reason, a key factor in risk man-
agement is to adopt a correct model for price dynamics.

Therefore, in this paper we address the problem of VaR estimation in freight 
markets using a theoretical model of the stochastic behaviour of freight rates that 
is able to properly capture the main dynamics of freight rates and to avoid the prob-
lems of model misspecification, which leads to wrong VaR estimations. Specifically, 
we have shown that with the assumption of stationarity in the freight rate series we 
incorporate the risk of underestimating the risks that the company is facing, which 
can have drastic consequences, as occurred in the past financial crisis. Thus, it is 
more conservative to assume a non-stationary model, because this model produces 
higher VaR estimations. Specifically, with the stationary model we obtain VaR esti-
mates with a confidence level of 99% and a time horizon of 1 month between 18 and 
35% lower than those obtained with the non-stationary model (between 20 and 41% 
with a confidence level of 95%). Moreover, the non-stationary model is the most 
suitable model in many cases for modelling the stochastic behaviour of freight rates 
(Poblacion 2017).

Concerning risk measurement in the case of pairs of freight rates, Poblacion and 
Serna (2018) show that the most suitable model in terms of simplicity and fit is 
the one that assumes a common long-term trend for pairs of freight rates. There-
fore, we propose a model with a common long-term trend for estimating the VaR of 
two routes jointly, which allows risk managers to take advantage of the benefits of 
diversification.

8 This is the reason why the VaR estimations reported in Table 3 converge to the expected futures price 
as time increases. However, the VaR estimations reported in Table 7 are not bounded.
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6  Conclusions

In this paper, we address the problem of risk measurement in freight markets using the 
most suitable models for the stochastic behaviour of freight rates according to the exist-
ing literature.

In this way, the most suitable models for the stochastic behaviour of freight rates are 
the stationary and non-stationary models, proposed by Schwartz and Smith (2000) and 
Dempster et al. (2008), respectively. Therefore, based on these two models, we obtain 
volatility estimations of freight rates that can be used for estimating the VaR of a single 
route. However, given that the non-stationary model is more suitable in many cases for 
modelling the stochastic behaviour of freight rates (Poblacion 2017), with the station-
ary model, we take the risk of underestimating the risks that the company is facing, 
which can have serious consequences. We also provide estimations of the freight rates 
option values based on these two models. As stated above, given that the non-stationary 
model is the most suitable one, when using the stationary model, we can underestimate 
the option values.

Finally, we investigate via Monte-Carlo simulation the case of two routes assum-
ing a common long-term trend model for pairs of freight rates and also a non-standard 
Student’s t distribution for log-spot prices. We find that the common long-term trend 
model produces more realistic results, since the Student’s t distribution exercise does 
not properly estimate the trend in the freight rate series.
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Appendix

Here we report analytic formulae for the variances of futures prices obtained with the 
Schwartz and Smith (2000) and the Dempster et al. (2008) models.

In the case of the Schwartz and Smith model (2000) the theoretical variance of the 
futures price with maturity T is given by (see Schwartz and Smith 2000, expression 
(4b)):

In the case of the Dempster et al. (2008) the theoretical variance of the futures price 
with maturity T has been calculated as follows:
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